
PHYSICAL REVIEW A 109, 063332 (2024)

Proposal for detecting degenerate bands with topological invariants in optical lattices
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In this paper, we present an experimental approach for simulating and detecting topological invariants using
ultracold fermions confined in two-dimensional hexagonal optical lattices. We propose achieving degenerate
four-band models with nontrivial topologies in both the AII and A classes by introducing additional inertial
forces, Raman processes, or periodic driving. By implementing various quench sequences and observing the
evolution of the time-of-flight pattern, we can gather comprehensive information about the ground states and
determine the topological property of the valence bands. Through the analysis of tomographic results, we are
able to extract and calculate the spin Chern number. Additionally, we demonstrate the robustness of the quantized
topological invariants and discuss the effects of various experimental parameters.
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I. INTRODUCTION

The discovery of the quantum spin Hall (QSH) effect in
materials with strong spin-orbit coupling (SOC) has led to
the emergence of a new class of topological states called Z2

topological insulators [1–3]. With advancements in experi-
mental techniques, researchers can now investigate quantum
phenomena in artificial systems such as Rydberg-excited
atoms [4], trapped ions [5,6], superconductor circuits [7],
and nanostructured materials [8]. These platforms offer a
unique opportunity to explore the quantum behaviors of mat-
ter and their potential applications in quantum information
processing.

Studies of topological effects often require ultrastrong
gauge fields or spin-orbit couplings. Cold atoms confined in
optical lattices provide an excellent platform for emulating a
wide range of systems in condensed matter physics [9–11].
Synthetic gauge fields and SOC can be realized using
various techniques, including trap rotation [12], microrota-
tion [13–17], and Raman laser-induced transitions [18–30].
By combining laser-induced tunneling and superlattice tech-
niques, strong Abelian [26] and non-Abelian [24] gauge fields
can be achieved, enabling the simulation of topological in-
sulators and other models. These technologies have been
proposed for realizing quantum Hall and quantum spin Hall
states [27–37].

The discovery of topological matters has opened up new
avenues for quantum control and measurement. The probing
techniques for different topological phase are also important
for quantum simulation. These techniques can be divided
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into two main types. The first type involves directly extract-
ing the topological properties locally, such as extracting the
Berry curvature of the entire Brillouin zone (BZ), which
can be achieved using interferometers [38–42], studying the
semiclassical dynamics of wave packets [43–46], or using
a phase-retrieval algorithm [47]. The quantum state tomog-
raphy method which measure the entire BZ can also be
viewed as a measure interference pattern from the time-of-
flight (ToF) image [35,48]. Several experiments concerning
the tomography of two-level models in cold-atom systems
have been realized based on the dynamics after different
quench sequences [49–51], projection on different momenta
by fast acceleration [52], and off-resonant coupling to higher
bands [53]. As for the second type, these involve directly
detecting physical observables that act as a response to the
topological phase or topological invariants, such as density
profile plateaus from the Streda formula [32,54–60] or edge
states detected using Bragg spectroscopy [61–67]. All of
these techniques are being used to study topological phases
of matter in artificial systems and to explore their potential
applications in quantum technology.

To date, many experimental works on simulating the lattice
Chern insulator models have been realized on ultracold-atom
platforms. This means that simple quantum simulation tech-
niques using cold atoms are becoming mature. Therefore, we
aim to explore topological insulators with additional symme-
tries. If we consider the case with time-reversal symmetry
(TRS) and other symmetry, the lattice model is complicated
for realization. Optical lattice systems have been used to re-
alize models with both TRS and nontrivial topology. This has
been achieved through the application of gradient magnetic
fields and Raman laser fields [37,68,69]. However, realization
of nontrivial topology and breaking of spin conservation si-
multaneously remains a challenge. In this paper, we propose
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the realization of a hexagonal geometric structure that exhibits
nontrivial topology in twofold degenerate four-band models.
In our first model, we introduce additional inertial forces and
Raman fields to achieve a nontrivial phase belonging to class
AII with additional sx spin symmetry. In the second model, we
combine two Haldane models with opposite Chern numbers
and introduce terms that preserves degeneracy while breaking
spin conservation. We can still define the spin-Chern num-
ber (SCN) for such a system when sz spin conservation and
TRS are broken, and we present an experimental scheme to
simulate and probe these topological invariants. Our proposal
involves trapping cold atoms in a two-dimensional (2D) spin-
dependent optical lattice subjected to periodic driving and
modulation. We aim to measure the topology of the degen-
erate bands through the evolution of ToF images with quench
dynamics.

The paper is organized as follows. Section II provides a
definition of SCN. In Sec. III, we discuss the realization of
the topological phase of a four-band model in class AII and
class A with twofold degeneracy. In Sec. IV, we introduce a
method for band tomography by analyzing ToF images with
the aid of quench dynamics. This method allows for the direct
calculation of the spin Hamiltonian and Berry curvature of the
entire BZ in the spin nonconserving case, thereby obtaining
the topological invariants. Finally, Sec. V provides a discus-
sion about experimental parameters and the conclusion of the
paper.

II. QUANTUM SPIN HALL EFFECT MODEL
AND SPIN CHERN NUMBER

In the study of topological insulators within the AII class,
the system’s behavior is typically characterized by Z2 topo-
logical invariants [70]. When additional symmetries like spin
conservation (sz) are introduced, the classification shifts from
Z2 to Z. In such cases, the SCN can be defined based
on the differences in Chern numbers between distinct spin
components. Even without spin conservation, as explored in
Refs. [71,72], the SCN remains applicable. In these situations,
the expected spin values for the two valence bands do not
simply fall at −1 and +1, but form distinct regions. As long
as these differences remain discernible, the edge states can be
viewed as clusters with different spin orientations.

To determine the SCN, researchers employ a method
that involves decomposing the occupied valence bands into
two sectors by diagonalizing the expression P̂ŝzP̂, where
P̂ represents the valence band projection operator. This
diagonalization allows us to represent P̂ŝzP̂ as a 2 × 2
matrix 〈uα (k)| ŝz |uβ (k)〉 within the valence band. To com-
pute the SCN, we calculate the spin Berry curvature
F±(k) = iεμν 〈∂μψ±(k)|∂νψ±(k)〉, where ± represent two or-
thogonal degenerate sectors. Using this, we define C± =
1/(2π )

∫
d2kF±(k) and define Cs = C+ − C− [73]. It has

been proven that this method remains robust against con-
tinuous deformations of the system Hamiltonian, including
symmetry-breaking perturbations, as shown in Refs. [74,75].
Using this method, the SCN can also be defined when TRS is
broken [76], and there exists QSH effect but without Kramer
pairs. In the next section, we will introduce two models that

FIG. 1. (a) The laser configuration for the two-dimensional
hexagonal optical lattice. (b) The hexagonal optical potential and
Raman field M(r). The overlapping region of Wannier functions
indicates that the Raman process takes opposite values for different
sublattices. (c) The tight-binding model of this system, with some
spin-flip hopping indicated by black dashed arrows. (d) Spin-flip
hopping in the optical lattice tilted by an additional gradient po-
tential. Two laser fields (black solid and dashed arrows) match the
frequency difference of spin-flip hopping along different directions.

can be realized in an optical lattice with ultracold Fermi gas,
following the idea of SCN described above.

III. REALIZATION IN OPTICAL LATTICE

We present two possible approaches for realizing and de-
tecting nontrivial topology with twofold degeneracy. The first
model presents a method to realize a system that maintains
TRS(T 2 = −1) in the AII class with sx conservation, without
introducing additional SOC. The second model is based on
two Haldane models with opposite Chern numbers. We also
introduce additional terms to break spin conservation while
maintaining the condition of the double global degeneracy. All
of these models could exhibit nontrivial topological invariants.

A. Model 1: AII class with sx conservation

In this section, we discuss the realization of a model with
TRS (T 2 = −1) and conserved sx. The model’s topological
invariant is SCN, which falls under Z classification. The im-
plementation of a T -symmetric model has been achieved in an
optical lattice by incorporating gradient magnetic and Raman
laser fields [37,68,69,77]. A similar strategy could be applied
on honeycomb lattice. However, the difference in our scheme
is that in order to realize the topological phase, an additional
external force should be introduced.

An optical potential can be generated using six laser fields
with wave vectors ki± and polarization along ẑ, as illustrated
in Fig. 1(a) with red arrows. By carefully choosing frequen-
cies for extra laser fields propagating along the ẑ direction,
we establish additional two-photon Raman processes. This
mechanism facilitates the coupling of different spins at spe-
cific positions with two different Raman fields.

The complete Hamiltonian encompasses the optical poten-
tial V (r) and Raman fields M1(r), M2(r), taking into account
the influence of the Zeeman field and external force in the
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Raman field:

H = p2

2m0
+ V (r) + M1(r) · S + M2(r) · S. (1)

The optical potentials are formed by laser fields with wave
vectors ki± = √

3Rz(±π/6)ki, where k1 = (0, 1, 0), k2 =
(−√

3/2,−1/2, 0), k3 = (
√

3/2,−1/2, 0), and Rz(θ ) is the
rotation operator along the z axis. The combined electric field
of all laser fields propagating in the x–y plane is

E (r) = E0

3∑
j=1

[exp (−ik j+ · r) − exp (−ik j− · r)]ez, (2)

where lasers with opposite wave vectors exhibit an additional
π phase difference. The associated optical potential is given
by V (r) = −αs|E (r)|2, as depicted in Fig. 1(b), where αs rep-
resents the atomic polarizability and E0 represents the strength
of the electric field.

With the help of Raman fields, the inertial force generated
by accelerating the lattice in a specific direction facilitates the
coupling of spins at particular positions. The Zeeman field
introduces an energy difference, allowing for the indepen-
dent coupling of different spins. By carefully choosing the
frequency of laser fields ER1(r) and ER2(r) in Fig. 1(a) with
solid and dashed black lines propagating along the ẑ direc-
tion, we can control the next-nearest-neighbor (nNN) spin-flip
hopping independently. The laser fields ER1(r) and ER2(r)
are considered constant at the z = 0 plane. By adjusting the
polarization of these laser fields, we can introduce σ+ or σ−
processes independently. For instance, in Fig. 1(d), the red
arrows represent the π transition process, while the black solid
and dashed lines depict the σ+ and σ− transitions, discernible
through the changes in spin.

The determination of tight-binding parameters relies on
the analysis of Wannier-Stark functions in the presence of
gradient field caused by inertial force. The terms governing
nNN spin-flip hopping are associated with the overlap of two
distinct Wannier-Stark functions with different spins on the
same sublattice. Therefore, an analysis of the Raman field
properties is crucial. The Rabi frequencies �, �1, and �2 in
Fig. 1(d) are proportional to E (r), ER1(r), and ER2(r). Conse-
quently, the Raman field term can be expressed as M1(r) =
�∗

1(r)�(r)/�1Ŝ− + H.c., as shown in Fig. 1(b), representing
the coupling between |↑〉 at P2 and |↓〉 at P3 in Fig. 1(d).
Similarly, coupling in the opposite direction is achieved by
the Raman field M2(r) = �2(r)�∗(r)/�2Ŝ− + H.c.. The de-
tunings �1 and �2 are the effective frequency differences
between the D line and the π polarization laser’s frequency
for different spins (magnetic subenergy levels in the hyperfine
structure) in Fig. 1(d). The actual contributions should sum all
possible two-photon Raman processes in the D1 and D2 lines.
Therefore, �1 and �2 are only effective values corresponding
to these actual processes.

Observing the Raman field values in Fig. 1(b), it becomes
apparent that nNN spin-flip hopping takes opposite values on
different sublattices. The nNN spin-flipping terms along the y
direction, induced by the Raman process, can be disregarded
due to the antisymmetric structure of the Raman field M(r)
relative to the middle of the A-B sublattice. Consequently,
we can formulate the tight-binding Hamiltonian as depicted

in Fig. 1(c),

Ĥtb =
∑

〈r,s〉,σ
JABa†

r,σ bs,σ +
∑
〈〈r,s〉〉

(
g1a†

r,↓as,↑

+g2a†
r,↑as,↓ − g1b†

r,↓bs,↑ − g2b†
r,↑bs,↓

) + H.c., (3)

using annihilation operators âr,σ /b̂r,σ for particles at sublat-
tice A/B with spin σ and position r. Here, 〈r, s〉 calculates
all nearest-neighbor (NN) terms, and 〈〈r, s〉〉 calculates the
four possible nNN hopping terms in Fig. 1(c). The SOC terms
g j ∝ � j�

∗ illustrate that these terms can be controlled inde-
pendently by adjusting the amplitude and phase difference of
ER1 and ER2. By setting g1 = g2 = ig, the Bloch Hamiltonian
is

H (k) = Bx(k)σx + By(k)σy + Bxz(k)sxσz, (4)

where

Bx = Re

⎡⎣∑
j

JAB, j exp (−ik · e j )

⎤⎦,

By = Im

⎡⎣∑
j

JAB, j exp (−ik · e j )

⎤⎦,

Bxz = g sin [k · (e0 − e2)] + g sin [k · (e1 − e0)], (5)

and e0 = −ax̂, e1 = a(x̂/2−√
3/2ŷ), e2 = a(x̂/2+√

3ŷ/2).
This model exhibits P = sxσx, T = isyK , and sx symmetries.
Utilizing the sx symmetry, the Hamiltonian can be block di-
agonalized, and the SCN can be determined from the Chern
number of one of these blocks. However, a limitation of this
model is the inability to experimentally introduce additional
terms to break the conserved spin symmetry or close the
gap. This prevents the observation of a phase transition to
topological insulator.

B. Model 2: A class

Because SCN can also be defined when TRS is bro-
ken [76], here we consider a construction of SCN without
considering TRS. In this section, we can realize two Haldane
models with opposite Chern numbers for different spins. We
also consider additional terms that break spin conservation
while maintaining the condition of not disrupting the double
global degeneracy.

We start with cold fermions in a 2D setup, confined in
a spin-dependent hexagonal optical lattice. This confinement
is achieved by adjusting the light polarization between σ+
and σ−, as successfully demonstrated in experiments [78].
The hexagonal lattice can be regarded as a triangular lattice
with a sublattice structure. In this arrangement, atoms occupy
σ+ and σ− sites, experiencing a spin-dependent ac Stark
shift within the light field. The overall potential is given by
V (r) = Vhex(r) + mzVtri(r). The fermion dynamics follow the
Hamiltonian H = p2/2m0 + V (r).

The formation of a spin-dependent hexagonal optical lat-
tice [78,79] is achieved through the intersection of three laser
beams at a 120◦ angle, each linearly polarized in the x-y plane.
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FIG. 2. (a) Laser setup of the two-dimensional hexagonal optical
lattice. A spin-dependent sublattice potential � is introduced by
controlling the local polarization. The trap’s depth is not extremely
strong, such that nNN hopping terms JAA and JBB cannot be ig-
nored. (b) The strength of optical potential and effective magnetic
field. (c) Tight-binding description of model. (d) Periodic modulation
function.

The configuration of the three laser fields is as follows:

E1(r, t ) = E0ei(k1·r−φ1 )−iωLt ex

E2(r, t ) = −E0ei(k2·r−φ2 )−iωLt

(
1

2
ex −

√
3

2
ey

)

E3(r, t ) = −E0ei(k3·r−φ3 )−iωLt

(
1

2
ex +

√
3

2
ey

)
. (6)

The spin-independent potential of 2D lattice Vs = −αs|E |2,
given by Vs(r) = −αsE2

0 {3 − cos (b1 · r) − cos (b2 · r) −
cos [(b1 − b2) · r]} and b1 = k2 − k1, b2 = k3 − k2, b3 =
k1 − k3. The spin-dependent potential of 2D lattice Vv =
iαv (E∗ × E ) · F, given by Vv (r) = √

3αvE2
0 Fz[sin (b1 · r) +

sin (b2 · r) − sin (b3 · r)] and shown in Fig. 2(b) as effective
magnetic field Beff .

The tight-binding model, with a weak potential corre-
sponding to the recoil energy ER, enables the inclusion of a
significant nNN term and can be expressed as

Ĥtb =
∑
r,σ

mz�(a†
r,σ ar,σ − b†

r,σ br,σ ) +
⎛⎝∑

r,s

J (σ )
AB a†

r,σ bs,σ

+
∑

〈〈r,s〉〉,σ
J (σ )

AA a†
r,σ as,σ + J (σ )

BB b†
r,σ bs,σ + H.c.

⎞⎠. (7)

The tunneling amplitudes can be calculated from the overlap
of the Wannier function. Since the potential for a spin-up atom
at sublattice A is identical to a spin-down atom at sublattice
B, the Wannier packet with different spins should satisfy
w↑,A(r) = w↓,B(r) and w↓,A(r) = w↑,B(r). This property im-
plies that the NN hopping is spin independent, and the nNN
hopping satisfies J↑

AA = J↓
BB, J↓

AA = J↑
BB.

Here, we consider the periodic driving optical lattice shown
in Fig. 2(c), described by the free fermion Hamiltonian

Ĥ (t ) = Ĥtb +
∑

r

F(t ) · r(n̂A,r + n̂B,r ). (8)

The term Ĥos collects on-site terms describing many-body
interactions or a weak static potential. In our model,
the modulation involves moving the lattice along a pe-
riodic trajectory r(t ), which introduces an inertial force
F(t ) = −m0r̈lat (t ) acting on the atoms. This additional
time-dependent term can be canceled by a unitary transfor-
mation U (t ) = exp[−im0

∑
r q̇lat (t ) · r(n̂A,r + n̂B,r )], where

qlat = m0[ṙlat (t ) − ṙlat (0)] introduces a complex phase factor
to the tunneling amplitudes. If there is no spin-flipping term,
sz is conserved and the Hamiltonian can be divided into two
individual parts.

For a simple case in our Floquet gauge, if we only consider
the zero-order term [80–82], the Floquet Hamiltonian is the
time average Heff = 〈H (t )〉T as long as the recoil energy ER

is significantly larger than both the nearest-neighbor hopping
J and the energy scales of Hamiltonian. In this treatment, the
effective tunneling after one period is given by∣∣J (eff )

i j

∣∣eiθi j = 〈Ji je
−iqlat ·ri j 〉T . (9)

Moreover, for sinusoidal forcing, such dynamics modi-
fication of tunneling is restricted to θi j = 0 or π [83–86].
This phenomenon has been observed in several experi-
ments [87–89]. The Peierls phase θi j also can be smoothly
tuned to any value through appropriate driving [81,90]. Here,
we consider a linear shaking scheme: the inertial force com-
prises a series of sinusoidal pulses separated by periods of rest
with a periodicity of T = T1 + T2, as illustrated in Fig. 2(d).

F(t ) =
{

F0 sin ω1(t mod T )n̂, 0 < (t mod T ) < T1,

0, T1 < (t mod T ) < T,

(10)
where ω1 = 2π/T1 and the shaking axis is given by n̂ =
(cos ϕex + sin ϕey). The effective hopping will be renormal-
ized and multiplied by a phase factor

〈e−iqlat ·ri j 〉T = T1

T
eiαi jJ0(αi j ) + T2

T
, (11)

where αi j = F0n̂ · ri j/ω1 and Jn represents n-order Bessel
function. If T2 
= 0, the Peierls phase θi j is not a linear function
of ri j , but

tan θi j = sin αi j

cos αi j + T2
T1J0(αi j )

, (12)

and this gives rise to an inhomogeneous finite artificial mag-
netic flux through the elementary triangular plaquettes of
2D lattices. The effective Floquet Hamiltonian in momentum
space can always be expressed as two distinct parts (details in
Appendix B),

Ĥeff (k) = λ+I4 + Bx(k)σx + By(k)σy + Bz(k)szσz, (13)

and the ground state is always twofold degenerate. This model
exhibits a topological phase transition when the gap closes,
achieved by controlling the shaking amplitude F , shaking
direction ϕ, and sublattice potential �. The phase diagram and
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FIG. 3. (a) The phase diagram of the topological phase. (b) The corresponding Floquet band structure in topological phase with
open boundary condition along the x direction. The calculated parameters include JAA = 0.1JAB, JBB = 0, T1 = T/2, ω/JAB = 20, and
F0a/ω1 ≈ 1.89. Additional parameters relevant to the experiment are provided in Sec. V.

Floquet bands are shown in Fig. 3, illustrating the possibilities
for realizing a system with nontrivial topological invariants.

To break sz symmetry but still keep the degeneracy of
ground states, we consider adding some “flattened” terms [11]
in Bloch Hamiltonian

HSF(k) = gR(k)sxσz + gI (k)syσz, (14)

which represents all sublattice-dependent same-sublattice
spin-flip processes. The σz term implies that coupling for
different sublattices should take a π phase difference. To
introduce terms like this and avoid the influence of periodic
shaking, one method is to only consider on-site terms. How-
ever, there are no techniques to independently introduce local
spin-flip terms in the Hamiltonian so far. As for building
nNN Raman processes, it is difficult to control the hopping
phase due to the effect of periodic shaking. Therefore, these
terms cannot be realized in our Floquet system. However, one
can always choose four internal states and carefully design
and couple a system with Raman fields, as demonstrated in
Ref. [91]. In that case, any possible coupling could be real-
ized, and these terms can be realized.

To discuss SCN with the existence of these terms, the wave
functions of the valence bands can be written as a tensor prod-
uct: |Ei(k)〉 = |si(k)〉 ⊗ |τi(k)〉, where |si〉 and |τi〉 represent
wave functions for spin and sublattice, respectively. For the
Hamiltonian given by Eq. (13) with the spin-flipping term, we
can introduce two rotations along the σx and σy directions for
each spin component simultaneously using Ux = e−iηsx/2 ⊗
I2 and Uy = e−iξsy/2 ⊗ I2. By performing the transformation
U †

x U †
y HUyUx = H, the spin-flipping term can be eliminated,

with tan ξ = gR/Bz and tan η = −gI/
√

B2
z + g2

R (the introduc-
tion of η is unnecessary when gI = 0). The szσz component
of the block diagonalized Hamiltonian changes from Bz to
B̃z = −gI sin η + cos η(Bz cos ξ + gR sin ξ ). The correspond-
ing wave functions for spin and sublattice components are

|s1〉 =
(

cos
η

2
cos

ξ

2
+ i sin

η

2
sin

ξ

2

)
|↑〉

+
(

cos
η

2
sin

ξ

2
− i sin

η

2
cos

ξ

2

)
|↓〉 ,

|s2〉 = −
(

cos
η

2
sin

ξ

2
+ i sin

η

2
cos

ξ

2

)
|↑〉

+
(

cos
η

2
cos

ξ

2
− i sin

η

2
sin

ξ

2

)
|↓〉 ,

|τ1〉 = sin
θ

2
|A〉 − eiϕ cos

θ

2
|B〉 ,

|τ2〉 = e−iϕ cos
θ

2
|A〉 − sin

θ

2
|B〉 , (15)

where tan θ =
√

B2
x + B2

y/B̃z and tan ϕ = By/Bx. It should be

noted that 〈sm|sn〉 = δmn and 〈τm|τn〉 
= δmn.
By introducing additional terms to break the ŝz symmetry,

we can follow the definition in Sec. II and express P̂ŝzP̂ to
obtain a new reduced spin Hamiltonian denoted as H (k),

H (k) =
(

M(k) t (k)
t∗(k) −M(k)

)
, (16)

where M(k) = 〈E−,1| ŝz |E−,1〉 = − 〈E−,2| ŝz |E−,2〉 and
t (k) = 〈E−,1| ŝz |E−,2〉. These parameters can be rep-
resented by θ , φ, ξ , and η, with M = cos η cos ξ and
t = −e−iϕ sin θ (sin ξ + i cos ξ sin η). The gap of H will only
close if both M and t are equal to 0, which corresponds to
θ = 0, ξ = η = π/2. The phase diagram takes the same form
as the result shown in Fig. 3, and the magnitude of gR and
gI do not relate to the phase transition. Up to this point, we
can apply the same approach to calculate the SCN using the
reduced spin Hamiltonian in such gapped models.

IV. DETECT METHOD IN COLD-ATOM SYSTEM

Cold-atom systems with optical lattices provide a clean
platform for simulating and studying lattice models in con-
densed matter physics. Information about the interference
pattern of Bloch states in this system can be extracted by
measuring the ToF image. In general, the tomography method
can provide complete information about the occupied bands.
The tomography of a system with many bands is compli-
cated. Therefore, we limit our consideration to a four-band
model with twofold global degeneracy, which simplifies the
tomography procedure. In cold-atom systems, various quench
sequences can be employed to achieve tomography and
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investigate Bloch states in optical lattices through the mea-
surement of ToF images. In the preceding section, we give the
method to realize tomography of twofold degeneracy space.

Firstly, we will outline the theory behind tomography mea-
surements. In the absence of a Rashba SOC term that couples
different spin components, information about each spin com-
ponent can be independently extracted by measuring the ToF
image and spin [11,49,50]. In a finite-size system, the density
distribution of the ToF image with spin σ in momentum space
can be calculated using

nσ (k) = f (k)
∑
m,n

e−ik·(rm−rn )ei(μm,σ −μn,σ )t

× 〈G| [a†
m,σ , b†

m,σ ]

[
an,σ

bn,σ

]
|G〉 , (17)

where f (k) represents a broad envelope function determined
by the momentum distribution of the Wannier function, and
μn,σ denotes the global trap potential strength at site i. In the
absence of a global trapping difference, one has μn,σ = μs.

The density distribution of the ToF image is given
by nσ (k) = f (k) 〈G| σ0 + σx |G〉, where |G〉 represents the
many-particle states with Fermi energy E f in an ideal
periodic system without trapping differences. A quench in-
volving the Pauli matrix σz generates the evolution operator
exp (−iσzt/2), which transforms the ToF image from σx to
σx cos t − σy sin t . By choosing t = 0 and t = π/2, the expec-
tation values 〈σx〉 and 〈σy〉 can be extracted. Extracting 〈σz〉
can follow a similar approach to that used for the σy quench.
However, in the case of isolated band tomography, one σz

quench is sufficient to recover σz by analyzing the evolution
curve of quench dynamics [49,50].

For the four-band model with degeneracy, it is necessary
to measure all five components of the Dirac matrices from
tomography. In the case of a finite-size system, the overall
density distribution of the ToF image in momentum space can
be calculated using

n(k) = f (k)
∑
m,n

e−ik·(rm−rn )ei(μm,σ −μn,σ )t

× 〈G|C†
nCm |G〉 , (18)

where Cj = [a j,↑, b j,↑, a j,↓, b j,↓]T . For an ideal periodic sys-
tem without trapping differences, the density distribution of
the ToF image in Eq. (18) can be expressed by n(k) =
f (k) 〈G| �0 + �1 − �23 + �45 |G〉. For example, since the
system in the above section only has �1, �12, �13, �14, and
�15 components, the expectation value of other components
should be zero. In this context, we consider a simplified case
where η = 0 or gI = 0. Three possible quench sequences can
simplify the tomography of such a system in an optical lattice:
�2, �12, and �14 (Appendix F). The parameters θ , φ, and ξ

can all be extracted from the ToF images obtained with these
different quench sequences.

For the first model generated by Raman lattice, the topo-
logical invariants could be extracted directly by measuring the
ToF image of each spin part. For the second model, additional
terms gap the system, but we could still reconstruct the spin
Hamiltonian using these parameters from tomography and get
a nontrivial SCN.

The SCN can be expressed as momentum-space integrals
of the spin Berry curvature F (s)

xy (k) = ∂kx A
(s)
y (k) − ∂ky A

(s)
x (k)

and connection A(s)
μ (k) = i 〈us(k)| ∂kμ

|us(k)〉 associated
with the Bloch state |us(k)〉. The integration is over the
whole BZ, forming a compact manifold. If the gauge
potential A(s)

μ (k) is globally well defined over the BZ,
the SCN vanishes because the torus has no boundary.
If some topological obstacle exists, the curvature can
be solved by Fukui’s U (1) link method [92]: Uμ(k) =
〈u(k)|u(k + δkμ)〉 /| 〈u(k)|u(k + δkμ)〉 | and Fμν (k) =
i ln[Uμ(k)Uν (k + δkμ)U −1

ν (k)U −1
μ (k + δkν )], where Fμν (k)

∈ (−π, π ] as a discrete version. It can be obtained from
the ToF image evolution associated with the pixel k. The
topological invariants of the reduced spin Hamiltonian H
can be calculated from F (s)

μν (k) by directly summing over all
pixels of the BZ.

To demonstrate the efficiency of the tomography method,
we utilize a finite-size system to compute its ToF images. For
a quadratic Hamiltonian in real space that is characterized by
free fermions, the Hamiltonian is given by

H =
∑

r,s,α,β

(
a†

s,β , b†
s,β

)
Hrα,sβ

(
ar,α
br,α

)
, (19)

where r and s represent position indices, and α and β rep-
resent spin indices. A unitary operation exists to diagonalize
this Hamiltonian, resulting in H = U †�U . The unitary trans-
formation and the diagonalized Hamiltonian can be expressed
as follows:

cq,δ =
∑
s,β

U (a→c)
qδ,sβ as,β + U (b→c)

qδ,sβ bs,β ,

dq,δ =
∑
s,β

U (a→d )
qδ,sβ as,β + U (b→d )

qδ,sβ bs,β , (20)

and

H =
∑
q,δ

�
(c)
q,δc†

q,δcq,δ + �
(d )
q,δd†

q,δdq,δ, (21)

where the quasi-particles cq,δ and dq,δ correspond to lower
and higher energy levels, respectively, with δ representing
the pseudospin index. The particle number N is conserved
and defined as N = ∑

r,α (a†
r,αar,α + b†

r,αbr,α ). In such a sys-
tem, particles occupy the top N eigenmodes with the lowest
eigenenergy at absolute zero temperature. Consequently, by
manipulating the Fermi energy EF of this system—effectively
controlling N—the system’s ground state can be described
as |G〉 = ∏Nd

j=1 d†
j

∏Nc
i=1 c†

i |0〉, where indices i and j are ar-
ranged based on the energy of the quasi-particles cq,δ and
dq,δ . By substituting the terms ar,σ and br,σ into Eq. (18), the
momentum density distribution of a finite-size system can be
computed (Appendix D).

Here, we present the numerical simulations of the model
we constructed in Eq. (13), augmented with terms Eq. (14)
as a constant. Despite the complex parameters generated by
periodic shaking, we focus solely on the model described in
Eq. (13) with a simplified parameter configuration. Specifi-
cally, the nNN hopping is spatially uniform and set at 0.1JNN

with a phase of ±π/2 from different spin components. We
consider a finite lattice with dimensions 8 × 8 × 2 sites,
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FIG. 4. (a) Calculations are performed on a honeycomb lattice with N = 8 × 8 × 2 sites and two spin degrees of freedom. Parameters
are extracted from the ToF image: (b) ϕ, (c) θ , and (d) ξ . The black dashed line represents the boundary of BZ. (e) Spin gap near the phase
transition point. (f) Spin Berry curvature of the topological and trivial phases. (g) Extracted spin Chern number vs different resolution ratios
with a strong or weak g term. (h) Extracted spin Chern number vs different lattice sizes with a strong or weak g term. The calculated parameters
are as follows: J±

nNN = ±0.1iJNN, JBB = 0, and g = 0.5JNN.

investigate quench dynamics and obtained results displayed
in Fig. 4. The reconstructed spin Hamiltonian exhibits a gap-
less point if and only if θ = 0 and ξ = π/2. Analyzing the
data in Fig. 4(c), we observe that θ consistently features two
zero points across the entire BZ. On the other hand, for the
parameter ξ , as � increases, the ξ = π/2 regions contract
to discrete points. Remarkably, these points also adhere to
θ = 0, establishing them as gapless points in the reduced spin
Hamiltonian. Consequently, we can find a change in the SCN
through calculations of spin-Berry curvature.

The extracted spin gap and spin Berry curvature are illus-
trated in Figs. 4(e) and 4(f). Within the BZ, a single gapless
point is observed, and the spin Berry curvature exhibits signif-
icant numerical values around these gapless points in Fig. 4(f).
When evaluating the SCN with different resolution ratios and
strengths of the g term, it is remarkable that the simulated SCN
remains nearly unaffected by the resolution ratio of the ToF
image in Fig. 4(g). However, the strength of the g term does
influence the location of the phase transition point. Notably,
the phase transition point � = ±3

√
3JnNN remains entirely

independent of the parameter g, implying that the observed
deviations can be viewed as amplification of the effect on
system size.

Considering both a strong and weak g term, a comparison
of the simulated SCNs across various lattice sizes is presented
in Fig. 4(h). With the increasing of system size, the phase
transition point approaches the theoretical point. For the effect
of g, across most regions except for the vicinity of Bz = 0, ξ

predominantly assumes values close to either 0 or π . In sce-
narios involving a weak g term, changes in ξ tend to be abrupt,
leading to the need for more and more precise samplings.
Consequently, determination of the accurate phase transition
point becomes challenging, resulting in a notable discrepancy
between numerical and theoretical outcomes, as evident in
Fig. 4(h).

V. DISCUSSION AND CONCLUSION

In order to establish a connection with experiments involv-
ing cold atoms, we consider 6Li atoms with parameters as
reported in Refs. [45,53]. For the lattice configuration, we
set the depths to approximately JAB/2π = 5 kHz, JAA/2π =
500 Hz, and JBB/2π � JAA. The lattice constant is determined
by the wavelength λ = 1064 nm of the laser beams used to
create the optical lattice. The sinusoidal modulation of the
lattice position along the x and y directions is characterized
by a shaking amplitude of 0.1λ. To capture the dynamics,
the modulation frequency ω1/2π can be configured to exceed
100 kHz.

In experimental setups, several parameters can introduce
perturbations to the ToF image. However, the trapping fre-
quencies of the global weak underlying harmonic confinement
are notably smaller than JAB and can thus be safely disregarded
within theoretical discussions. In Fig. 3, observing the non-
trivial topological phase requires a � range of approximately
0.06JAB using feasible experimental parameters. Correspond-
ingly, this frequency value corresponds to around 300 Hz.
The main factor that affects the energy gap is the g term that
destroys spin conservation. As a result of the gap increasing,
the occupations in the conducting band are also suppressed.
Therefore, a larger g can effectively suppress thermal fluctu-
ations. Therefore, a larger g can effectively suppress thermal
fluctuations.

The introduction of a spin-dependent nNN hopping term
can be achieved through a global spin-dependent potential.
Meanwhile, the creation of opposing artificial magnetic fluxes
for each spin component can be realized via optical potential
modulation. This artificial magnetic field primarily originates
from the zero-order contribution of the intrinsic nNN hopping
term and proves easy to prepare and detect, particularly in
systems characterized by shallow potentials.

063332-7



LIU, WANG, AND DING PHYSICAL REVIEW A 109, 063332 (2024)

Furthermore, the broader extended Wannier function that
we propose here serves a dual purpose: it not only en-
hances the nNN hopping amplitude but also amplifies the
strength of many-body interactions. This amplification can
introduce non-negligible effects stemming from many-body
terms. However, the impact of these many-body interactions
can be mitigated by manipulating the scattering length of
atoms through Feshbach resonance.

Additionally, the extension of our work opens avenues to
explore topological phase transitions and other lattice model
properties by extracting ToF images in future research endeav-
ors. It is worth noting that all the parameters discussed here
are actually independent. Altering the sublattice potential �

simultaneously affects both NN and nNN hopping, rendering
the actual phase diagram more intricate than what is depicted
in Fig. 3. Importantly, all these parameters are tunable via
adjustments to the optical potential.

VI. SUMMARY

We introduce achievable simple models demonstrating
nontrivial SCN in ultracold-atom systems. We derive the spin-
Hamiltonian and SCNs by analyzing essential parameters
extracted from the quench dynamics of ToF images. It is
crucial to highlight that in the topological phase, the orien-
tation of currents in different spin sectors becomes variable,
leading to quantized spin Hall currents. Moreover, the same
quenching approach can be applied to topological insulators
in alternative classes or systems with second-order topology,
as long as it can be realized in an ultracold-atom system.

In summary, we systematically build two distinct four-band
models with nontrivial topological invariants. These models
enable measurable SCN in cold-atom experiments, and we
propose a method to effectively probe their corresponding
topological invariants. The strategies and examples provided
in this study offer a foundation for realizing and detecting
topological states in cold-atom systems. Additionally, these
insights contribute to a deeper understanding of topological
excitations and the broader concept of topological order, span-
ning various fields like condensed-matter physics and artificial
systems.
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APPENDIX A: CONDITIONS OF FOUR-BAND MODEL
WITH DEGENERACY

Firstly, we discuss the conditions when the four-band
Hamiltonian shows degeneracy. An arbitrary four-band
model can be represented by 15 Clifford matrices, where
Clifford matrices are defined as �(1,2,3,4,5) = (I ⊗ σx, I ⊗
σz, sx ⊗ σy, sy ⊗ σy, sz ⊗ σy), and their ten commutators are
�i j = [�i, � j]/(2i). If there exists global degeneracy, the
Hamiltonian satisfies H2 ∝ I . Suppose H = ∑

μ gμ�μ +

∑
μ<ν gμν�μν and its square is

H2 =
⎛⎝∑

μ

g2
μ +

∑
μ<ν

g2
μν

⎞⎠I4 +
∑
μ<ν

gμgν{�μ, �ν}

+
∑

μ,ν<ρ

gμgνρ{�μ, �νρ} +
∑

μ<ν,ρ<λ

gμνgρλ{�μν, �ρλ},

and this implies all anticommutators are zero. Firstly,
{�μ, �ν} = 2δμν . For the last two terms with �μν ,
{�μ, �νρ} = 0 if and only if μ = ν or μ = ρ. Similarly,
if one index in {μ, ν} is equal to {ρ, λ}, {�μν, �ρλ} also
takes zero. Above all, we get two types of twofold global
degenerate cases:

Hμ =
∑

μ

gμ�μ,

Hμ = gμ�μ +
∑

ν

gν�μν,

(A1)

and these two types of Hamiltonians are equivalent by per-
forming one unitary transformation. We could also observe
that one four-band model with global degeneracy can have at
most five different Clifford matrices.

APPENDIX B: EFFECTIVE FLOQUET HAMILTONIAN

Here, we explore the scenario of an optical lattice described
by a tight-binding model, where each site accommodates one
orbital. Additionally, an external gradient field is introduced,

H =
∑
m,n

[(
C†

m,nhCm,n + C†
m+1,nTe1Cm,n

+C†
m,n+1Te2Cm,n + H.c.

) + C†
m,nF(t ) · rCm,n

]
,

where Cm,n = [am,n, bm,n]T . In our experiments, the mod-
ulation consists of displacing the lattice along a periodic
trajectory denoted as r(t ). This displacement introduces an in-
ertial force F(t ) = −m0r̈lat (t ) acting on the atoms. To handle
this additional time-dependent term, a unitary transformation
can be applied to cancel it out:

U (t ) = exp

⎡⎣−im0

∑
m,n

C†
m,n

∫ t

0
dt r̈lat (t ) · rCm,n

⎤⎦
= exp

⎡⎣−im0

∑
m,n

C†
m,n[ṙlat (t ) − ṙlat (0)] · rCm,n

⎤⎦.

The modulation needs to satisfy the following condition: it
must assume zero values at both the beginning and end of
a period. To facilitate our treatment, we introduce the quan-
tity qlat = m0[ṙlat (t ) − ṙlat (0)]. This formulation ensures that
the gauge transformation adheres to the condition U (0) = I .
In this case, all hopping terms will attach a phase factor
exp[−iqlat · (rmn − rkl )]. The effective Floquet Hamiltonian
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in zero and first order are

H (0)
F (t0) = 1

T

∫ t0+T

t0

dtH (t )

H (1)
F (t0) = 1

T

1

2!i

∫ t0+T

t0

dt1

∫ t1

t0

dt2[H (t1), H (t2)].

Following the calculations outlined in the main text, the
effective hopping terms undergo renormalization, obtaining
a phase factor denoted as θi j in Eq. (9). The resulting Flo-
quet Bloch Hamiltonian can be conceptually regarded as a
composite of two distinct and independent components. For
the spin-up part, Bx + iBy = JAB

T

∑
n[T1J0(αn)e−i(k·en+αn ) +

T2e−ik·en ] and

Bz = � + JAA − JBB

T

2∑
n=0

∑
m

δm,(n+1mod3){ T1J0(βn) cos [k · (en − em) + βn] + T2 cos k · (en − em)},︸ ︷︷ ︸
λ−

where αn = F0n̂ · en/ω1, βi = F0n̂ · (en − e(n+1) mod 3)/ω1

and e0 = −ax̂, e1 = a
2 x̂ −

√
3a
2 ŷ, e2 = a

2 x̂ +
√

3a
2 ŷ. The

difference between the spin-up and spin-down part is the
value of nNN hopping: J↑

AA − J↑
BB = J↓

BB − J↓
AA. This gives

rise to Hamiltonian

H =
(

λ+I + d+ · σ 0
0 λ+I + d− · σ

)
, (B2)

where d± = [Bx, By,±(� + λ−)].

APPENDIX C: FLOQUET APPROXIMATION

We have formulated an effective Floquet model as dis-
cussed earlier. However, our analysis is confined to the
zero-order Floquet approximation. We extend our exami-
nation to the effective Floquet Hamiltonian for first order
following the approach outlined in Ref. [93]. Generally speak-
ing, a Floquet gauge which has centrosymmetry can lead to
an exact zero first term. However, there is no centrosymme-
try in such a driving sequence even if the Floquet gauge is
changed. By computing the maximum first-order term, we can
identify the parameter conditions that validate the zero-order
approximation. It is noteworthy that the term J2

AB significantly
influences the diagonal elements and serves as the primary
contributor to the maximum first-order Floquet Hamiltonian.

The magnitude of the maximum first-order term can be ex-
pressed as follows:

First order = J2
AB

1

T

1

2!i

∫ T

0
dt1 exp [−iqlat (t1) · en]

×
∫ t1

0
dt2 exp [iqlat (t2) · em]

� J2
AB

1

T

1

2!i

[
T 2

1

2
+ T1(T − T1) + 1

2
(T − T1)2

]
= πJ2

AB

2ω
,

where all Bessel function Jn(z) � 1 and driving frequency
ω1 should be sufficiently large to satisfy J0(z) � Jn(z)/ω1.
Actually, due to the contribution of J0(αi) and the phase αi,
the norm of the first-order term is even smaller than πJ2

AB/2ω.
Notably, the diagonal term is chiefly influenced by |JAA −
JBB|, which in our consideration is 0.1JAB. Consequently, this
ensures that |JAA − JAB| > max{first order}.

APPENDIX D: TIME-OF-FLIGHT INTERFERENCE
IMAGE CALCULATION

The correlation function in real space can be calculated by

〈G| a†
r,σ ar′,σ |G〉 =

∑
s,β,s′,β ′

U (a→c)
sβ,rσ

(
U (a→c)

s′β ′,r′σ

)∗ 〈G| c†
s,βcs′,β ′ |G〉 + U (a→d )

sβ,rα

(
U (a→d )

s′β ′,r′α′
)∗ 〈G| d†

s,βds′,β ′ |G〉

〈G| b†
r,σ br′,σ |G〉 =

∑
s,β,s′,β ′

U (b→c)
sβ,rσ

(
U (b→c)

s′β ′,r′σ

)∗ 〈G| c†
s,βcs′,β ′ |G〉 + U (b→d )

sβ,rσ

(
U (b→d )

s′β ′,r′σ

)∗ 〈G| d†
s,βds′,β ′ |G〉

〈G| a†
r,σ br′,σ |G〉 =

∑
s,β,s′,β ′

U (a→c)
sβ,rσ

(
U (b→c)

s′β ′,r′σ

)∗ 〈G| c†
s,βcs′,β ′ |G〉 + U (a→d )

sβ,rσ

(
U (b→d )

s′β ′,r′σ

)∗ 〈G| d†
s,βds′,β ′ |G〉

〈G| b†
r,σ ar′,σ |G〉 = (〈G| a†

r,σ br′,σ |G〉)∗, (D1)

and in real space, ground state |G〉 satisfies

〈G| c†
s,βcs′,β ′ |G〉 = 〈G| d†

s,βds′,β ′ |G〉 = δs,s′δβ,β ′θ (EF − E )

〈G| c†
s,βds′,β ′ |G〉 = 〈G| d†

s,βcs′,β ′ |G〉 = 0,

where θ (EF − E ) is the Heaviside function which describes
the Fermi-Dirac distribution at zero temperature. Thus, the

momentum density of a finite-size model can be calculated
by

〈G| a†
r,αar′,α′ |G〉 =

∑
s,β

U (a→c)
sβ,rσ

(
U (a→c)

sβ,r′σ

)∗
〈G| b†

r,αbr′,α′ |G〉 =
∑
s,β

U (b→c)
sβ,rσ

(
U (b→d )

sβ,r′σ

)∗
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〈G| a†
r,σ br′,σ |G〉 =

∑
s,β

U (a→c)
sβ,rσ

(
U (b→c)

sβ,r′σ

)∗
〈G| b†

r,σ ar′,σ |G〉 = (〈G| a†
r′,σ br,σ |G〉)∗. (D2)

APPENDIX E: TOMOGRAPHY PROCEDURE

In the context of the twofold globally degenerate system
described by Eqs. (13) and (14), and considering the ground
state as |G〉 = (

∏
k∈BZ c†

−,2)(
∏

k∈BZ c†
−,1) |0〉, it suffices to

measure 〈�1〉, 〈�12〉, 〈�13〉, and 〈�15〉 in order to complete the
entire tomography process. The theoretical values for the ToF
image under periodic boundary conditions are as follows:

〈�1〉 = −2 cos ϕ sin θ, 〈�12〉 = −2 sin ϕ sin θ

〈�13〉 = −2 sin ξ cos θ, 〈�15〉 = −2 cos ξ cos θ. (E1)

It is important to note that all other components of the Gamma
matrices are zero. The total density distribution of the ToF
image in momentum space can be calculated by

n(k) = f (k) 〈�0 + �1 − �23 + �45〉
= f (k)(2 − 2 cos ϕ sin θ ). (E2)

Here, we contemplate a quench that transforms the initial
ground state |G〉 into a new state |G̃〉 = exp (−i�t/2) |G〉.
In the absence of a quench, we have n(k) = 〈�0〉 + 〈�1〉.
Considering all possible quench scenarios that can provide
relevant information, we present them as follows:

�2 : n(k, t ) = 〈�0〉 + cos t 〈�1〉 + sin t 〈�12〉
�3 : n(k, t ) = 〈�0〉 + cos t 〈�1〉 + sin t 〈�13〉
�5 : n(k, t ) = 〈�0〉 + cos t 〈�1〉 + sin t 〈�15〉

�12 : n(k, t ) = 〈�0〉 + cos t 〈�1〉 − sin t 〈�13〉
�13 : n(k, t ) = 〈�0〉 + cos t 〈�1〉 + sin t 〈�12〉
�14 : n(k, t ) = 〈�0〉 + cos t 〈�1〉 + sin t 〈�15〉 . (E3)

By setting t = 0, π/2, π , all components can be exacted from

n(π/2)

n(0) + n(π )
= 〈�0〉 + 〈�〉

2 〈�0〉 = 1

2

(
1 + 〈�〉

〈�0〉
)

. (E4)

The contribution of the broad envelope can be evaluated as
background by calculating the sum at t = 0 and t = π .

APPENDIX F: EXPERIMENTAL SETUP OF OPTICAL
LATTICE AND QUENCH DYNAMICS

In order to realize different types of quench smoothly, the
optical lattice can be formed by stacked hexagonal optical
potential. To achieve a �2-type quench, one part is formed
by the setting in model 2 in Sec. IV, and another part can be
achieved by three detuned standing-wave laser fields that are
rotated by angles of π/3 with respect to each other:

E j (r, t ) = E0e−iω′t sin (k′
i · r + φi)ez (F1)

and Vs(r) = −αs|
∑3

j=1 E j (r)|2. By appropriately selecting
values for the phases φi, we can manipulate the sublattice
detuning parameter �. Specifically, for the case of a �2

quench, the objective is to enhance the strength of E0 to effec-
tively suppress nearest-neighbor (NN) hopping interactions.

Simultaneously, a nonzero value of φi is introduced, which
introduces sublattice energy offsets. This introduction of an
energy difference between different sublattices leads to the
accumulation of a relative phase shift: a†

m,n → e−iϕa†
m,n and

b†
m,n → eiϕb†

m,n. Consequently, this phase alteration leads to
changes in the observed pattern within the ToF image.

Just as we assume when introducing the g term, if we can
achieve control over spin at the single-site level, we could
manipulate the phase difference and achieve quenching in �13

and �14.
In the case of �12, we require an additional dimerized

optical lattice along one direction. This lattice can be achieved
by introducing laser imbalance,

E1(r, t ) = βE0ei(k1·r−φ1 )−iωLt ex

E2(r, t ) = −E0ei(k2·r−φ2 )−iωLt

(
1

2
ex −

√
3

2
ey

)

E3(r, t ) = −E0ei(k3·r−φ3 )−iωLt

(
1

2
ex +

√
3

2
ey

)
. (F2)

By choosing the appropriate β, we can inhibit hopping along
two directions and maintain the intersublattice hopping term.
Further periodic driving can control the complex tunnel-
ing amplitude between sublattices. The tight-binding quench
Hamiltonian with effective magnetic field we realized is

H =
⎛⎝∑

m,n,σ

JABeiφAB a†
m,n,σ bm,n,σ + H.c.

⎞⎠
+ �

∑
m,n

(
a†

m,n,↑am,n,↑ − a†
m,n,↓am,n,↓

)
+ �

∑
m,n

(
b†

m,n,↓bm,n,↓ − b†
m,n,↑bm,n,↑

)
(F3)

and its Bloch Hamiltonian is

H (k) = ��15 + JAB cos (k · eab − φAB)�1

+ JAB sin (k · eab − φAB)�12, (F4)

where eab = ra − rb. The momentum-dependent Hamiltonian
gives rise to an evolution operator U (k, t ) = exp[−iH (k)t]:

U (k, t ) = cos (J̃t )�0 − i
B

2J̃
sin (J̃t )�15

− i
JAB

2J̃
cos (k · eab − φAB) sin (J̃t )�1

− i
JAB

2J̃
sin (k · eab − φAB) sin (J̃t )�12, (F5)

where J̃ =
√

J2
AB + �2/2 that exhibits a momentum k-

dependent quench. For fixed k results, the k-independent
result 〈�12〉 can be obtained by setting (k · eab − φAB) = π/2
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and the theoretical ToF image is

nToF(t ) = 〈�0〉 + cos (4J̃t ) 〈�1〉 + JAB

2J̃
sin (4J̃t ) 〈�13〉 ,

(F6)

and the 〈�13〉 part can be extracted by setting J̃t = π/8.
At each step, we can retain only the data from one column
with momentum sk⊥ perpendicular to eab to obtain the ToF
image.
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