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Ultracold dipolar bosons trapped in atomtronic circuits
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We consider a ring-shaped triple-well potential with few polar bosons with in-plane dipole orientation.
By diagonalizing the extended Bose-Hubbard Hamiltonian, we investigate the ground-state properties of the
system as we rotate the dipole angle and vary the on-site and dipole-dipole interaction strengths. We find that
the anisotropic character of the dipolar interactions, as well as the competition between dipole and on-site
interactions, leads to different ground states and that the entanglement between sites also depends on the number
of particles. We further characterize the system by studying the condensed fraction and coherence properties for
different polarization angles, highlighting the possible effect of the dipolar interaction as a manipulation tool.
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I. INTRODUCTION

The wide set of characteristic features of quantum gases,
such as entanglement [1], transistorlike properties [2,3], and
persistent currents [4], can be taken advantage for the de-
velopment of quantum technologies. The atomtronics field
studies these quantum phenomena and capitalizes on them to
develop quantum devices [5,6]. To create atomtronic circuits,
atoms are usually loaded into potential wells or optical lattices
that can be designed with many different shapes and poten-
tial strengths (links) that will heavily influence the properties
of the system [7]. Triple-well potentials have gained inter-
est due to their simplicity but rich phenomenology [8–11].
Two types of setup are attainable: fully connected wells in
a triangular shape or one-dimensional aligned wells. The
former is the smallest system to include angular momen-
tum with a superfluid phase that is manifested with vortex
currents [12,13].

Ultracold dipolar atoms, such as dysprosium [14–16],
erbium [17], chromium [18], or europium [19], are char-
acterized by a strong dipole-dipole interaction. Recently,
the realization of a Bose-Einstein condensate of dipolar
molecules has also been reported [20]. The dipolar interaction
exhibits long-range and anisotropic behavior leading to new
phase transitions [21,22] and fragmentation [23] in atomtronic
devices. Recent experiments using dysprosium atoms have re-
ported the occurrence of vortex states in dipolar Bose-Einstein
condensates by rotating the polarization direction [14]. The
anisotropic character of the dipole-dipole interaction has been
exploited to induce rotation in the system forming quantized
vortices, which is a clear signature of superfluidic behavior in
a quantum system [24].

Previous studies with polar atoms in triple-well potentials
have addressed different quantum phenomena for fixed po-
larization directions, such as Josephson-like dynamics [25]
and interaction-induced coherence [26], for one-dimensional
aligned wells and self-trapping [27] in ring-shaped poten-
tials. Moreover, protocols for controlling entanglement in

similar circuits loaded with dipolar bosons have been
proposed [28,29].

In this work, we consider few dipolar bosons trapped in
an equilateral triple-well potential in a two-dimensional set-
ting. We investigate the static properties of the system by
varying the polarization configuration along the in-plane di-
rections and for different on-site and dipole-dipole interaction
strengths, extending a previous analysis done in three specific
orientations [22]. We study how commensurable and non-
commensurable filling affects the system, and we examine
how contact interaction drives the correlation between sites,
average occupation, condensed fraction, and entanglement
spectrum. Besides the discussion of possible phases, here,
we analyze the Schmidt gap as a function of the polarization
angle. We show that in the fractional filling case there are
angles for which, independently from the local interaction,
there is large entanglement between the subsystems.

This work is organized as follows. Section II introduces
the system and the extended Bose-Hubbard Hamiltonian.
Section III presents the results obtained by diagonalization
of the Hamiltonian for different sets of parameters. We discuss
the average occupation of the sites for the ground state for
different values of the interaction strengths as a function of
the dipole orientation. We discuss the entanglement properties
of the ground state in Sec. IV. In Sec. V we calculate the
degeneration of the ground state and the energy gap as a
function of the polarization angle for different values of the
interactions. Finally, Sec. VI presents the conclusions.

II. DIPOLAR BOSE-HUBBARD HAMILTONIAN

We consider N dipolar bosons confined in a triple-well po-
tential with an equilateral triangular geometry. The extended
Bose-Hubbard Hamiltonian reads

Ĥ = −J
3∑

<i, j>

[â†
i â j + H.c.] + U

2

3∑

i

n̂i(n̂i − 1) +
3∑

i, j
i �= j

V d
i j n̂in̂ j ,

(1)
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FIG. 1. (a) Schematic representation of the equilateral triple well
setup. The yellow arrow represents the effective dipole �μ of each
well, the green line represents the tunneling with strength J , and θd

i j

is the angle between the dipole direction and the relative position
between sites i and j, �ri j . (b) Representation of Eq. (2) as a function
of the dipole angle θd

12, where θd
23 = θd

12 − 60◦ and θd
13 = θd

12 − 120◦.

where âi(â
†
i ) are the bosonic annihilation (creation) operators

for site i, and n̂i = â†
i âi is the particle number operator on the

ith site. J is the tunneling rate between neighboring sites, U is
the on-site atom-atom interaction that we assume to be repul-
sive (U > 0), and V d

i j represents the dipole-dipole interaction
strength. We consider an effective dipole vector �μ in each
site, whose angle is described with respect to one side of the
equilateral triangular shape [22,25,30,31]. The configuration
of the system is schematically shown in Fig. 1(a).

We assume that all the atoms have the same in-plane dipole
orientation. The dipolar interaction between two dipoles lo-
cated at sites i and j can be written in the following form:

V d
i j = Ud

(
1 − 3 cos2 θd

i j

)
, (2)

where Ud is the strength of the dipole interaction, independent
of ri j due to the symmetry of the system, and θd

i j is the angle
between the dipole direction and the relative position between
the two dipoles.

Due to the equilateral geometry of the triple-well configu-
ration and the parity of the dipolar interaction, the system is
symmetric under 120◦ rotations (and its multiples), preserving
its properties, i.e., just moves the labels of the sites. Moreover,
due to the symmetric behavior under inversion of the dipolar
interaction, studying the local properties of a single site with
a dipole direction that ranges from 0◦ to 180◦ is enough to
describe the whole system. From now on, we consider the in-
plane polarization direction with respect to the �r12 direction,
defined by the polarization angle θ ≡ θd

12, see Fig. 1(a), and it
will be always expressed in degrees.

The dipolar interaction favors the localization of the atoms
in the two sites whose dipoles are more aligned, resulting in
an overall lower energy (i.e., their dipolar interaction term is
the most negative among the three of them). These favored
sites change with the orientation of the dipole [see Fig. 1(b)].
For example, the occupation of the site pair 2-3 is favored
for θ from 90◦ to 150◦, making site 1 less favorable to be
populated. A special symmetry arises for the angles θ = 30◦,
90◦, and 150◦, in which two dipolar interactions have the same
strength. In these cases, the pair of favored sites is not well-
defined, resulting in a nonfactorizable ground state in terms of
single-site Fock states.

FIG. 2. Average occupation in the (θ,U/J ) plane obtained from
diagonalization for N = 6, Ud/J = 3 [(a), (b)], and Ud/J = 10 [(c),
(d)]. The color map shows ηi, the normalized average occupation in
the ground state ηi = 〈�GS|n̂i|�GS〉/N , of site 1 [ panels (a) and (c)]
and site 2 [panels (b) and (d)].

III. GROUND STATE

The system is characterized by the parameters of the
Hamiltonian: J , U , and Ud , as well as N and the in-
plane polarization direction. We obtain the eigenvectors and
eigenenergies of the system by exact diagonalization of
Eq. (1) for a fixed number of atoms and the polarization angle
θ . In our calculations, the tunneling parameter is set to J/h =
1 Hz, and different numbers of atoms N with the filling factor
ν = N/3 are considered. The ground state |�GS〉 is calculated
as a function of the polarization angle for different values
of the on-site interaction 0 � U/J � 45, fixing the intersite
interaction strength to Ud/J = 1, 3, and 10.

The many-body wave function can be written as a superpo-
sition of Fock states as

|�GS〉 =
N∑

n1,n2,n3=0

Cn1,n2,n3 |n1n2n3〉 , (3)

where ni = 0, 1, . . . , N is the number of atoms in site i, and
|Cn1,n2,n3 |2 is the probability of finding the system |�GS〉 in the
corresponding Fock state |n1n2n3〉.

A. Average occupation

The distribution of atoms between sites depends on the
number of trapped atoms, and the relation between on-site
(repulsive) interaction, tunneling, and intersite anisotropic
dipolar interaction. The sign and strength of the latter depends
on the polarization angle and the site [see Fig. 1(b)].

The normalized average occupation of the ith-site over
the ground state, ηi = 〈�GS|n̂i|�GS〉/N , is shown in Fig. 2
for sites 1 [panels (a) and (c)] and 2 [panels (b) and (d)],
for N = 6, as a function of the dipolar angle and the on-site
interaction. Note that there is a symmetry under 60◦ rotations,
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FIG. 3. Normalized average occupation of site 1, η1 = 〈n1〉/N , as
a function of U/J and dipole direction, with Ud/J = 3 for (a) N = 5
and (b) N = 6.

that is, site 2 behaves as site 1 when θ = θ + 60. Occupation
in panels (a) and (b) panels [panels (c) and (d)) corresponds
to a system with Ud/J = 3 (10). The results for different
dipolar strengths are qualitatively similar since the effect of
larger dipolar interaction strength resizes the range of small,
intermediate, and large on-site interactions; even though low-
ering the effect of the hopping terms makes transitions more
abrupt.

In the dipole-dominating regime (Ud/J � U/J � 1), and
within the range of dipole angles where the intersite interac-
tions are repulsive concerning a particular site, the average
occupation in that site tends to 0. Meanwhile, the dipole-
attractive sites will evenly distribute the atoms. This is shown
in Fig. 2 for an even number of particles N = 6 and ν = 2.
When 0 < θ < 30 and 150 < θ < 180, the interaction be-
tween sites 1 and 2 is attractive, resulting in a ground state
|�GS〉 = |N/2, N/2, 0〉 (see the yellow-light regions with ηi 	
0.5 in both left and right panels of Fig. 2). Between 30 < θ <

90, the preferred sites are 1 and 3, and |�GS〉 = |N/2, 0, N/2〉
[dark regions in the Figs. 2(b) and 2(d) denote that site 2
is empty]. Between 90 < θ < 150, the attractive sites are 2
and 3, and |�GS〉 = |0, N/2, N/2〉 [see the dark regions in
Figs. 2(a) and 2(c)].

In the opposing limit scenario, where the on-site inter-
action (U/J � Ud/J � 1) dominates the system, since it is
repulsive, the three sites are equally populated, resulting in
a Mott-like ground state: |�M〉 = |N/3, N/3, N/3〉, with ηi =
1/3 for all sites.

Figure 3 depicts the normalized average occupation of
site 1 for N = 5 (a) and N = 6 (b). For an odd value of N ,
within the dipole-dominating regime, and across the range of
dipole angles where the intersite interaction is repulsive with
respect to one particular site, the average occupation in the
latter site tends to zero while the remaining sites host the
particles as equally as possible, with a normalized average
occupancy of 1/2. This is reflected in Fig. 3 with the purple-
colored region between 90◦ and 150◦ representing the empty
site, while the yellow-colored regions of the remaining angles
represent the average occupancy of 1/2. The wave function in
the dipolar-dominated regime is not a single Fock state, but a
combination. For example, for N = 5 and θ = 0, the ground-
state wave function is |�GS〉 = (|3, 2, 0〉 + |2, 3, 0〉)/

√
2. The

extra particle, with respect to the even case, is delocalized and
is distributed amongst the dipole-favored sites, resulting in an
entangled state [32].

In the limit of the large on-site interaction (U/J � Ud/J),
the particles tend to distribute equally between all sites to
minimize contact interaction. Two cases arise. The first is
the noncommensurate number of particles (fractional filling)
where the favored sites have occupation values larger than
the those of the repulsive one as seen in Fig. 3(a). Note
that the imbalance will remain for U/Ud � 1 as long as
Ud �= 0, this appears as an elongated dark shadow. The second
case is the commensurate number of particles (integer filling)
where all sites have an average occupation value of 1/3 as
seen in Figs. 2 and 3(b).

At intermediate values of U and larger values of N , there
will be changes in the average occupation as the on-site
interaction increases and the system minimizes the particle
pairs until it reaches its minimum energy state. For example,
for an incommensurate particle number such as N = 8, as
U increases, different ground states are obtained at θ = 0 :
|4, 4, 0〉 → |4, 3, 1〉 + |3, 4, 1〉 → |3, 3, 2〉. At every transi-
tion the average occupancy decreases until it reaches the
Mott-like state. Interestingly, these results show that by ma-
nipulating the dipole orientation one can modify, at will, the
population distribution of the system in the dipole-dominating
range.

B. Atomic limit in commensurate systems

We consider the atomic limit by setting the tunneling to 0 in
a commensurate system. When J = 0, the on-site and dipole
interaction terms lie on the diagonal of the Hamiltonian. This
allows us to obtain an analytical expression for the critical
U between the Mott-like state and the dipole-favored regime
as a function of the dipole angle and the dipole strength.
The transition can be determined by comparing the energy
of the Mott-like state dominated by the on-site interaction,
|N/3, N/3, N/3〉, and the energy of dipole-favored states, for
instance, sites 1 and 2, |N − ni, ni, 0〉, with i = 2. The energy
of these states can be calculated in the atomic limit as

E|N−ni,ni,0〉 = U

2

[
(N − ni )

2 + n2
i − N

]

+ Ud [1 − 3 cos2(θ12)]
(
Nni − n2

i

)
,

E|N/3,N/3,N/3〉 = 3
U

2
[N/3(N/3 − 1)]

+ Ud (N/3)2
3∑

i

3∑

j>i

[1 − 3 cos2(θi j )]

= N

2
[U (N/3 − 1) − Ud N/3] .

By imposing the two energies to be equal, it yields the critical
contact interaction Uc that determines the frontier between
the two competing terms for a given polarization angle. The
threshold that separates both regimes is

Uc(θ ) = Ud [N2 + 6(N − ni )ni(1 − 3 cos2 θ )]

2 [3(N − ni )ni − N2]
, (4)

where θ = θ12 represents the dipolar angle associated with
the dipole-favored sites (−30 � θ � 30). When N is even, or
in the thermodynamic limit for odd N (when N → ∞, and
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ni → N/2), the critical Uc only depends on the dipole strength
and orientation:

Uc(θ ) = Ud (−5 + 9 cos2 θ ) . (5)

IV. ENTANGLEMENT PROPERTIES

At absolute zero and in absence of interactions, all the
atoms of a bosonic gas populate the same single-particle state.
Interactions can remove particles from the single-particle
ground state promoting them into excited states. This depletes
a fraction of the condensate, or may even cause its frag-
mentation for sufficiently strong interactions. The condensed
fraction of the system is represented by the largest eigenvalue
of the one-body density matrix operator of the ground state:

ρ̂i, j = 1

N
〈�GS|â†

i â j |�GS〉. (6)

For a singly condensed system,
the largest eigenvalue is p1 ≈ 1
while p2, p3 ≈ 0, with p1 + p2 + p3 = 1. On the contrary,
for a fragmented system, two or more eigenvalues will be
comparable. The eigenvectors of the one-body density matrix
are the so-called natural orbits or single-particle states.

Further insight on the quantum features and correlations
can be obtained by analyzing entanglement properties. These
attributes can be explored by computing the von Neumann en-
tropy, which allows quantifying the correlation between sites.
Moreover, it can also identify the configurations in which
more than one Fock state is equally probable [13,27].

These correlations are obtained by calculating the reduced
density matrix of one site by splitting the system in two
parts and tracing out one of them. In our system, there are
three possible bipartite splittings: (1,23), (2,13), or (3,12).
Tracing out sites 2 and 3 results in the reduced density matrix
of site 1,

ρ1 = Tr23(ρ) =
∑

n1

λn1 |n1〉〈n1|, (7)

where ρ = |�GS〉〈�GS|, and λn1 are the Schmidt coefficients.
The difference between the two largest Schmidt coefficients
represents the Schmidt gap (�λ), which is a useful magnitude
to detect phase transitions between different ground states
[13,22].

With the reduced density matrix, the bipartite entanglement
can be measured between the selected site i and the rest of
the system by computing the von Neumann entropy Si =
−Tr(ρi log ρi ). Since the partial density matrix is diagonal,
it can be rewritten as Si = −∑

λni log λni . If the subsystems
exhibit entanglement, the entropy is maximized when at least
two Schmidt coefficients are equal, resulting in a vanishing
Schmidt gap �λ = 0. On the contrary, if the subsystems are
uncorrelated, only one nonzero Schmidt coefficient exists,
resulting in zero entropy.

Due to the symmetry under rotation of the system, the
correlations for subsystem (1,23) will be the same but shifted
60◦ for the subsystem (3,12) and −60◦ for subsystem (2,13).

FIG. 4. Results for ν = 1 with each column representing dif-
ferent dipole strengths, from left to right Ud/J = 1, 3, and 10.
(a)–(c) Condensed fraction (largest eigenvalue of the one-body den-
sity matrix). (d)–(f) von Neumann entropy of ρ1 (tracing sites 2 and
3). (g)–(i) Schmidt gap of ρ1. All quantities are represented as color
maps as a function of U/J and the dipole direction. Dashed black
lines correspond to the analytical values of Uc where the ground-state
transition occurs in the zero-tunneling limit, Eq. (4).

A. Dipole strength effects

Interesting effects arising from the dipole interaction al-
ready appear with N = 3 and filling factor ν = 1. Figure 4
shows the results on the condensed fraction, entropy, and
Schmidt gap for different values of the dipolar interaction
as a function of the polarization angle and U/J . As the
dipole strength increases (Fig. 4 panels from left to right),
the required on-site repulsion strength (U ) to fill the empty
site, leading to an unfavorable dipolar interaction, increases,
causing ground-state transitions to become more abrupt. The
black-dashed line represents Uc from Eq. (4), above which
the condensed fraction decreases, highlighting the ground-
state transition, e.g., from a superposition of states |2, 1, 0〉 +
|1, 2, 0〉 to a Mott-like state |1, 1, 1〉. It should be noted that
the eigenvectors change with the dipole angle.

For small dipole strengths and in the noncontact interaction
case (U/J = 0), almost all particles are part of the condensate
with p1 ≈ 1. As the on-site interaction increases there is a
depletion of the condensate and at the large repulsion limit
(U/J � 1) the system becomes fragmented with three single-
particle states with the relative occupation values converging
to 1/3. For all dipole strengths and U < Uc(θ ), there is a
highly populated single-particle state, with a large eigenvalue
p1 	 1 showing that the dipole interaction might favor con-
densation.

Regarding the correlation between sites, Figs. 4(d)–4(i)
show the von Neumann entropy and the Schmidt gap tracing
out sites 2 and 3. A strong correlation is obtained between
the subsystems in the dipole-dominating regime demonstrated
by the near-zero Schmidt gap and high entropy. Moreover,
a sudden change in both values appears from 90◦ to 150◦.
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FIG. 5. Schmidt gap of site 1 as a function of U/J and the dipole angle, with a dipole strength of Ud/J = 3 for different filling factors: for
integer filling ν = 2 (a) and ν = 3 (b) as indicated, and for fractional filling ν = 4/3 (c) and ν = 5/3 (d) as indicated. The white-dashed lines
show the vertical cuts at which the ground-state probabilities are depicted as a function of U/J for a single dipole orientation: θ = 120 [panels
(a) and (b)], θ = 60 (c), and θ = 90 (d). Only relevant states are shown in the ground-state probabilities as a function of U/J . The colored
dashed lines represent the presence of two Fock states with identical weights in the ground state, highlighting the correlation between sites.

This can be understood with Fig. 2, in which between
those angles, site 1 is unfavorable and bosons only popu-
late sites 2 and 3, breaking the correlation between the two
subsystems of the partition. At the angles 90◦ and 150◦ which
define the aforementioned frontier, a higher entropy value
(lower Schmidt gap) appears, highlighting the relevance of
this special configuration. The crossover between the dipolar
dominant states that favor or disfavor the occupation of one
specific site happens at θ = 30◦, 90◦, or 150◦ depending on
the site, creating a highly correlated ground state for those
configurations. Therefore, these specific orientations could be
useful for applying protocols similar to the ones reported in
Refs. [28,29] that aim to create entanglement in the dipolar
dominant regime.

B. Entanglement spectrum

To characterize the entanglement spectrum, we calculated
the Schmidt gap corresponding to site 1 for different filling
factors. The results are depicted in Fig. 5.

As a result of the anisotropy of the dipole interaction,
the entanglement varies depending on the filling factor and
whether the number of particles is odd or even. When the
dipole interaction dominates (Ud/J � U/J) the particles will
be distributed among the dipole-attractive sites. When N
is even, the latter are equally populated, as shown in the
ground-state probabilities, |Cn1,n2,n3 |2, in Figs. 5(a) and 5(c),
corresponding to ν = 2 and 4/3, respectively. For ν = 2, the
probabilities are calculated at θ = 120◦, where sites 2 and 3
attractive. Therefore, for large dipole interaction (weak on-
site interaction) the most probable state is |0, 3, 3〉. Whereas
for ν = 4/3 at θ = 60◦, the attractive sites are 1 and 3, and
the most probable state in the dipole-dominated regime is

|2, 0, 2〉. These wave functions can be expressed as a product
of states displaying no entanglement and a Schmidt gap close
to 1 as shown in Fig. 5.

On the other hand, when N is odd, within the region
of large dipolar interaction, the particles cannot be equally
distributed between the two dipole attractive sites. Then, the
ground state of the system will be a superposition of Fock
states where the extra particle is shared between the dipole-
favored sites, resulting in a wave function that cannot be
expressed as a product of states. The superposition of states
displays large correlations and entanglement between subsys-
tems in the dipole angles where the studied site corresponds to
a dipole-favored site. This produces dark lobes in the Schmidt
gap (�λ 	 0) in Figs. 5(b) and 5(d) (ν = 3 and 5/3). These
lobes appear in the dipole-dominated regime for all values of
the dipolar angle, except for 90◦ < θ < 150◦ where sites 2
and 3 are attractive by the dipolar interaction and site 1 is
empty and decorrelated with the others.

Figure 5 displays a vertical cut (white dashed lines) at a
fixed dipole orientation at which the corresponding Fock state
probabilities, |Cn1,n2,n3 |2, of the ground-state wave function are
depicted as a function of U/J (right panels). When there is a
crossing of the highest probability Fock states, the Schmidt
gap drops to 0, showing a strong correlation. Moreover, the
correlations between sites are also reflected in the appearance
of different Fock states with the same weight in the ground
state (dashed lines in the right panels), caused by the sym-
metry of the system. Two Fock states can also be equally
probable due to crossings.

For fractional fillings, Figs. 5(c) and 5(d) show two dark
vertical stripes for large on-site interactions along which the
Schmidt gap vanishes. These lines appear due to the localiza-
tion of the noncommensurable particles in the dipole-favored

063331-5



MARC ROVIROLA et al. PHYSICAL REVIEW A 109, 063331 (2024)

FIG. 6. (a) Energy gap as a function of U/J and dipole angle with N = 15 and dipole strength Ud/J = 3. White dashed lines mark the
values of U/J used for [(b), (c)] U/J = 5 and [(d), (e)] U/J = 1. Panels (b) and (c) are the energy gap and condensed fraction, respectively,
as a function of the number of particles and the dipole angle, with a dipole strength of Ud/J = 3 and an on-site strength of U/J = 5. Panels
(d) and (e) are the energy gap and the condensed fraction, respectively, as a function of the number of particles and the dipole angle, with a
dipole strength of Ud/J = 3 and an on-site strength of U/J = 1.

sites, which change with the polarization angle and create a
transition. When the dipolar angle is fixed, the Schmidt gap
vanishes in the configurations where the are two Fock states
with identical weights in the ground state (dashed lines in the
ground-state probabilities |Cn1,n2,n3 |2 as a function of U/J).
For ν = 4/3 (ν = 5/3) at polarization angle θ = 60◦ (90◦),
these Fock states are |112〉 and |211〉 (|122〉 and |212〉) when
U/J > 15 (5).

Additionally, it is interesting to stress that fractional filling
factors can exhibit entanglement between sites regardless of
on-site interaction at certain dipole angles [see Fig. 5(c) and
5(d)]. That is because the ground state at these angles is a
superposition that cannot be expressed as a product of states.
This appears, for example, for ν = 5/3 and θ = 90◦ or θ =
150◦ and for ν = 4/3 at θ = 0◦ within polarization angles in
the contact-dominant regime.

V. ENERGY SPECTRUM

The degeneration in ground-state energies can result in
fragmentation of the system, as bosons can distribute in differ-
ent single-particle states. In Ref. [13] it has been shown that a
bifragmented state is achieved in contact-interacting bosons
in a trimer when the tunneling between two sites becomes
repulsive and the energy gap drops to 0. Since dipole interac-
tions generate similar anisotropies between pairs of sites [see
Fig. 1(b)], one can expect that bifragmented states can arise in
our system in the dipole dominating regime. In Fig. 6(a), we
depict the energy gap between the ground state and the first
excited state, as a function of U/J and the dipole angle, for
N = 15 and Ud/J = 3. In the region where the dipolar inter-

action dominates, there are certain values of the polarization
angle (θ = 30◦, 90◦, and 150◦) for which there is a zero gap
energy, and thus there are some special configurations where
fragmentation could appear.

In Figs. 6(b) and 6(d), the energy gap evolution as a func-
tion of the number of particles shows a smooth behavior as the
number of particles increases, highlighting that this degenera-
tion is not a feature of the number of particles but is due to the
geometry and parameters of the system.

We show in Figs. 6(c) and 6(e) that although there is a zero
energy gap, the system does not fragment, but a fraction gets
depleted with the largest one-body eigenvalue p1 	 0.76. This
means that the energy gained by occupying one single-particle
state is still sufficient to maintain a large population of the
same single-particle state. Nevertheless, Fig. 6(e) points out
that, at the thermodynamic limit within the highly dipolar-
dominated region, it is possible that a bifragmented state
arises at certain angles.

VI. CONCLUSIONS

We have shown that triple-well potentials loaded with polar
atoms with in-plane dipole orientation present rich phenom-
ena as a function of the polarization angle. Ground-state
properties strongly depend on the interaction strengths, num-
ber of particles, and dipole orientation. Our findings indicate
that ground-state crossing, occurring with varying dipolar in-
teraction strength, is directly linked to correlations between
sites. Moreover, we demonstrated that entanglement persists
for incommensurate filling, regardless of the on-site interac-
tion for certain dipole orientations.
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We provide an analytic expression to calculate the on-site
strength at which the system switches from a dipole-favored
regime into a Mott-like regime. It depends on the dipole inter-
action strength and orientation, and the number of particles.
We found that, unlike on-site interaction, dipole interactions
maintain the system with minimal depletion in the studied
range of dipole strengths, which could provide an advantage
in investigating superfluid currents.

Moreover, we have shown that the dipole orientation can
be used as a source for entanglement manipulation. This
could be the grounds for future investigations in the field of
quantum technologies and a useful tool for developing en-
tanglement manipulation protocols. Additional studies could
go into exploring vortex currents within ring-shaped poten-
tials, a phenomenon recently experimentally validated in a
dipolar Bose-Einstein condensate [14]. Moreover, extending

the exploration of ground-state and transport properties to
larger systems of two triple-well rings with different tunneling
connections and geometries could yield valuable insights.
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