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In a parallel publication [Phys. Rev. Lett. 132, 263401 (2024)] we demonstrate that photoinduced two-body
loss can be used to measure Tan’s contact with high precision in a two-component Fermi gas. Here, in the
present companion paper, we provide relevant background information on this work and describe in detail the
methodology for both the experiments and the data analysis. We first review various theoretical approaches
for calculating the contact and identify areas in phase space of the spin-balanced Fermi gas where Tan’s
contact has not yet been determined. Next, we provide detailed information on our experimental methods, in
particular, explaining the measurement and calibration procedures to achieve a high-precision results for the
contact. Afterwards, we study the variation of the decay laws of two-body loss in a Fermi gas in the crossover
from the Bardeen-Cooper-Schrieffer (BCS) to the Bose-Einstein-condensate (BEC) regime, verifying previous
predictions. Finally, we determine the closed-channel fraction of the Fermi gas and compare it to previous
measurements and theoretical calculations.
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I. INTRODUCTION

Tan’s contact, first introduced by Tan in 2008 [1–3], is
a measure for short-range two-body correlations and quan-
tifies the likelihood of finding two interacting fermions at
very small distance. It is an important quantity for describing
strongly interacting Fermi gases [1–5]. Tan’s contact has been
investigated both experimentally and theoretically in various
approaches [6–16]. One experimental approach to measure
Tan’s contact is by studying two-body loss in the gas, where
the loss is laser-induced. This was theoretically discussed in
Refs. [16,17] and demonstrated by us in recent work [18].
Using this method we measured the contact across the entire
phase diagram of the BCS-BEC crossover, thus providing a
comprehensive picture of the pair correlations. We found that
the method is quite convenient and allows for high-precision
measurements.

Within the present companion paper, we provide additional
background information on this work. In particular, we give
a rough overview over previous work related to the contact
in the BCS-BEC crossover, mapping out the so-far charted
and uncharted phase space regions of the BCS-BEC crossover
with respect to the contact. Furthermore, we lay out the ex-
perimental methods which allow for contact measurements at
high precision. In addition, we discuss previous work on the
closed-channel fraction of a Fermi gas which is closely related
to the contact. Finally, we provide details on our experimental
investigation on the decay laws of the photoinduced loss of
atoms. As predicted by the authors of Ref. [16] and experi-
mentally shown by the authors of Ref. [19] we confirm that the
power law of the decay varies across the BCS-BEC crossover.

II. CHARTED AND UNCHARTED REGIONS OF TAN’S
CONTACT IN THE BCS-BEC CROSSOVER

In the following we consider the phase space of the BCS-
BEC crossover for a spin-balanced two-component Fermi

gas with contact interactions which is trapped in a harmonic
potential [20–22]. Such a Fermi gas has essentially only
two degrees of freedom. (1) The coupling strength (kF as)−1,
where kF is the Fermi wave number and as is the s-wave scat-
tering length. (2) The normalized temperature T/TF where
TF is the Fermi temperature. Figure 1 shows the core of the
BCS-BEC crossover phase space, in which the nature of the
Fermi gas and its pair correlations fundamentally change.
Below the critical temperature Tc (continuous line) superflu-
idity sets in. Here, one distinguishes three limiting regimes
[20,21]. For (kF as)−1 ≈ 0 we have resonant superfluidity. For
(kF as)−1 � 1 we have the regime of Bose-Einstein condensa-
tion (BEC) of molecules. Finally, for (kF as)−1 � −1 we have
the regime of Bardeen-Cooper-Schrieffer (BCS) superfluid
of atom pairs. For T � Tc the gas is in the normal state.
For the BEC and BCS regimes at T = 0 there are analyt-
ical ground-state energy expansions which can be used to
describe properties of the gas for coupling strengths down to
|(kF as)−1| ≈ 1, see Fig. 1. For T � 0.5TF the gas properties
of the harmonically trapped Fermi gas can be described in the
framework of the quantum virial expansion [23]. At unitarity
[i.e., (kF as)−1 = 0] the scattering length as drops out of the
description and therefore simplifies the problem. A variety
of numerical calculations (e.g., the authors of Refs. [24–26]
provided predictions for the gas properties and its contact for
this regime. Furthermore, experimental investigations mea-
sured the equation of state (EOS) at T ∼ 0 [27] filling the
theoretical gap for |(kF as)−1| � 1. In addition, measurements
were carried out at unitarity, determining, among other things,
the contact [7–10,28].

Figure 1 shows that there are still large uncharted areas
in phase space, especially for a strongly interacting gas close
to unitarity at low temperature. Filling this area with precise
data for the contact, was one of the main motivations for our
work. To verify that our measurements of the contact (of a
harmonically trapped Fermi gas) are consistent with previous
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FIG. 1. Phase diagram of a spin-balanced Fermi gas in the BCS-
BEC crossover. The green and red circles represent fermions of the
two spin components and illustrate the different phases present in
the crossover (see text). The thin blue-gray line marks the critical
temperature for superfluidity TC for a harmonically trapped Fermi
gas, taken from Ref. [43]. In selected regions, the contact has been
studied intensely theoretically and experimentally. For example, at
zero temperature in the regions where (kF as )−1 < 1, = 0, and >1
(thick blue lines and blue dot), the contact can be calculated from
the BCS-, unitarity, and BEC ground-state energy expansions. In the
orange marked area above T/TF ≈ 0.5, the quantum virial expansion
is expected to start providing accurate results for a harmonically
trapped Fermi gas [13]. For both the T = 0 (green broad line) and
(kF as )−1 = 0 (red broad line) regions, there are numerous theoretical
and experimental studies for the contact (see text).

measurements by other groups and established theoretical de-
scriptions of the gas we carried out comparisons. For this,
the contact had to be extracted from several of these works
and partially recalculated for our situation of a harmonically
trapped Fermi gas. In the following we explain in detail how
this was achieved.

The general approach is that we start out with an expression
for the total energy E of a homogeneous Fermi gas in a
volume V . Here, E is the total energy of the system including
kinetic energy and interaction energy. We then make use of
the relation [2]

dE

d (1/as)
= − h̄2

4πm
CV (1)

that connects the homogeneous contact density C to the
derivative of total systems energy E with respect to the s-wave
scattering length as. This relation in general holds for a two-
component Fermi gas at any temperature.

Next we use this C to calculate the total contact I of
a harmonically trapped Fermi gas. In a harmonic trapping
potential, the atom density is position dependent and thus
the contact changes locally. In the spirit of the local den-
sity approximation (LDA), the total contact of the system I
is then obtained by integrating C(�r) over the trap volume
I = ∫

d3r C(�r). For this we follow the approach discussed
in Appendix C of Ref. [16].

A. Tan’s contact from the ground-state energy expansions

In this section, we closely follow the derivation of Tan’s
contact from the ground-state energy expansions as laid out in
Ref. [16]. Only for the binding energy of molecule, we use a
slightly improved expression.

At zero temperature T the total energy E is known ana-
lytically at various regions of the BCS-BEC crossover. For
a homogeneous Fermi gas in the BCS limit the energy per
volume V at zero temperature is given by the expansion

E/V = 3

5

h̄2
(
khom

F

)2

2m
n

×
(

1 + 10

9π
khom

F as + 0.1855
(
khom

F as
)2 + · · ·

)
, (2)

where n is the atom density and khom
F = (3π2n)1/3 is the Fermi

momentum of the homogeneous gas [16,29,30]. The first three
terms are the energy of the noninteracting Fermi gas, the
Hartree-Fock mean-field correction, and the (fermionic) Lee-
Huang-Yang correction, respectively.

Using relation (1) we obtain the contact density [2]

C = I/V = 4π2n2a2
s

(
1 + 1.049khom

F as

+ 0.2584
(
khom

F as
)2 + · · · ). (3)

At unitarity, the ground-state energy density is

E/V = 3

5

h̄2
(
khom

F

)2

2m
n

(
ξ + ζ

khom
F as

+ · · ·
)

, (4)

where ξ ≈ 0.367 [31] is the Bertsch parameter and the con-
stant ζ ≈ 0.8 [8]. Therefore, the contact density is

C = 6πkF ζ

5
n + · · · . (5)

In the BEC limit of tightly bound dimers the energy density at
zero temperature can be approximated by

E/V = −nd
h̄2

ma2
s

+ 2π h̄2add

2m
n2

d

(
1 + 4.81

√
nd a3

dd + · · ·
)

,

(6)

where the first term arises from the molecular binding energy
for as → ∞ and the next two terms from the mean field
and the (bosonic) Lee-Huang-Yang correction, respectively
[16]. Here, nd = n/2 is the dimer density and add = 0.6 as

is the dimer-dimer scattering length [32]. The contact density
becomes

C = 4πn

as
+ 0.6π2n2a2

s (1 + 12.03
√

nd a3
dd + · · · ). (7)

The homogeneous contact densities calculated from Eqs. (3),
(5), and (7) are shown in Fig. 2.

Note that, for finite scattering lengths as, the expression for
the binding energy per molecule

h̄2

ma2
s

,

in Eq. (6) has to be modified by higher-order corrections
[33,34]. At a coupling of (khom

F as)−1 = 1 (2) these result in
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FIG. 2. Normalized contact density of a homogeneous system
calculated from the ground-state energy expansions [Eqs. (3), (5),
and (7)] and the equation of state (EOS) measurements. Also shown
is the contact in the BEC limit with the binding energy correction for
small as [34]. The different orders refer to the number of orders in
Eqs. (3) and (7).

corrections of 1.4% (2.9%) towards a larger contact density,
as shown in Fig. 2.

B. Tan’s contact from the EOS measurements

Navon et al. carried out measurements of the equation of
state (EOS) of a zero-temperature Fermi gas in the BCS-BEC
crossover [27]. Here, we briefly explain the procedure to first
obtain the contact density C and then the trap-integrated total
contact I based on these measurements. The resulting curves
are shown in Fig. 2 and Fig. 2 of Ref. [18]. In general, the total
energy of a Fermi gas at zero temperature can be expressed as

E/V = 3

5

h̄2
(
khom

F

)2

2m
n ξ (δ) − �(as)

n

2

h̄2

ma2
s

, (8)

where ξ (δ) can be viewed as a generalized Bertsch parameter
relating the systems total energy to the Fermi energy at a
given interaction parameter δ. � is the Heaviside step function
and accounts for the existence of the Feshbach bound state
with binding energy h̄2/ma2

s for as > 0. In the Supplementary
Material of Ref. [27] the function ξ (δ) is defined as

ξ (δ) = h(δ) − δ
3 h′(δ)(

h(δ) − δ
5 h′(δ)

)5/3 . (9)

Here, δ is related to the coupling parameter (khom
F as)−1

through an implicit equation

(
khom

F as
)−1

(δ) = δ[
h(δ) − δ

5 h′(δ)
]1/3 , (10)

which can be solved numerically.
For the function h(δ), Padé approximations were given

for both the BEC (as > 0) and BCS (as < 0) regime. The
approximations, whose parameters were deduced from the
EOS measurements, were made such that h(δ) is continuous

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

FIG. 3. Contact I of a harmonically trapped Fermi gas, as
calculated with the second and third-order virial expansions for
couplings (kF as )−1 = (−0.5, 0, 0.5, 1). We normalize each contact
curve I(T/TF ) with the respective zero-temperature value I(0),
taken from our interpolation of the zero-temperature measurement,
as shown in Fig. 2 of Ref. [18].

at unitarity (khom
F as)−1 = 0. The function h′(δ) denotes the

derivative of h(δ). By combining Eqs. (8), (9), and (10) we
find the systems energy E as a function of (khom

F as)−1. From
this, the contact density C across the BCS-BEC crossover can
be determined as in the previous section. The resulting curve
is shown in Fig. 2.

We then integrate over the trap volume as described in
Appendix C of Ref. [16] to get the total contact I for the
harmonically trapped Fermi gas. Note that, although the Pad
approximations for h(δ) are continuous at unitarity, they are
not continuously differentiable there. As a result, both the
calculated contact density and the total contact exhibit a kink
there (see Fig. 2 and Fig. 2 of Ref. [18]).

C. Tan’s contact within the quantum virial expansion

The quantum virial expansion has shown to be a powerful
tool for investigating strongly interacting Fermi gases at high
temperatures T [23]. In the high-temperature limit, the chemi-
cal potential μ of a Fermi gas approaches −∞. Therefore, the
fugacity z = exp(μ/kBT ) becomes a small parameter, even
for strong interparticle interactions as present in the BCS-BEC
crossover [35]. Here kB is the Boltzmann constant. In this
limit, any physical quantity of the Fermi gas can be expanded
as a series expansion in the fugacity z with corresponding
expansion coefficients, i.e., the virial coefficients.

We employ the quantum virial expansion to calculate Tan’s
contact, following Ref. [13] where this approach was de-
scribed and used to present the contact at unitarity and at
T = 0.5 TF for −2 < (kF as)−1 < 0.5. Using the same ap-
proach, we show results for the contact in the entire BCS-BEC
crossover for −1.5 < (kF as)−1 < 2.5 and 0 < T/TF < 1.5 in
Fig. 3(b) of Ref. [18] and for four different couplings (kF as)−1

in Fig. 3. In Fig. 4 we further provide a map of the central
fugacity z0 of a harmonically trapped Fermi gas the BCS-BEC
crossover.

To quickly rederive the calculation of the contact within
the quantum virial expansion, we start from Tan’s adiabatic
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FIG. 4. Calculation of the fugacity z0 in the center of a harmoni-
cally trapped Fermi gas in the BCS-BEC crossover. The calculation
is based on the second-order quantum virial expansion. In regions
where z0 � 1 the expansion is expected to be valid.

sweep theorem for the grand canonical ensemble(
∂�G

∂ (1/as)

)
T,V,μ

= − h̄2CV

4πm
. (11)

In the virial expansion, the grand canonical potential

�G = −2kBTV/λ3
dB(z + b2z2 + b3z3 + · · · ) (12)

is expanded as a series expansion in the fugacity z =
exp(μ/kBT ) where bn are the virial coefficients, V is the
volume, and λdB is the thermal de Broglie wavelength [23].
The virial coefficients are functions of λdB and the scattering
length as. Using Eqs. (11) and (12) we find the homogeneous
contact density

CQV = 16

π2λ4
dB

(c2z2 + c3z3 + · · · ) (13)

for a given temperature T , chemical potential μ and scattering
length where cn = ∂bn/∂ (λdB/as). Using the local density
approximation, one can calculate the total contact for the
harmonically trapped Fermi gas with trap frequency ω by
replacing the chemical potential μ with a local chemical po-
tential μ(r) = μ0 − 1

2 mω2r2 and then integrating

IQV =
∫

d3r C(r)

= 16

π2λ4
dB

∫
d3r(c2z2(r) + c3z3(r) + · · · )

= 16

π2λdB

(
kBT

h̄ω

)3[ c2

23/2
z2

0 + c3

33/2
z3

0 + · · ·
]
. (14)

Here, μ0 is the chemical potential in the center of the trap
and z0 = exp(μ0/kBT ) is the corresponding fugacity. In a
harmonically trapped Fermi gas, the chemical potential in
the trap center is usually not known. Instead, the total atom
number N is known, as it can be measured. Starting from
the thermodynamic relation n = − 1

V
∂�G
∂μ

, and using again the

local density approximation one finds

N =
∫

d3r n(r) = 2

(
kBT

h̄ω

)3[
z0 + b2√

2
z2

0 + b3√
3

z3
0 + · · ·

]

= 2

(
kBT

h̄ω

)3
[

z0 + b(0)
2 + �b2√

2
z2

0 + b(0)
3 + �b3√

3
z3

0 + · · ·
]

= 2

(
kBT

h̄ω

)3[
z0 − z2

0

23
+ z3

0

33
+ · · · + �b2√

2
z2

0 + �b3√
3

z3
0 + · · ·

]

= 2

(
kBT

h̄ω

)3[
−Li3(−z0) + �b2√

2
z2

0 + �b3√
3

z3
0 + · · ·

]
,

(15)

where we separated the virial coefficients in parts �bn that
take into account the n-body interactions (e.g., scattering
properties, bound states, etc.) and parts that account for quan-
tum statistics b(0)

n = (−1)n+1

n5/2 . The infinite sum z0 − z2
0/23 +

z3
0/33 + · · · can be identified as the polylogarithm function

Li3(−z0) of degree 3 and argument −z0. The polyloga-
rithm function is related to the integral of the Fermi-Dirac
distribution function. The second-order virial coefficient is
analytically known and reads [23,36]

b2 = b(0)
2 + �b2 (16)

= −1

25/2
+

√
2�(as)eλ2

dB/2πa2
s

−
√

2

2
sgn(as)

(
1 − erf

[√
λ2

dB

/
2πa2

s

])
eλ2

dB/2πa2
s , (17)

where �(· · · ) is the Heavyside step function, sgn(· · · ) is the
sign function, and erf (· · · ) is the error function. By applying
the virial expansion up to the second order, Eq. (15) can be
solved numerically to determine μ0 for a given atom number
N , temperature T , scattering length as, and trap frequency ω.
With the chemical potential, one can then calculate the contact
of the trapped Fermi gas using Eq. (14). The result is shown
in Fig. 4(b) of Ref. [18]. From the calculation of the cen-
tral chemical potential μ0, we also obtain the corresponding
fugacity z0 which is shown in Fig. 4. Its value indicates in
which regimes the second-order virial expansion is expected
to provide reliable results.

We also performed calculations of the contact with the
third-order virial expansion. For this, we extracted b3 from
Ref. [37]. Above (kF as)−1 ≈ 1.5, the second- and third-order
calculation give the same results for the contact. As also
observed in Ref. [13], we find that the second- and third-
order results at unitarity start to deviate from each other
for temperatures lower than ≈0.5 TF . Additional calculations
for couplings (kF as)−1 = (−0.5, 0.5, 1) are shown in Fig. 3.
When we go deeper into the BCS regime, the second- and
third-order results start to deviate at temperatures even higher
than 0.5 TF . This is because in the BCS regime the fugac-
ity z0 = exp(μ0/kBT ) is not small anymore as the chemical
potential μ0 is positive and approaches the Fermi energy for
(kF as)−1 → −∞. As a result, the virial expansion loses its
validity and the higher-order expansions do not converge.
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FIG. 5. Photoexcitation scheme for the measurements of Tan’s
contact via two-body losses, using the example of two collid-
ing ground state 6Li atoms in the lowest hyperfine levels |F =
1/2, mF = 1/2〉 and |F = 1/2, mF = −1/2〉. The magnetic field is
close to 832.2 G where a broad Feshbach resonance is located. In the
Feshbach resonance the scattering state of the atoms is coupled via
the hyperfine interaction to the bare weakly bound molecular level
X 1�+

g , v = 38. This Feshbach resonance is essentially lossless. We
induce two-body loss photoexciation using a laser at 673 nm, which
couples the bare weakly bound molecular level X 1�+

g , v = 38 state
to the excited deeply-bound molecular state A1�+

u v′ = 68. The two
states have a large Franck-Condon overlap of 0.077 [39]. The excited
state has a lifetime γ . � is the Rabi frequency associated with this
optical transition.

III. MEASUREMENT OF TAN’S CONTACT VIA
PHOTOINDUCED TWO-BODY LOSS

As pointed out in Refs. [4,5] there is a very general and
fundamental link between the total contact I and the two-body
loss rate of a two-component Fermi gas

−dN

dt
= −h̄Im[a]

2πm|a|2 I, (18)

where N is the total atom number, m is the atomic mass, and
a is the scattering length. If a has a finite imaginary part,
loss due to a two-body process is present. Thus, the total
contact of the spin-balanced Fermi gas can be simply deduced
from the induced two-body loss rate, as long as the scattering
length is known. Note that relation (18) holds for collisional
loss during s-wave collisions. A very similar relation was
recently found for a collisional p-wave loss rate [14,15]. We
now consider a special situation of two fermions colliding in
an s-wave while they are subjected to a photoexcitation laser
beam, see Fig. 5. Atomic collisions take place in the vicinity
of a single, magnetically tunable Feshbach resonance. The
Feshbach resonance comes about as a bare, closed-channel
molecular bound state is coupled (via hyperfine interaction)
and admixed to the scattering state of the colliding atoms. The

Feshbach resonance is intrinsically lossless. Now, two-body
loss is induced via resonant photoexcitation of the atom pair at
close range to an electronically excited, short-lived molecular
state with a lifetime 1/γ . Photoexcitation takes place via the
closed-channel bound state of the Feshbach resonance which
is coupled to the excited molecular state with Rabi frequency
�. For this system, the authors of Ref. [17] calculated the
complex scattering length a and Eq. (18) becomes

−dN

dt
= h̄ I

2πmabg

�2/(2γW )

[1 − abg/as]−2 + [�2/(2γ W )]2
. (19)

Here, as denotes the real-valued scattering length with-
out the photoexcitation coupling, abg is the corresponding
background scattering length, and W the width of the Fes-
hbach resonance. In our experiments the resonance width
is W = −2μB × 262.3(3) G = −2π h̄ × 734(1) MHz, and
abg = −1582(1) a0 [38] where a0 is the Bohr radius. The
linewidth γ is γ = 2π × 12(1) MHz, as measured in our
experiment [18]. The spectroscopic details of the excited and
closed-channel molecular bound states, as well as the scatter-
ing state of our experiment can be found in Fig. 5 and the
caption. For all practical purposes, the term [�2/(2γ W )]2 in
the denominator can be neglected in our experiments because
we have � � 2π × 1 MHz. Even for � up to 2π × 250 MHz,
the term [�2/(2γ W )]2 is smaller than 10−3.

According to Eq. (19) the contact I can be determined by
measuring the atom loss rate dN/dt ≡ Ṅ , the Rabi frequency
� and the scattering length as in a given experimental run.
To achieve a high precision for the value I at a particular
(kF as)−1 and T/TF , we need to precisely determine the Rabi
frequency �, the atom number N , the trapping frequencies
ωax and ωr , as well as the scattering length as. [Note that kF =
(2m/h̄)1/2(ωaxω

2
r 3N )1/6]. How this is achieved is described in

the following sections.

A. Calibration of the Rabi frequency �

As a first step, we simplify Eq. (19), by omitting the term
[�2/(2γW )]2 in the denominator, as it can be neglected in our
experiments

−Ṅ = h̄ I
2πmabg

�2/(2γW )

[1 − abg/as]−2
. (20)

Next, we make use of the fact that � is linked to the pho-
toexcitation intensity I via the relation �2 = k I where k
is a constant. We use a calibration process to determine k
and with it �. For this, we choose a convenient parameter
setting for which the contact I is known. This parameter
setting corresponds to a specific photoexcitation intensity Ical,
scattering length as,cal (via tuning of the magnetic field B),
particle density, and temperature. Concretely, we chose the
low-temperature BEC regime which has the advantage that the
contact there is quite insensitive to temperature (see Fig. 3)
and its value is I/NkF = 4π/(kF as) [16]. We then measure
the loss rate Ṅcal at these parameters and this yields

k = −Ṅcal
2πmabg

h̄Ical

[1 − abg/as,cal]−2

Ical/(2γW )
. (21)
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Using Eq. (21) and the relation �2 = k I , Eq. (20) becomes

Ṅ = Ṅcal
I
Ical

I

Ical

[1 − abg/as,cal]−2

[1 − abg/as]−2
, (22)

where the parameters m, γ , and W have dropped out as a
consequence of the calibration.

B. Atom number calibration

For determining the atom number, we perform absorption
imaging at high magnetic fields. For this purpose, we typically
use a short laser pulse of τ = 10 µs at an intensity of I/IS =
0.05 to drive the quasiclosed transition to the |22P3/2; mJ =
−3/2〉 state with linewidth �a ≈ 2π × 5.87 MHz [40], where
IS = 2.54 mW/cm2 is the saturation intensity.

During the exposure with the imaging light, the atoms scat-
ter photons. This accelerates them and leads to an increasing
Doppler shift (see, e.g., Ref. [41]) which effectively lowers
the cross section for absorption over time. To take this effect
into account, we calibrated our imaging routine using a simple
classical mechanical model. In this model, we consider the
acceleration of the atoms

a = h̄k�a

2m

I/IS

1 + I/IS + 4(kv/�a)2
, (23)

by scatting photons from the imaging beam with intensity
I and wavelength λ = 2π/k ≈ 671 nm [42]. Solving this
differential equation yields the time-dependent atom veloc-
ity v and Doppler shift kv. From this, we can calculate a
time-averaged cross section for absorption imaging which is
lowered from the largest possible cross section by a factor
〈1 + I/Is + 4(kv/�a)2〉τ due to the acquired Doppler shift and
power broadening. We fit this model to our measured atom
numbers with the intensity I and (real) atom number N as free
parameters (see Fig. 6). This allows for extracting the accurate
atom number at any given intensity and pulse duration. With
this, we can determine atom numbers with a typical uncer-
tainty of 5%, corresponding to an uncertainty in kF ∝ N1/6

of 1%. We further tested this calibration using calculations
of the atom cloud density distribution in the trap based on
the equation of state at unitarity [28] and with a mean-field
model in the low-temperature BEC regime which we describe
in detail in the Supplementary Material of Ref. [43]. With
this, we calculate the two-dimensional (2D) column density
and one-dimensional (1D) line density for given total atom
numbers, trapping frequencies, and temperatures and compare
the calculated densities to the measured ones.

C. Trap frequency measurement and anharmonicities

While the trapping potential of the atoms in our experi-
ment in axial direction is harmonic for all practical purposes,
this is not quite the case in radial direction where a single-
beam optical dipole trap provides confinement. Therefore, the
radial-trapping potential has a Gaussian shape, thus increas-
ingly deviating from a perfect harmonic potential with the
distance from the trap center. The larger the atomic cloud
size, the larger are the effects due to the anharmonicity [44].
Cloud sizes increase, e.g., due to stronger repulsive inter-
particle interactions and higher temperatures. Nevertheless,

FIG. 6. Measured signal for the atom number as a function of
the imaging light intensity for imaging pulse durations of 10 µs and
20 µs. The apparent atom number drops with higher intensity and
imaging pulse duration due to an increasing Doppler shift that the
atoms acquire while scattering photons. This effectively lowers the
cross section for absorption and thus the measured atom numbers. In
the limit of zero intensity, the real atom number is recovered.

it turns out that the anharmonicity effects are comparatively
small in our experiments, so that we can neglect them to
first order in our data analysis in Ref. [18]. This has the
advantage that it keeps our data analysis simple. However, it
induces a small systematic error on our results which nom-
inally represent the normalized total contact I/NkF for a
perfectly harmonically trapped gas. We estimated this sys-
tematic error as follows. We carried out calculations to
describe the properties and behavior of the atomic gas in
an anharmonic trap. For temperature T ≈ 0 these calcula-
tions are based on the EOS [27] and for T/TF > 0.5 they
are based on the quantum virial expansion [13,23]. For our
given anharmonic trap, temperature T , total atom number N ,
and scattering length as, we calculated the atomic density
distribution, the effective trap frequency ωeff , and the total
contact using the local density approximation (LDA). The
effective trap frequency ωeff is the frequency of the center-
of-mass motion of the atom cloud in the anharmonic trap.
It generally differs slightly from the trap frequency ωr at
the trap center [44]. Next, we follow our analysis protocol
of Ref. [18] where we ignore anharmonicity and set ωr =
ωeff to calculate EF , TF , kF , and the normalized total contact
I/NkF . Finally, we compare this value for the normalized
contact to the one for the perfect harmonic trap. We find, that
they deviate by less than 0.3% (1.3%, 3.0%, 3.2%, 3.6%)
at T/TF = 0 (0.5, 1.0, 1.5, 2.0). These systematic deviations
are smaller than the respective statistical uncertainties in our
measurements which are typically ≈2% (4%, 6%, 9%, 12%)
at T/TF = 0 (0.5, 1.0, 1.5, 2.0). The statistical uncertainties
decrease with decreasing temperature T , since in our experi-
ments evaporative cooling leads to more stable atom numbers
at lower temperatures.

For determining the trapping frequencies ωax and ωeff , we
perform either parametric heating by modulating the potential
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of the optical dipole trap or we observe the center of mass
motion of the atom cloud after an initial small displacement
of a few micrometers. Both methods give consistent results
with approximately 2% uncertainty for the parametric heating
method and 3% uncertainty for the center of mass motion
measurement.

D. Determination of scattering length as

To determine the scattering length as precisely, we we
precisely measure the measured magnetic field at the loca-
tion of the atoms. We then assign a scattering length to the
measured magnetic field by using Ref. [38]. For measuring
the magnetic fields precisely, we perform radio-frequency
(RF) spectroscopy between the two lowest atomic hyperfine
states. For this, we first use a short laser pulse to depopulate
the |F = 1/2, mF = 1/2〉 state. We then apply a 50 ms RF
pulse and scan stepwise the RF frequency of ≈76.2 MHz to
find resonant population transfer to this state from the still
populated |F = 1/2, mF = −1/2〉 state. Using the Breit-Rabi
formula we are able to determine the magnetic field with an
uncertainty <0.5 G. Together with the typical uncertainty in
kF of 1%, this results in an uncertainty of (kF as)−1 ≈ 0.01 in
the investigated range of magnetic fields.

E. Thermometry

For determining the temperature of our atoms, we fit a
second-order virial expansion of the density distribution to the
outer wings of the atom cloud (see Refs. [43,45]). This works
well even at low temperatures, as the local fugacity z(�r) in the
outer wings is still a small parameter which makes the virial
expansion applicable. With this method, we can determine
the temperature with a typical precision of ≈0.02 T/TF at
small temperatures (T < 0.5TF ) and up to 0.05 T/TF at high
temperatures (T � 1 TF ).

IV. RELATED STUDIES

In this section, we present additional results and insights
that we obtain from our measurements. More precisely, we
compare the photoinduced atom decay measurements to pre-
dictions from Ref. [16] and measurements from Ref. [19]
where a dependency of the decay law on the interaction
regime was predicted and observed. We further extract the
closed-channel fraction Z from our measurements and com-
pare the results to various theoretical predictions [17,46–49]
and experimental results [19,39].

A. Two-body decay laws in a Fermi gas

According to Eq. (19) the photoinduced two-body loss rate
in the Fermi gas is proportional to the total contact I [17].
If the dependency of the contact on the atom number N is
known, one can deduce the corresponding decay law for N (t ).

As calculated in Ref. [16] in the zero-temperature BCS
limit, the integration of the homogeneous contact density over
the trap volume yields the proportionality I ∝ k3

F N and there-
fore Ṅ/N ∝ N1/2. At unitarity one finds I ∝ kF N and hence
Ṅ/N ∝ N1/6. In the BEC limit I ∝ N such that Ṅ/N = const.
Here kF = √

2mEF /h̄ is the Fermi momentum of the trapped
gas, EF = kBTF = h̄ω̄(3N )1/3 is the Fermi energy, and ω̄ is the

FIG. 7. Remaining atom fraction as a function of the photoexci-
tation laser pulse duration, taken from Ref. [18]. The measurements
were carried out at magnetic fields of 753 G, 832 G, and 1078 G
with the initial (kF as )−1 = 1.5, 0, −1.65 corresponding to the BEC,
unitarity and BCS regimes of the crossover. The initial tempera-
tures were T/TF = 0.07, 0.05, and 0.04, respectively. For a better
comparison, the laser powers for the three data sets were manually
adjusted so that their initial relative loss rates were the same (see
Table I). The continuous red and green lines are fits according to
Eq. (24), while the blue line is an exponential (i.e., b = ∞).

geometric mean of the trapping frequencies. Thus, these dif-
ferential equations have the form Ṅ/N ∝ N1/b, where b = 2
in the BCS limit, b = 6 at unitarity and b → ∞ in the BEC
limit. Their solutions, i.e., the decay laws, are given by the
power law

N (t ) = N0/(1 + �0t/b)b, (24)

with the initial decay rate �0. We can now compare these
predictions with our measurements.

From our measurements shown in Fig. 7 we obtain the
parameters b listed in Table I. We observe a deviation in the
fit parameters b [see Eq. (3)] compared to the theoretical pre-
dictions. We attribute this deviation to an increase of the atom
cloud temperature during the photoexcitation pulse, especially
for longer times (>400 ms). Note, however, that we have
not investigated this heating effect properly as after 400–500
ms thermometry based on the atom density distributions be-
comes increasingly difficult because the density and therefore
the signal decreases. We find, however, that during the first
250 ms, the temperature stays rather constant within 5–10%.
If we only include these data points, the fitted parameters
tend towards the theoretical values. However, the uncertainty
increases since we lower the number of data points for the fit.
Our results for b are compatible with measurements of [19],
who measured b ≈ 6 at unitarity and b = 1.78 (1.43) in the
BCS regime at 925 G (1000 G).

B. Closed-channel fraction

As discussed previously, in the vicinity of the Fesh-
bach resonance the scattering wave function � of an atom
pair has a closed-channel admixture of the bare highest
bound molecular state X 1�+

g (v = 38). It can be written as

� = √
Z �closed + √

1 − Z �open where Z is the so-called

063330-7



JÄGER AND DENSCHLAG PHYSICAL REVIEW A 109, 063330 (2024)

TABLE I. Experimental parameters for the measurement data shown in Fig. 7. The values for couplings and temperatures are the initial
values at t = 0.

Coupling Photoex. Theo. Fit Fit param. b
(kF as )−1 Temperature laser power param. b param. b t < 250 ms

1.5 0.07 TF 6 µW ∞ >20 >20
0 0.05 TF 38 µW 6 3.9 ± 0.9 5.7 ± 3.1
−1.65 0.04 TF 610 µW 2 1.6 ± 0.2 2.1 ± 0.5

closed-channel fraction. For a weak probe laser intensity
(�2 � γW ) this quantity is directly linked to Tan’s two-body
contact via [16]

Z = I
NkF

h̄kF

2πmabgW

[
1 − abg

as

]2

, (25)

and has been experimentally and theoretically investigated by
several groups [17,19,39,46–49]. It is, therefore, natural to
compare all these data, see Fig. 8. However, since the closed-
channel fraction is not a normalized quantity it can only be
compared directly for measurements and calculations with
similar parameters W, kF , m, abg, as. Apart from some vari-
ations in the Fermi momentum kF the parameters are indeed
the same for the different data sets. Therefore, a quantitative
comparison is approximately possible.

To calculate the magnetic field dependence of the closed
channel fraction for any given Fermi momentum kF we use
the interpolation of our measurements of the total contact as
presented in Fig. 2 in [18]. The measured quantity I/NkF only
depends on (kF as)−1 to a good approximation. Thus, for a

FIG. 8. Closed-channel fraction Z as a function of magnetic
field, taken from various studies. Blue lilac circles are extracted from
our measured contact data using Eq. (25). The blue lilac (green)
shaded area is a calculation of the closed-channel fraction based
on these results for the range of kF from 3.2 to 3.5 µm−1 (2.2 to
3.9 µm−1). Data from other studies (calculations and measurements)
have plot symbols as indicated by the legend. This includes photoex-
citation measurements from Partridge et al. [39] and from Liu et al.
[19], as well as calculations byWang et al. [17], Chen et al. [46],
Romans et al. [47], Javanainen et al. [48], and Cuestas et al. [49].
We further show calculations based on the BCS ground-state energy
expansions as in Fig. 2 of Ref. [18].

given Fermi momentum kF and magnetic field B to which we
assign a corresponding scattering length as, we can determine
I/NkF from our interpolation. Using this result and Eq. (25),
we can then calculate the closed-channel fraction Z . We use
this procedure to calculate the blue lilac and green shaded
areas in Fig. 8.

With the blue lilac shaded area we illustrate a lower and
upper bound for the closed channel fraction deduced from
our zero-temperature contact measurements where the atom
number ranges from 4.8 × 105 − 6.5 × 105 (corresponding
to kF = 3.3 − 3.5 µm−1). We further plot the closed chan-
nel fraction calculated for kF = 2.2–3.9 µm−1. This allows
for comparing our measurements to the ones presented in
Ref. [39] where the Fermi momentum kF ranges from 2.2
to 3.9 µm−1 and to the calculation presented in [46] for
kF = 2.2 µm−1. The plot shows that up to this point there is
still a large discrepancy between different measurements and
theories on the BCS side of the Feshbach resonance. This
highlights the importance of high precision measurements in
this regime.

V. SUMMARY

In this companion paper, we present relevant background
information on measuring Tan’s contact in the BCS-BEC
crossover with a photoexcitation method. After a brief
overview over various previous approaches to determine the
contact we identified areas in phase space of the strongly
interacting Fermi gas where the contact is not known. We
then lay out in detail the experimental method for measuring
Tan’s contact via photoexcitation, focusing on how to achieve
contact measurements with high precision. Afterwards, we
use our measurements to study and confirm various predicted
decay laws in a Fermi gas due to two-body loss [16]. Finally,
we extract the closed-channel fraction from our measurements
and compare them to several previous theoretical and experi-
mental studies. In the future it will be particularly worthwhile
to employ the described photoexcitation method to measure
Tan’s contact in homogeneous Fermi gases, as this will allow
for resolving details of Fermi gas properties which are washed
out in our current experiments with trapped Fermi gases [17].
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