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The non-Hermitian skin effect (NHSE), characterized by the collapse of bulk-band eigenstates into the
localized boundary modes of the systems, is one of most striking properties in the field of non-Hermitian
physics. Unique physical phenomena related to the NHSE have attracted a great deal of interest; however, their
experimental realization usually requires nonreciprocal hopping, which faces a great challenge in ultracold-atom
systems. In this work we propose the realization of the NHSE in a one-dimensional optical lattice by periodically
driven ultracold atoms in the presence of staggered atomic loss. By studying the effective Floquet Hamiltonian
in the high-frequency approximation, we reveal the underlying mechanism for the periodic-driving-induced
NHSE. We find that the robust NHSE can be tuned by the driving phase, which is manifested by the dynamical
localization. Most remarkably, we uncover the periodic-driving-induced critical skin effect for two coupled
chains with different driving phases, accompanied by the appearance of size-dependent topological in-gap
modes. Our study provides a feasible way to observe the NHSE and explore the corresponding unique physical
phenomena due to the interplay of non-Hermiticity and many-body statistics in ultracold-atom systems.
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I. INTRODUCTION

Non-Hermitian systems exhibit many unique physical phe-
nomena without Hermitian counterparts, which have drawn
extensive research interest in recent years [1–43]. In particu-
lar, one of their striking physical properties is the emergence
of the non-Hermitian skin effect (NHSE) [7–12,26–31]. By
the NHSE, an extensive number of bulk modes collapse into
localized boundary modes within the open boundaries. The
NHSE has its intrinsic topological origin associated with the
point gap [23,30] and it can lead to many exotic physical
phenomena, e.g., the breakdown of conventional Bloch band
theory [7–9], nonunitary scaling of non-Hermitian localiza-
tion [44], and entanglement phase transitions [39].

Although several theoretical proposals have been devoted
to exploring the NHSEs and several related novel physical
phenomena [34,43,45], experimental studies have largely re-
mained behind. The main obstacle, in most cases, is the
challenging requirement of the nonreciprocal hopping in
achieving the NHSE for many experimental platforms. At
present, most experiments are limited to classical phononic
and optical structures [46–48] and electrical circuits [49,50].
A more operational approach is to utilize on-site gain
and loss or equivalently imbalanced on-site dissipation
[31,35,38,51,52].

Ultracold quantum gases in optical lattices provide a
promising platform for studying intriguing quantum physics
due to their high controllability, rich lattice structures, and
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many-body nature [53–56], which have been widely utilized
to explore topological phases [54,55] and many-body physics
[56]. Furthermore, NHSEs have been theoretically proposed
[51,57,58] and also experimentally observed [38,52] in opti-
cal lattices of ultracold atoms. These studies usually rely on
complicated lattice structures to achieve the NHSE assisted
by atomic loss.

Alternatively, we may realize the NHSE and study the as-
sociated physical phenomena in an experimentally accessible
optical lattice of ultracold atoms based on Floquet engineer-
ing. Floquet engineering is a versatile tool that tailors a system
using the periodic driving and has produced a wide variety
of fascinating physics in the field of ultracold atoms due to
their excellent dynamic control [59–63]. Most recently, loss-
induced NHSEs have been reported in a periodically driven
photonic structure [64] and acoustic metamaterial [65]. Both
proposals are classical settings, and it is natural to achieve the
NHSE in periodically driven ultracold-atom systems, which
would offer an exciting opportunity for studying the NHSE
and its interplay with many-body interaction.

In this paper we theoretically propose to realize the NHSE
in periodically driven dissipative ultracold atoms. By peri-
odically driving the one-dimensional (1D) optical lattice of
ultracold atoms in the presence of staggered atomic loss, we
observe the NHSE with all the modes localized at bound-
aries, which can be manifested by dynamical localization.
The direction of the skin-mode localization can be controlled
by the driving phase and characterized by the winding num-
ber. Moreover, by coupling two periodically driven chains
with different driving phases, we study the critical skin ef-
fect, with the appearance of size-dependent topological in-gap
modes.
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FIG. 1. Schematic showing the tilted optical lattice of ultracold
atoms with periodic modulation of on-site potential. The bare atomic
tunnel coupling is represented by J; λ1 and λ2, with λ2 = λ1 + λ, de-
note the staggered atomic losses at odd and even sites, respectively;
and on-site potential modulations are expressed as F1 = F cos(ωt +
φ) and F2 = F sin(ωt ).

The rest of this paper is organized as follows. In Secs. II A
and II B we present a 1D optical lattice constructed by dissipa-
tive ultracold atoms under the periodic modulation of on-site
potential. When the staggered atomic loss is introduced along
the chain, we observe the NHSE. We discuss the effect of
disorder and dynamical localization in Secs. II C and II D,
respectively. To further demonstrate the novel non-Hermitian
physics in periodically driven system, we study the critical
skin effect in Sec. III. We summarize the key findings in
Sec. IV.

II. PERIODICALLY DRIVEN DISSIPATIVE
ULTRACOLD ATOMS

A. Model and Floquet Hamiltonian

To induce the NHSE, we consider periodically driven dissi-
pative quantum systems, which can be experimentally realized
by using well-developed techniques of Floquet engineering in
ultracold atoms, including the approaches of lattice shaking,
laser-assisted tunneling, modulation of external field gradi-
ents, and a combination of these methods [59–63]. In 1D
dissipative ultracold atoms, by periodic modulation of on-
site potential in 1D optical lattices in a tilted optical lattice
(see Fig. 1), we construct the periodically driven Hamiltonian
Hp(t ) = H0 + Hd(t ), with

H0 = −J
L−1∑
j=1

(c†
j+1c j + H.c.) − iλ

L/2∑
j=1

n2 j − iλ1

L∑
j=1

n j, (1)

Hd(t ) =
L∑

j=1

F

(
cos(ωt + φ) j + sin(ωt )

3 + (−1) j

2

)
n j .

(2)

Here H0 is the undriven Hamiltonian in the presence of stag-
gered dissipation, with λ1 and λ2 = λ1 + λ the atomic loss
rates at odd and even sites, respectively (see Fig. 1), and Hd

represents periodically modulated on-site potential in a tilted
optical lattice, with its first term being on-site energy offset
along the lattice and its second term being staggered on-site
potential. In addition, c†

j is the creation operator at the jth

lattice site; n j = c†
j c j is the corresponding density operator;

F , ω, and φ are the driving strength, frequency, and phase,
respectively; and J is the atomic hopping rate. The details
of experimental proposals are shown in Appendix A. Without
loss of generality, we set λ1 = 0 below.

By performing a unitary transformation U (t ) =
exp[i

∫ t Hd(t ′)dt ′] to a rotating frame of reference (see
Appendix B), Hp is rewritten as

H(t ) =
∑

j

[(uc†
2 jc2 j−1 + vc†

2 j+1c2 j + H.c.) − iλn2 j], (3)

where

u = −Jei
√

2α cos(φ/2+π/4) sin(ωt+φ/2−π/4), (4)

v = −Jei
√

2α sin(φ/2+π/4) cos(ωt+φ/2−π/4), (5)

with α = √
2F/ω. According to the Floquet theorem [66], a

time-periodic Hamiltonian H(t ) = H(t + T ), with the driv-
ing period T = 2π/ω, is governed by the Schrödinger
equation i∂t |ψn(t )〉 = H(t )|ψn(t )〉. There exists a complete
set of orthogonal solutions |ψn(t )〉 = e−iEnt |un(t )〉, with
|un(t )〉 = |un(t + T )〉 and quasienergy En. In this work we
are interested in the stroboscopic dynamics governed by
the time-independent effective Floquet Hamiltonian HF,
defined as

U (T ) = T exp

(
−i

∫ T

0
H(t ′)dt ′

)
= e−iHFT , (6)

where T is the time-ordering operator and U (T )|ψn(0)〉 =
e−iEnT |ψn(0)〉. Due to the non-Hermiticity of H(t ), the Flo-
quet operator U (T ) is not unitary and the quasienergy En can
be complex.

B. Non-Hermitian skin effect

To reveal the periodically driven skin effect for the dis-
sipative ultracold-atom system proposed above, we plot the
complex quasienergy spectrum En and corresponding density
distributions |ψn|2 of the Floquet Hamiltonian HF, as shown
in Fig. 2. The quasienergies are calculated under both periodic
boundary conditions (PBCs) and open boundary conditions
(OBCs), while density distributions are under OBCs. The
complex quasienergy spectrum of the pure dissipative system
with α = 0 is insensitive to the boundary conditions and there
exists no NHSE [see Fig. 2(a)]. In addition, the only period-
ically driven ultracold atoms with λ = 0 cannot induce the
NHSE [see Fig. 2(b)].

For the periodically driven and dissipative ultracold-atom
chain in the presence of the staggered loss, i.e., α �= 0 and λ �=
0, the complex quasienergy spectrum is sensitive to boundary
conditions [see Figs. 2(c i), 2(d i), and 2(e i)]. The peri-
odic drive induces the formation of point gaps, a loop in
the complex plane [see red dots in Figs. 2(c i), 2(d i), and
2(e i)], encircling the open-arc spectrum of OBCs (blue dots).
Figures 2(c ii), 2(d ii), and 2(e ii) plot the density distributions
|ψn|2 of all the Floquet eigenmodes, where all the modes are
localized at the boundaries. Moreover, these non-Hermitian
skin modes can be localized at either right [see Figs. 2(c ii) and
2(d ii)] or left [see Fig. 2(e ii)] boundaries, determined by the
driving phase φ. Therefore, our periodic-modulation approach
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FIG. 2. Complex quasienergy spectrum En and corresponding density distributions |ψn|2 of the Floquet Hamiltonian HF. The red and blue
dots indicate the quasienergies under PBCs and OBCs, respectively. (a) Pure dissipative ultracold atoms with α = 0. (b) The only periodic
drive with α = 2, ω = 2π , and λ = 0. Also shown are the periodically driven dissipative ultracold atoms with (c) α = 2, ω = 2π , and φ = 0;
(d) α = 1.5, ω = 3π , and φ = 0; and (e) α = 1.5, ω = 3π , and φ = π . The other parameters are λ/J = 1.0 and L = 100.

realizes a tunable 1D NHSE in the dissipative ultracold-atom
system.

The NHSE has its topological origin, which is character-
ized by the point-gap topology with the topological invariant
of the winding number [30]

W (Er ) =
∫ π

−π

dk

2π i
∂k ln det[HF(k) − Er], (7)

where HF(k) is the Floquet Hamiltonian in momentum space
and Er is a reference energy point inside the loop of the point
gap. The W (Er ) counts the number of times that the complex
spectrum of HF(k) encircles Er .

We analytically calculate W (Er ) by approximating HF(k)
using the time-independent effective Hamiltonian Heff(k),
obtained by the Floquet-Magnus expansion in the high-
frequency approximation [67–69]. For ω � J, F , the effective
Hamiltonian Heff(k) (see details in Appendix C) is derived as

Heff(k) = −
∑

k

[JJ0(α)(1 + e−ik )c†
k,Ack,B + H.c.]

− s
2J2J2

−1(α)

ω

∑
k

sin(k)(c†
k,Ack,A − c†

k,Bck,B)

− iλ
∑

k

c†
k,Bck,B, (8)

where A and B denote two sublattice sites in the unit cell
due to the staggered loss, Jm(α) is the Bessel function of
the first kind, and s = 1 (−1), corresponding to φ = 0 (π ),
corresponding to the rightward (leftward) localization. The
winding number is calculated as W = −1 (W = 1) for φ =
0 (π ).

To further elucidate the mechanism of the Floquet-induced
NHSE considered here, we write the real-space effective
Hamiltonian in the high-frequency expansion (see details in

Appendix C) as

Heff = −
∑

j

[JJ0(α)c†
2 jc2 j−1 + JJ0(α)c†

2 j+1c2 j + H.c.]

−
∑

j

(
is

2J2J2
−1(α)

ω
c†

2 j+1c2 j−1 + H.c.

)

+
∑

j

(
is

2J2J2
−1(α)

ω
c†

2 j+2c2 j + H.c.

)
− iλ

∑
j

c†
2 jc2 j .

(9)

The Hamiltonian Heff in Eq. (9) describes an effective 1D
lattice in the presence of both nearest-neighbor and next-
nearest-neighbor hoppings, forming a zigzag lattice (see
Fig. 3). Moreover, a π/2 magnetic flux threads through each
triangular plaquette in the clockwise and counterclockwise





(a)

(b)

FIG. 3. Schematic showing the 1D zigzag lattice described by
Eq. (9). The even sites (yellow circles) are dissipated by λ = λ2 − λ1.
A π/2 magnetic flux threads through each triangular plaquette in
the clockwise and counterclockwise directions for (a) φ = 0 and (b)
φ = π due to the complex next-nearest-neighbor hopping in Eq. (9).
Such a nonzero flux leads to opposite particle transport along the odd
and even lattice sites, indicated by the dashed arrows.
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FIG. 4. Complex quasienergy spectrum En and corresponding
density distributions |ψn|2 of the Floquet Hamiltonian HF in the
presence of on-site disordered potential Hdis for (a) φ = 0 and (b)
φ = π . The red and blue dots indicate the quasienergies under PBCs
and OBCs, respectively. The other parameters are α = 1.5, ω = 3π ,
λ/J = 1, W/J = 5, and L = 120.

directions for φ = 0 and φ = π due to the complex next-
nearest-neighbor hopping in Eq. (9). Such a nonzero flux
leads to opposite particle transports along the odd and even
lattice sites [35,70,71]. Due to the larger loss for the even
sites, the particle transport along the odd sites are favored and
the backflow on even sites is suppressed. This leads to skin
modes at the right and left boundaries for φ = 0 and φ = π ,
respectively.

C. Robustness against disorder

The intrinsic topological nature of the NHSE in peri-
odically driven dissipative ultracold-atom system indicates
its robust against local disorders. Here we consider the
introduction of the on-site disordered potential into the period-
ically driven dissipative system with the system Hamiltonian
reading

Htot(t ) = H(t ) + Hdis = H(t ) +
L∑

j=1

Ujn j, (10)

where Uj denotes the on-site random potential, uniformly
sampled in ∈ [−W/2, W/2], with W denoting the disorder
strength.

Figure 4 shows the complex quasienergy spectra under
OBCs and PBCs and the corresponding density distributions
of the Floquet Hamiltonian HF in the presence of the on-
site random potential with the disorder strength W = 5 for
φ = 0 and φ = π . The PBC eigenenergies still form a point
gap, encircling all the OBC eigenvalues. All the eigenstates
are localized at the right (left) boundary for φ = 0 (φ = π ).
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FIG. 5. Dynamical localization of the periodically driven dis-
sipative system with (a) φ = 0 and (b) φ = π . The initial states
are the Gaussian wave packet |ψ0〉 = [ψ0(1), ψ0(2), . . . , ψ0(L)]T ,
with ψ0( j) = exp[−( j − j0 )2/2σ 2]/N centered at the site j0 = L/2.
Here we choose the width of the wave packet σ = 5. The wave
packets at every time have been renormalized. The other parameters
are α = 1.5, ω = 3π , λ/J = 1, and L = 100.

Therefore, the NHSEs remain in spite of strong disorder due
to the intrinsic non-Hermitian topology of the periodically
driven dissipative ultracold-atom system considered here.

D. Dynamical localization

The NHSE can be manifested by studying the dy-
namical evolution. We consider the initial states as the
Gaussian wave packet |ψ0〉 = [ψ0(1), ψ0(2), . . . , ψ0(L)]T ,
with ψ0( j) = exp[−( j − j0)2/2σ 2]/N centered at the site
j0 = L/2, where N is the normalization constant and σ de-
notes the width of the wave packet. The wave function at
time t can be obtained by numerically calculating |ψ (t )〉 =
T exp[−i

∫ t
0 H(τ )dτ ]|ψ0〉.

We calculate the time-dependent density distributions of
the periodically driven dissipative ultracold-atom system for
φ = 0 and φ = π , as shown in Fig. 5. Due to the nonre-
ciprocal nature of the considered system, as analyzed above,
the wave packet is finally localized towards the right and left
boundaries for φ = 0 and φ = π , respectively.

III. FLOQUET-INDUCED CRITICAL
NON-HERMITIAN SKIN EFFECT

The NHSE can induce a novel critical behavior without
its Hermitian counterpart, dubbed the critical NHSE [26].
More specifically, when two non-Hermitian systems with dif-
ferent skin lengths are coupled together, the energy spectrum

1 2

1 2 
a  

b  

FIG. 6. Schematic showing the lattice ladder of ultracold atoms
for realizing a critical NHSE. For each leg a or b of the ladder, the
optical lattice has the same structure as the one in Fig. 1, which is
periodically modulated and staggered with alternating losses λ1 and
λ2, with λ = λ2 − λ1. Along the rung, driving phases are set as φ = 0
and φ = π , respectively; γ is the hopping strength along the rung.
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FIG. 7. Complex quasienergy spectrum En and corresponding density distributions |ψn|2 of the Floquet Hamiltonian HF
L of the driving

ladder for different sizes from L = 20 to 200. The red and blue dots indicate the quasienergies under PBCs and OBCs, respectively. The red
and blue lines represent the density distributions |ψn|2 of legs a and b, respectively. (c i) and (d i) As the size L increases, the topological in-gap
degenerate states (black dots) with zero real parts of complex eigenenergies appear. (c ii) and (d ii) The corresponding state distributions are
shown in with dashed curves. The parameters are α = 1.5, ω = 3π , λ/J = 1.0, and γ /J = 0.005.

discontinuously jumps across a critical point in the thermo-
dynamic limit. The critical skin effects have been studied in
static systems [26,27,72,73]. Here we show that such a critical
behavior can also be observed in the driving system.

To study the Floquet-induced critical NHSE, we con-
sider the quasi-one-dimensional ladder of ultracold atoms, as

shown in Fig. 6. For each leg a or b of the ladder, the optical
lattice has the same structure as the one in Fig. 1, which is
periodically modulated and staggered with alternating losses
λ1 and λ2. Along the rung, driving phases are set as φ = 0 and
φ = π , respectively. The Hamiltonian of the driving ladder is
written in the rotating frame of reference (see Appendix B) as

HL(t ) = −
L/2∑
j=1

(J∗
−a†

2 ja2 j−1 + J∗
+b†

2 jb2 j−1 + H.c.) −
L/2−1∑

j=1

(J+a†
2 j+1a2 j + J−b†

2 j+1b2 j + H.c.) −
L/2∑
j=1

iλ(a†
2 ja2 j + b†

2 jb2 j)

−
L∑

j=1

γ (a†
j b j + H.c.), (11)

where J± = Jeiα cos(ωt±π/4) represents the hopping strength
for legs a and b, λ indicates on-site dissipation with λ =
λ2 − λ1, and γ is the hopping strength along the rung. The
Floquet Hamiltonian HF

L of the ladder is defined as U (T ) =
T exp[−i

∫ T
0 HL(t ′)dt ′] = e−iHF

LT .
Figure 7 shows the complex quasienergy spectrum and

corresponding density distributions of HF
L for different sizes

L. The PBC spectrum (red dots) is not sensitive to the system
size, while the OBC spectrum (blue dots) changes remarkably
as the size L of the coupled chains increases from L = 20
to 200 in spite of the weak-coupling strength between two
chains with γ /J = 0.005. For the small size L = 20, the OBC
spectrum of the coupled chains mostly resembles the one of

the respective single chains in Figs. 2(d i) and 2(e i). As the
size L increases, the OBC spectrum changes and the bulk
OBC spectrum approaches the PBC spectrum of the coupled
chains at the large size L = 200 [see Fig. 7(d i)]. Moreover,
the energy spectrum in the large-size coupled chains under
OBCs discontinuously jumps across the critical point γ /J =
0. Therefore, the critical skin effect occurs in the periodically
driven ladder.

Mostly remarkably, the critical skin effect can be man-
ifested by the size-dependent topological phase crossovers.
For γ /J = 0, the system is decoupled into two topologically
trivial chains, while for the nonzero coupling strength γ /J �=
0, the momentum-space Hamiltonian HL(k, t ) in Eq. (11)
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FIG. 8. Schematic showing the dynamical superlattice potential to realize the periodically driven Hamiltonian Hp(t ) = H0 + Hd(t ).
The periodically modulated potential Hd(t ) consists of (a) the time-dependent staggered on-site potential and (b) the time-dependent tilted
on-site potential. (a) The one-dimensional dynamical optical superlattice with the time-dependent staggered on-site potential is created by
superimposing a stationary lattice and a dynamical one with different periodicities. (b) An additional time-periodic modulation of the lattice
position is superimposed to create the time-dependent tilted potential. (c) When the atoms are prepared in the first-band state, the staggered
dissipation rates λ1 and λ2 = λ1 + λ at odd and even sites in H0 are realized via exciting the state in the first band at even sites to the
higher-level state |e〉, where the additional dissipation λ is controlled by the intensity of the external optical beam.

respects chiral symmetry, which supports topological bound-
ary modes (see details in Appendix D). As shown in
Figs. 7(a i)–7(d i), there exist no in-gap states for the small
size of the ladder [see Figs. 7(a i) and 7(b i)]. However, as
the size increases, topological degenerate in-gap states appear
[see black dots in Figs. 7(c i) and 7(d i)]. These in-gap states
are localized at the system’s boundaries [see Figs. 7(c ii)
and 7(d ii)]. In experiments, we can observe the critical non-
Hermitian skin effects by directly detecting the topological
phase crossovers of the size-dependent in-gap boundary state.
In ultracold atoms [74–78], the interface boundary between
topologically trivial and nontrivial chains can be created
by introducing a very large potential step (see details in
Appendix D).

IV. CONCLUSION

We have shown theoretically that the NHSE can occur in a
periodically driven ultracold atoms in the presence of the stag-
gered atomic loss. The NHSE is characterized by the winding
number, which is quite robust against the disorder. The under-
lying mechanism governing the periodic-drive-induced NHSE
was provided by considering the Floquet-Magnus expansion
in the high-frequency approximation. Moreover, we proposed
observing the critical skin effect with the appearance of
size-dependent topological in-gap modes by coupling two
periodically driven chains with different driving phases. Our
approach can be easily implemented in ultracold atoms based
on Floquet engineering. Floquet engineering has emerged as
a powerful experimental method for the realization of novel
quantum systems in ultracold-atom systems. Our work paves
the way for further studies of the NHSE and its interplay
with many-body statistics and interactions in ultracold-atom
systems.
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APPENDIX A: REALIZATION OF THE FLOQUET
HAMILTONIAN IN ULTRACOLD ATOMS

In this Appendix we provide some details to realize the dis-
sipative Floquet Hamiltonian Hp(t ) = H0 + Hd(t ) in Eqs. (1)
and (2), which consist of the periodically modulated staggered
on-site potential and tilted potential and the staggered dissipa-
tion rates λ1 and λ2 = λ1 + λ at odd and even sites.

As shown in Fig. 8(a), in the experimental setting, the one-
dimensional dynamical optical superlattice (in the x direction)
in the presence of the periodically modulated staggered on-
site potential can be created by superimposing a stationary
lattice (i.e., the short lattice) with a period of λS and a dy-
namical interferometric lattice (i.e., the long lattice) with a
period of λL = 2λS [79–81]. The phase of the dynamical inter-
ferometric lattice is periodically driven in time and controlled
by a Michelson interferometer. The strong confinement in the
y and z directions is provided by other optical lattices. The
dynamical superlattice potential is written as

V1(x, y, z, t ) = −VS (t ) cos2(kSx) − VL(t ) cos2[kSx/2 − ϕ(t )],

(A1)

where VS and VL are the depths of the short and long lattices
controlled by the respective laser powers, kS = 2π/λS is the
wave vector, and ϕ(t ) is the phase difference between the
two lattices controlled by changing the optical path difference
between the two interfering beams [79–81]. The ultracold
atomic gases are loaded into this dynamically controlled opti-
cal superlattice and prepared in the first band. The band gaps
between the first and the higher-level bands are fairly large
at each well; we can focus on only the first band [79–81].
Then, in the tight-binding limit, we can achieve periodically
modulated staggered on-site potential in the second term of
the right-hand side of the Hamiltonian Hd(t ) in Eq. (2).

Further, in order to construct the periodically modulated
tilted potential, we superimpose an additional drive consisting
of a time-periodic modulation of the lattice position x with
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the frequency ω, as shown in Fig. 8(b). The time-periodic
modulation of the lattice site has the form

V2(x, y, z, t ) = −V [x − A cos(ωt + φc)], (A2)

where A is the modulation amplitude and φc is phase.
Such a tilted potential under periodic modulation (i.e., the
time-dependent force) has been experimentally realized in
ultracold-atom systems [62,82]. Then, in the tight-binding
limit, we can achieve periodically modulated tilted potential in
the first term of the right-hand side of the Hamiltonian Hd(t )
in Eq. (2).

Finally, when the atoms are prepared in the first-band state,
the staggered dissipation rates λ1 and λ2 = λ1 + λ at odd and
even sites in H0 are realized via exciting the state in the
first band at even sites to the higher-level state |e〉, where the
additional dissipation λ is controlled by the intensity of the
external optical beam [see Fig. 8(c)]. In order to selectively
excite the atoms at even sites, we can utilize the ground-state
hyperfine states in the combination of the Raman-assisted
hopping between adjacent sites. To be specific, we consider
ultracold atoms with two internal states, e.g., spin up and spin
down. The spin-up states at the odd sites hop to spin-down
states at the even sites using Raman-assisted hopping. Then
the staggered dissipation can be realized by exciting all the
spin-down states at the even sites to higher-level states. Note
that the loss control using different internal states in the optical
lattice of ultracold atoms has been experimentally reported
[38,52,83,84].

APPENDIX B: UNITARY TRANSFORMATION OF THE
FLOQUET HAMILTONIAN

As shown in the main text, we construct the periodically
driven Hamiltonian Hp(t ) = H0 + Hd(t ), with

H0 = −J
L−1∑
j=1

(c†
j+1c j + H.c.) − iλ

L/2∑
j=1

n2 j, (B1)

Hd(t ) =
L∑

j=1

F

(
cos(ωt + φ) j + sin(ωt )

3 + (−1) j

2

)
n j,

(B2)

where, without loss of generality, we set λ1 = 0. After
performing a unitary transformation H(t ) = UHp(t )U† −
iU∂tU†, with U (t ) being written as

U (t ) = exp

[
i

(
F

ω
sin(ωt + φ)

L∑
j

jn j

− F

ω
cos(ωt )

L∑
j

3 + (−1) j

2
n j

)]
, (B3)

we achieve the periodically driven Hamiltonian as

H(t ) =
L/2∑
j=1

[(uc†
2 jc2 j−1 + H.c.) − iλn2 j]

−
L/2−1∑

j=1

(vc†
2 j+1c2 j + H.c.), (B4)

where

u = −Jei
√

2α cos(φ/2+π/4) sin(ωt+φ/2−π/4), (B5)

v = −Jei
√

2α sin(φ/2+π/4) cos(ωt+φ/2−π/4), (B6)

with α = √
2F/ω.

APPENDIX C: EFFECTIVE HAMILTONIAN VIA
FLOQUET-MAGNUS EXPANSION

In this Appendix we provide some details to obtain the
time-independent effective Hamiltonian Heff by applying the
Floquet-Magnus expansion [67–69] in the high-frequency ap-
proximation (ω � J, F ). Up to the first-order approximation,
the effective Hamiltonian is written as

Heff =
∑

μ=0,1

H(μ)
eff , (C1)

where

H(0)
eff = H0, H(1)

eff =
∑
m �=0

[H−m,Hm]

2mω
, (C2)

with Hm = T −1
∫ T

0 H(t )eimωt dt .
We first derive the effective high-frequency Hamiltonian

for the real-space model H(t ) in Eq. (3). For m �= 0 and φ =
0, π , Hm reads

Hm =
∑

j

[
Pm

(
3π

4

)
c†

2 jc2 j−1 + Pm

(
−π

4

)
c†

2 j−1c2 j

]

+
∑

j

[
Pm

(π

4

)
c†

2 j+1c2 j + Pm

(
−3π

4

)
c†

2 jc2 j+1

]
,

(C3)

where

Pm() = −Ji−mJ−m(α)eims, (C4)

with Jm(α) the Bessel function of the first kind and s = 1 (−1)
corresponding to φ = 0 (π ). According to Eqs. (C1)–(C3),
we obtain the effective time-independent Hamiltonian Heff of
H(t ) as

Heff = −
∑

j

[JJ0(α)c†
2 jc2 j−1 + JJ0(α)c†

2 j+1c2 j + H.c.]

−
∑

j=

(
is

2J2J2
−1(α)

ω
c†

2 j+1c2 j−1 + H.c.

)

+
∑

j

(
is

2J2J2
−1(α)

ω
c†

2 j+2c2 j + H.c.

)

− iλ
∑

j

c†
2 jc2 j, (C5)

where only the term with m = 1 is considered in the high-
frequency limit in Eq. (C2).

We now derive the effective high-frequency Hamiltonian
for the momentum-space Hamiltonian H(k, t ). We rewrite
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FIG. 9. Complex quasienergy spectrum En calculated using the
Floquet Hamiltonian HF (blue diamonds) and effective Hamilto-
nian Heff (red stars) in the high-frequency limit under (a) OBCs
and (b) PBCs. The parameters are α = 1.5, ω = 3π , λ/J = 1, and
L = 100.

H(t ) in Eq. (3) as

H(t ) =
∑

j

[(uc†
j,Bc j,A + vc†

j+1,Ac j,B + H.c.) − iλnj,B].

(C6)

Then the momentum-space Hamiltonian H(k, t ) is written as

H(k, t ) =
∑

k

[(u∗ + ve−ik )c†
k,Ack,B + H.c.] − iλ

∑
k

c†
k,Bck,B,

(C7)

where A and B denote two sublattice sites in the unit cell due
to the staggered loss. For m �= 0 and φ = 0, π , Hm(k) reads

Hm(k) =
∑

k

[Qm,1(k)c†
k,Ack,B + Qm,2(k)c†

k,Bck,A], (C8)

where

Qm,1(k) = −Ji−mJ−m(α)(e−ism(π/4) + eism(π/4)e−ik ), (C9)

Qm,2(k) = −Ji−mJ−m(α)(eism(3π/4) + e−ism(3π/4)eik ). (C10)

According to Eqs. (C1) and (C8), we obtain the effective time-
independent Hamiltonian Heff(k) of H(k, t ) as

Heff(k) = −
∑

k

[JJ0(α)(1 + e−ik )c†
k,Ack,B + H.c.]

− s
2J2J2

−1(α)

ω

∑
k

sin(k)(c†
k,Ack,A − c†

k,Bck,B)

− iλ
∑

k

c†
k,Bck,B, (C11)
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FIG. 10. (a) Real part and (b) imaginary part of the complex
quasienergy spectrum of the Floquet Hamiltonian HF

L(k) of HL(k, t )
in the momentum space. (c) Complex quasienergy spectrum En of
the ladder under PBCs (red dots) and OBCs (blue dots). (d) Corre-
sponding density distribution of the ladder under OBCs. The red and
blue lines represent states in legs a and b, respectively. The dashed
lines denote the topological in-gap boundary states. The parameters
are α = 1.5, ω = 3π , λ/J = 1, γ /J = 0.5, and L = 100.

with only the term with m = 1 considered in the high-
frequency limit in Eq. (C2).

In Fig. 9 we plot the OBC and PBC spectra, calculated
using the Floquet Hamiltonian HF (blue diamonds) and effec-
tive Hamiltonian Heff (red stars). The effective Hamiltonian
in the high-frequency limit shows a good approximation to
the Floquet Hamiltonian.

APPENDIX D: TOPOLOGICAL PHASE OF THE
PERIODICALLY DRIVEN LADDER

In this Appendix we give more details of the topological
phases of the ladder system (see Fig. 6), which are protected
by the energy gap and chiral symmetry. The momentum-
space Hamiltonian of the ladder is written as HL(k, t ) =∑

k �
†
k HL(k, t )�k , with �k = (ak,A, ak,B, bk,A, bk,B)T , where

A and B denote sublattices along each leg, as shown by orange
and blue circles in Fig. 6, and HL(k, t ) is

HL(k, t ) =

⎛
⎜⎜⎜⎜⎜⎝

0 −J− − J+e−ik −γ 0

−J∗
− − J∗

+eik −iλ 0 −γ

−γ 0 0 −J+ − J−e−ik

0 −γ −J∗
+ − J∗

−eik −iλ

⎞
⎟⎟⎟⎟⎟⎠. (D1)

The Floquet Hamiltonian HF
L (k) of the ladder in momen-

tum space is defined as U (T ) = T exp[−i
∫ T

0 HL(k, t ′)dt ′] =
e−iHF

L (k)T .

The Hamiltonian HL(k, t ) respects chiral symmetry
SHL(k, t )S−1 = −H†

L (k,−t ), where S = σyτz, with Pauli ma-
trices σ0,x,y,z and τ0,x,y,z acting on the sublattices (A, B) in
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FIG. 11. (a) A middle ladder with size L2 is sandwiched by two ladders with lengths L1 and L3 in the presence of the very large on-site
potential � and −� in chains a and b, respectively. (b) Complex-eigenenergy spectrum and (c) corresponding density distributions of states
indicated by red dots in (b) for L2 = 40. (d) Complex-eigenenergy spectrum and (e) density distributions of the topological in-gap states
(E = −0.5i) indicated by red dots in (d) for L2 = 100. The parameters are α = 1.5, ω = 3π , λ/J = 1.0, and γ /J = 0.005.

each leg and the legs’ (a, b) degrees of freedom, receptively.
As shown in Figs. 10(a) and 10(b), the Floquet Hamiltonian
HF

L (k) has a line gap. According to the topological classifica-
tion of the Floquet non-Hermitian system [85], it supports a
topological nontrivial phase. Figures 10(c) and 10(d) clearly
show the degenerate in-gap boundary modes.

In experiments, we can observe the critical non-Hermitian
skin effects by directly detecting the topological phase
crossovers of the size-dependent in-gap boundary state. In
ultracold atoms, the interface boundary between topologically
trivial and nontrivial chains can be created by illuminating
a selected area of the lattice with a large optical potential

[74–78]. As shown in Fig. 11(a), the middle ladder with the
size L2 is sandwiched by two ladders with lengths L1 and L3

in the presence of the very large on-site potential � and −�

in chains a and b. The left and right ladders are topologically
trivial for large � due to the broken chiral symmetry. We
calculate the complex-eigenenergy spectrum and the corre-
sponding density distributions for L2 = 40 [see Figs. 11(b)
and 11(c)] and L2 = 40 [see Figs. 11(d) and 11(e)]. The re-
sults indicate that the eigenenergy spectrum and state density
distribution of the middle ladder are largely separated from
those of the left and right ladders and have the same features
as the single ladder under OBCs (see Fig. 7) for large �.
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