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Quantum echo in two-component Bose-Einstein condensates
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The development of ultracold atom technology has enabled precise investigations on the quantum dynamics
of quantum gases. Recently, inspired by experimental advancement, the SU(1, 1) echo, akin to the well-known
SU(2) spin echo, was proposed for the single-component Bose-Einstein condensate (BEC). In this paper, we
investigate the possibility of quantum echo in the more intricate two-component BEC by fully exploiting its
underlying symmetry, which is the Lie group Sp(4, R). We demonstrate that quantum echo can occur for the
two-component BEC by applying a driving protocol consisting of two steps in each period. The first step can
be any Bogoliubov Hamiltonian, while the second step is a Hamiltonian with interactions turned off, which
plays a similar role as the π pulse in spin echo. We confirm our theoretical results with numerical calculations
for different examples of the two-component BEC. We further consider the effect of interactions between the
excited boson modes on the quantum echo process and discuss the possible experimental implementation of this
quantum echo.
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I. INTRODUCTION

In the past decades, ultracold-atomic systems have
emerged as a powerful tool for the precise exploration of
dynamics within quantum systems as they offer high control-
lability and tunability [1–3]. Recently, the Chicago group’s
experiments on Bose-Einstein condensates (BECs) revealed
exotic phenomena like Bose fireworks and the quantum re-
vival of BEC [4–12]. The second of these inspired the study
of the quantum echo, i.e., the revival of the quantum state
of a system after applying a specific driving protocol in the
single-component BEC using the SU(1, 1) group [13–17],
which resembles the SU(2) spin echo [18].

However, BEC can also form in more complex sys-
tems consisting of two or more species (internal states) of
bosonic atoms, such as the two-component and spinor BECs
[19–21]. The two-component BEC has been realized in var-
ious ultracold atom systems [22–33] and received extensive
investigations [34–45]. Given the tunability of the interac-
tion between different species of atoms through Feshbach
resonances [27], one may wonder whether such a quantum
echo can occur in this more complicated two-component BEC
system.

In this paper, we address this problem by using the gen-
eral formalism presented in Ref. [46], which employed the
so-called real symplectic group Sp(4, R) to deal with the
quantum dynamics of the two-component BEC. The Sp(4, R)
group, a noncompact Lie group, preserved the canonical
commutation relations of boson operators [47] and finds ap-
plications across various areas of physics, such as quantum
information [48–50], high energy physics [51–54], and cold
atoms [46,55–57]. (See Appendix A for a brief introduction
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to this group.) In Ref. [46], by mapping the time evolution
operator of BEC to an Sp(4, R) matrix, the quantum dynamics
under arbitrary Bogoliubov Hamiltonian were calculated.

Utilizing this formalism, we show that, through a two-step
periodic driving protocol, the fully condensed state or any
Sp(4, R) coherent state of a two-component BEC can revert
to its original form after two driving periods. The first-step
Hamiltonian Ĥ1 can be any Bogoliubov Hamiltonian, while
in the second step Ĥ2 the interactions are turned off. We
provide a method to calculate Ĥ2 for a given Ĥ1. This is
demonstrated through two examples: a time-independent Ĥ1

and a time-dependent Ĥ1, with numerical results confirming
our theory. We also examine the quantum echo breaking effect
due to interactions between excited boson modes and analyze
how this effect varies with the kinetic to interaction strength
ratio in the first-step Hamiltonian. The paper concludes with a
discussion on the potential implementations of these quantum
echoes in cold atom experiments.

Our work highlights the exploitation of the underlying
symmetry of the two-component BEC. Since it has similar
symmetry properties shared by the N-component BEC, our
work provides a unified perspective on the quantum echoes
of one- and two-component BECs, and can be potentially
generalized to the spinor BEC case. Furthermore, given the
presence of real symplectic groups in various areas of physical
study [49–57], especially the bosonic Gaussian states [48], our
work can shed light on the revival of quantum states in these
research areas.

This paper is organized as follows. In Sec. II, we review the
formalism using the Sp(4, R) group to deal with the quantum
dynamics of two-component BEC. In Sec. III, we prove that a
two-step driving protocol can make the quantum echo occur.
In Sec. IV, we apply this driving protocol to two different
examples and present the numerical results to confirm our
proof. In Sec. V, we consider the interaction effect. In Sec. VI,
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we propose a possible experimental implementation of this
echo. We conclude in Sec. VII.

II. QUANTUM DYNAMICS AND Sp(4, R) SYMMETRY

We consider the physical process that a two-component
Bose gas is prepared in a fully condensed state, i.e., all
particles are condensed in the zero momentum modes, then
the system evolves under the Bogoliubov Hamiltonian. The
general form of this quench Bogoliubov Hamiltonian can be
written as ĤBg(t ) = ∑

k �=0 Ĥk(t ) + const., where

Ĥk(t ) = �̂
†
kHk(t )�̂k, Hk(t ) =

(
ξk(t ) η(t )
η∗(t ) ξ ∗

k (t )

)
, (1)

with �̂k = (a1,k, a2,k, a†
1,−k, a†

2,−k )T [46,58]. Here ξk(t ) is
a 2 × 2 Hermitian matrix given by ξk,i j (t ) = 1

2 [εk,i j (t ) +
gi j (t )ψiψ

∗
j ] and η(t ) is a complex symmetric matrix given by

ηi j (t ) = 1
2 gi j (t )ψiψ j , and i, j = 1, 2 labels the two species of

bosons. The diagonal elements of εk(t ) are the kinetic terms,
whereas the off-diagonal elements are the spin-orbit coupling
terms. gi j (t ) represents the intra and interspecies interaction
strengths of these two species of bosons. ψi = √

Ni/V eiθ are
the condensate wave functions of the zero momentum modes.
For simplicity, we set h̄ = 1.

However, the two species of the boson operators naturally
give a representation of the Lie algebra of the real symplectic
group Sp(4, R) [47,59]. The generators of this Lie algebra can
be defined as

X̂i j = ai,ka j,−k + a j,kai,−k,

X̂ i j = a†
i,ka†

j,−k + a†
j,ka†

i,−k, (2)

X̂ k
l = a†

k,kal,k + al,−ka†
k,−k,

where i, j, k, l = {1, 2}, and ten of them are independent. The
Casimir operator of this Lie algebra is given by [59]

C = X̂ i jX̂i j + X̂i jX̂ i j − 2X̂ i
jX̂

j
i . (3)

To show that this is a conserved quantity, we can rewrite it
as [59]

C = −2(	Nk + 2)(	Nk − 2), (4)

where 	Nk = ∑2
i=1(a†

i,kai,k − a†
i,−kai,−k ) counts the differ-

ence in the number of bosons between the momenta +k and
−k. According to the definition of sp(4, R) generators Eq. (2),
none of these generators change this number difference. Thus,
the Casimir operator is conserved.

These operators have a one-to-one correspondence with
the matrix representation of the sp(4, R) Lie algebra. This
correspondence can be revealed by rewriting the operators
defined in Eq. (2) as

X̂i j = �̂
†
kκYi j�̂k, X̂ i j = �̂

†
kκY i j�̂k, X̂ k

l = �̂
†
kκY k

l �̂k,

(5)

where κ = diag(1, 1,−1,−1) [46,59]. Here, these 4 × 4
matrices {Yi j,Y i j,Y k

l } are the matrix representation of the
Lie algebra sp(4, R), and their explicit form is given in
Appendix B. Then, we can write the Bogoliubov Hamiltonian

Ĥk in terms of these generators as

Ĥk(t ) = ξk,i j (t )X̂ i
j + 1

2ηi j (t )X̂i j + 1
2η∗

i j (t )X̂ i j, (6)

where we adopt the Einstein summation convention, i.e., the
repeated indices i and j are summed over. In the following,
we always adopt this convention implicitly. Hence, the time
evolution operator

Ûk(t ) = T e−i
∫ t

0 Ĥk (t ′ )dt ′
(7)

gives a representation of the real symplectic group Sp(4, R),
i.e., Ûk(t ) has a one-to-one correspondence to a matrix in the
group Sp(4, R), which is given by

Uk(t ) = T e−i
∫ t

0 κHk (t ′ )dt ′
. (8)

Here, T is the time-ordering operator. This can be seen by
noticing that the matrix corresponding to the operator Ĥk(t ) is

κHk(t ) = ξk,i j (t )Y i
j + 1

2ηi j (t )Yi j + 1
2η∗

i j (t )Y i j .

Since the matrix Uk(t ) is a real symplectic matrix, it has the
form [47]

Uk(t ) =
(
U (t ) V (t )
V (t )∗ U (t )∗

)
, (9)

where U (t ),V (t ) are 2 × 2 matrices satisfying

U (t )U (t )† − V (t )V (t )† = I, U (t )V (t )T = V (t )U (t )T .

(10)

To calculate the time evolution of the fully condensed state,
one can decompose Ûk(t ) as

Ûk(t ) = e− 1
2 Zi j (t )X̂ i j

eζkl (t )X̂ k
l e− 1

2 νi j (t )X̂i j , (11)

which is called normal order decomposition [46,47]. With this
decomposition, the fully condensed state |0〉 evolves as

Ûk(t )|0〉 = Nke− 1
2 Zi j (t )X̂ i j |0〉 ≡ |Z (t )〉, (12)

where |Z (t )〉 is an Sp(4, R) coherent state and Nk is the
normalization factor. At any time t of the evolution, Z (t ) is
[46,60]

Z (t ) = V (t )[U (t )∗]−1, (13)

where U (t ),V (t ) is defined in Eq. (9). By using Eq. (10), it can
be shown that at any time t , Z (t ) is a 2 × 2 symmetric complex
matrix and I − Z (t )†Z (t ) is positive definite, where I is 2 × 2
identity matrix. Thus, the matrix Z (t ) can be parameterized
by three complex numbers Z11(t ), Z12(t ), Z22(t ), or by six real
parameters. Mathematically, Z (t ) lies in a six-dimensional
manifold called Cartan classical domain, and is isomorphic
to the quotient space Sp(4, R)/U (2) [47,61], where U (2) is
the unitary group of degree 2. Thus, Z (t ) gives a trajectory in
this six-dimensional manifold. In addition, if the initial state
is the arbitrary coherent state |Z0〉, the time evolution of this
coherent state is also a coherent state, i.e., Ûk(t )|Z0〉 = |Z ′(t )〉,
and Z ′(t ) is given by [46,60]

Z ′(t ) = [U (t )Z0 + V (t )][V (t )∗Z0 + U (t )∗]−1. (14)

With this general formalism dealing with the time evolution
of two-component BEC in hand we are ready to study the
quantum echo of the two-component BEC system.
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FIG. 1. Schematics for the driving protocol. In the first step
of a period, the Hamiltonian can be any Bogoliubov Hamiltonian.
However, in the second step of a period, all the interaction strengths
should be turned off.

III. QUANTUM ECHO

In this section, we will study the problem of quantum
echo for boson modes in generic ±k �= 0 momenta by con-
sidering a periodic driving protocol similar to that found in
Refs. [13,15]. In this driving protocol, each period consists of
two steps: in the first step, the Hamiltonian Ĥ1 is a generic
two-component Bogoliubov Hamiltonian defined in Eq. (6);
in the second step, the Hamiltonian Ĥ2 only includes these
X̂ i

j operators, i.e., turning off all the intra and interspecies
interaction strengths gi j , as shown in Fig. 1. We will show how
to obtain the explicit form of the second-step Hamiltonian Ĥ2

that makes the initial state, either |0〉 or a generic coherent
state |Z0〉, reverse to itself after two period of driving for any
given Bogoliubov Hamiltonian Ĥ1.

In the mth period, when (m − 1)T < 0 � (m − 1)T + t1,
the Hamiltonian is

Ĥ1 = ξi j (t )X̂ i
j + 1

2ηi j (t )X̂i j + 1
2η∗

i j (t )X̂ i j, (15)

and when (m − 1)T + t1 < t � mT,

Ĥ2 = 1
2εi jX̂ i

j , (16)

where T = t1 + t2 is the duration of each period. Here we omit
the subscript k for simplicity. Thus, for such a quantum echo
to occur, we require that the time evolution operators Û1(t1)
and Û2(t2) of these two steps acting on any coherent state
|Z0〉 give

[Û2(t2)Û1(t1)]2|Z0〉 = |Z0〉. (17)

According to Eq. (14), this condition is equivalent to

U (T )2 = [U2(t2)U1(t1)]2 = ±1, (18)

where Ui(ti ), i = 1, 2 are the time evolution matrix corre-
sponding to Ûi(ti ). Next we will focus on the case of U (T )2 =
−1 since the result for U (T )2 = 1 case can be obtained by
redefined U (T )2 from the U (T )2 = −1 case as U (T ).

Since U (T ) is also a real symplectic matrix, i.e., having the
form of Eq. (9), substituting its elements U ,V into Eq. (18)
leads to

U2 + VV∗ = U∗2 + V∗V = −1,

UV + VU∗ = 0. (19)

By using the property of the real symplectic matrix UU† −
VV† = I, UVT = VUT , Eqs. (19) result in

U = −U†. (20)

This is the condition that U (T ) should satisfy for the quantum
echo to occur.

Next, we will construct an explicit form of U (T ). We recall
that for the SU(1, 1) case, an SU(1, 1) matrix satisfying U 2 =
−1 can be given by

(
eiπ σz

2 ei(α+σ+−α−σ− )
)2 = −1, (21)

where {σz/2, σ+,−σ−} are the generators of the SU(1, 1)
group, with σx,y,x the Pauli matrices and σ± = 1/2(σx ± iσy),
and α± are arbitrary complex numbers. We notice the the re-
semblance in form between {σz, σ

+,−σ−} and {Y k
l ,Yi j,Y i j}.

Inspired by this resemblance, we expect that, for the Sp(4, R)
case, the matrix U (T ) satisfying U (T )2 = −1 is given by

U (T ) = ei π
2 (Y 1

1 +Y 2
2 )e

i
2 (ηi jY i j+η∗

i jYi j ) (22)

where η is a 2 × 2 symmetric complex matrix. Since
ei π

2 (Y 1
1 +Y 2

2 ) = diag(i, i,−i,−i), substituting the above equa-
tion to Eq. (20) leads to the fact that the submatrix U0 of
U0 = e

i
2 (ηi jY i j+η∗

i jYi j ) should be Hermitian, i.e.„ U0 = U†
0 . In

Appendix B, we give the explicit expression of U0 and also
prove that U0 is Hermitian. As a result, we prove that the form
of U (T ) given in Eq. (22) actually satisfies U (T )2 = −1.

With the general form of U (T ), we can find the Ĥ2 that
make the quantum echo occur for arbitrary Ĥ1. Since Ĥ1 is of
the general form of Eq. (6), its corresponding time evolution
matrix is also of the general form of real symplectic matrix
Eq. (9), i.e.,

U1(t1) =
(
U1(t1) V1(t1)
V1(t1)∗ U1(t1)∗

)
. (23)

However, Ĥ2 only has X̂ i
j terms, thus, its corresponding time

evolution matrix is block diagonal, i.e.,

U2(t2) =
(
U2(t2) 0

0 U2(t2)∗

)
. (24)

The constraints on the real symplectic matrix Eq. (10) also
results in that U2(t2) is unitary. Then, by substituting the
elements of U1(t1) and U2(t2) into U (T ) = U2(t2)U1(t1), we
have

−iU1(t1) = U2(t2)−1U0. (25)

Since we show that U2(t2)−1 is unitary and U0 is Hermitian,
the right-hand side of the above equation is just the polar
decomposition of −iU1(t1). The polar decomposition of a
complex matrix is the factorization of this matrix into a prod-
uct of unitary matrix and a Hermitian matrix. In addition, the
polar decomposition of a square matrix always exists. Hence,
by performing the polar decomposition we can find U2(t2).
The explicit form of H2 is given by

H2 = κ ln[U2(t2)]/(−it2), (26)

where κ = diag(1, 1,−1,−1).
To have a better understanding of why we choose U (T )

to have the form of Eq. (22), we can let Ĥ1 = − 1
2 (ηi jX̂ i j +
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FIG. 2. Trajectories of the elements of Z (t ) when η11 = 1, η22 =
3/2, η12 = 1/2 for when (a) the initial state is |0〉 and (b) the initial

state is a coherent state |Z0〉 with Z0 = (1/2 1/4
1/4 2/3). The evolution

includes two periods. The lines (both solid and dashed) with darker
colors represent the first period and the line with lighter colors
represent the second period. The solid lines represent the first steps
and the dashed lines represent the second steps.

η∗
i jX̂i j ), Ĥ2 = −π

2 (X̂ 1
1 + X̂ 2

2 ), and the times t1 = t2 = 1.
Figure 2 shows the trajectory of the elements of the matrix
Zt in the complex plane for the cases when the initial state
is |0〉 and a generic coherent state |Z0〉, respectively. It can
be seen that, in both cases, all the trajectories perfectly return
to their initial points, which confirms the above proof. From
this figure, we can see that, for both cases, the second step Ĥ2

amounts to a π rotation for all the elements of the Zt matrix.
It reverses the direction of the trajectories and makes the
trajectories return to their initial points. Thus, we can see that
the second-step Hamiltonian plays a similar role to the π pulse
in the SU(2) spin echo. Meanwhile, when the initial state is
|0〉, the second step in the second period is not necessary for
quantum echo, and applying Ĥ1, Ĥ2, and Ĥ1 in consequence
suffices to make the state return to its initial state. However,
if the initial state is a generic coherent state, the fully driven
protocol is necessary for the quantum echo to occur.

IV. NUMERICAL RESULTS

In the previous section, we provide a protocol that can
bring any coherent state back to itself after two periods of
driving for any Bogoliubov Hamiltonian Ĥ1. Briefly, in this

protocol, each period consists of two steps: the first step can
be any Bogoliubov Hamiltonian Ĥ1 and the second step is a
quadratic Hamiltonian Ĥ2 with all interaction strengths turned
off. The Hamiltonian in the second step can be found by per-
forming a polar decomposition for the 2 × 2 submatrix of the
time evolution matrix U1(t1) as shown in Eqs. (25) and (26).

In this section, we will apply this protocol to some exam-
ples and present the numerical results. The first example is
the case when the interaction strengths all remain constant
in the first step of a period as shown in Fig. 3. For simplicity,
in the first step of each driving period we set the masses of the
two species of bosons equal and set the spin-orbit coupling
as 0, more specifically, we set εk = diag(ε0, ε0), where the
matrix εk is defined in Eq. (1). Here, ε0 = k2/2m1 is the
kinetic energy of the first boson mode and serves as an energy
unit. Although we set the boson masses equal for simplicity,
our approach also applies to the general case with unequal
boson masses, as demonstrated analytically in the previous
section. In addition, the interaction terms ηi j are chosen as
η11 = 1.25ε0, η22 = ε0, η12 = 0.5ε0 as shown in Fig. 3(a).
We also choose the duration of each step equal, i.e., t1 = t2 =
1/ε0. According to Eqs. (25) and (26), the Hamiltonian in the
second step is

H2 =
(

ε 0
0 ε∗

)
, ε � −

(
2.85 0.21
0.21 2.75

)
ε0. (27)

Here, we can see that with the interaction strengths turned
off, only the kinetic terms and the spin-orbit coupling terms
remain in H2. However, the diagonal terms in ε are no longer
equal, which means different chemical potentials for these two
species of bosons are required. Meanwhile, the off-diagonal
terms are also no longer 0, requiring nonzero spin-orbit cou-
pling.

The numerical results for this case are shown in Fig. 3.
Figure 3(a) shows the values of the interaction strengths.
Figure 3(b) shows the evolution of the three independent com-
plex elements of the symmetric matrix Z (t ) in the complex
plane when the initial state is the fully condensed state |0〉. In
Fig. 3(c), we show the evolution of the particle number of each
component of the boson, which can be calculated by using the
method presented in Ref. [46]. Figures 3(d) and 3(e) show
the trajectories and particle numbers when the initial state is a
generic nonvacuum coherent state.

FIG. 3. Quantum echo when the interaction strengths are all constant in the first step of each period. (a) The interaction terms ηi j (t ) in
one period. (b) The trajectory of the Z (t ) matrix in the parameter space when initial state is |0〉. The purple dot represents the initial state and
the arrows represent the direction of the trajectories as time evolves. The solid lines represent the first step and the dashed lines represent the
second step. The lines with deep colors are the first period and the light-colored ones represent the second period. (c) The time evolution of
the particle number for each species of bosons when initial state is a vacuum. (d,e) the same Hamiltonian as (c,d), but the initial is a generic
coherent state |Z0〉 which is the same as the one in Fig. 2.
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FIG. 4. Quantum echo when one interaction strength is a sine wave. (a) The interactions gi j (t ) in a period. (b) The trajectory of the Z (t )
matrix in the parameter space when initial state is the vacuum. The convention in this figure is the same as Fig. 3. (c) The time evolution of the
particle number of each species of bosons when initial state is a vacuum. (d), (e) The same Hamiltonian as (c), (d), but the initial is a generic
coherent state |Z0〉, which is the one we use in Fig. 2.

The second example is the case when one of the interaction
strengths is a sine wave in the first step of each period as
shown in Fig. 4. Here, we still choose the εk matrix in the
first-step Hamiltonian as diagonal, i.e., εk = diag(ε0, ε0), and
set the duration of each step equal i.e., t1 = t2 = 1/ε0. For
the interaction terms, η11 = ε0 sin(2πε0t )/2, η22 = ε0, and
η12 = 0.5ε0, as shown in Fig. 4. Using the same procedure, we
can calculate the second-step Hamiltonian H2 = diag(ε, ε∗),
where

ε � −
(

2.02 0.36 − 0.009i
0.36 + 0.009i 2.73

)
ε0. (28)

In Fig. 4, we show the evolution trajectories in the parameter
space and the evolution of particle numbers when the initial
state is a fully condensed state and a generic coherent state.

From the numerical results present in Figs. 3 and 4, we
can see that our formalism can clearly display how the initial
state evolves in the entire driving process. It is clearly shown
that, for these two examples, the driving protocol can bring
both the fully condensed state and a generic coherent state
back to themselves after two periods. Meanwhile, in these
examples, the trajectories of the case with a generic coherent
state as the initial state are more complicated than the case
with a fully condensed state as initial state. Furthermore, we
also show the time evolution of the particle numbers of the
two species of bosons. The particle numbers increase rapidly
in the first step of the first period, and then in the second step
they cease to grow. In the first step of the second period, the
particle numbers start to decrease. Finally, they return to their
initial values. Thus, the numerical results clearly demonstrate
how the quantum echo happens in the two-component BEC
systems.

V. INTERACTION EFFECT

In this section, we will consider the interaction effect in
the quantum echo process. Similar to the one-component
BEC [15], the interaction between these boson modes in
two-component BEC can be given as V̂ = ∑

i, j (4n̂i,kn̂ j,−k +
n̂i,kn̂ j,k + n̂i,−kn̂ j,−k ). When there is a large amount of boson
modes excited in the ±k momenta, the interaction between
these excitations cannot be ignored. As a result, the quantum
echo process will be broken. By calculating the particle num-
bers in the end of the 2mth period, we want to reveal the
interplay of the interactions between boson modes and the

parameters in the original first-step Hamiltonian Ĥ1 in this
quantum echo breaking process.

For simplicity, we consider the following two-step driving

Ĥ ′
1 = Ĥ1 + g̃V̂ ,

Ĥ2 = 1
2εi jX̂ i

j , (29)

where Ĥ1 = (Eδi j + γ ηi j )X̂ i
j + γ

2 ηi j (X̂ i j + X̂i j ). Here we as-
sume the condensate wave functions ψi = √

Ni/V are real and
δi j is the Kronecker delta. Thus, the parameter E controls
the kinetic term and the dimensionless parameter γ controls
the hopping between the excitations and the condensate in the
zero momentum. The Ĥ2 is chosen such that when g̃ = 0 the
above driving process will bring the initial state to itself after
two period of evolution.

When g̃ �= 0, and g̃ is much smaller than the energy scale
of Ĥ1, we can treat the interaction term perturbatively. By
keeping the Dyson series to the first order, we have

Û ′
1 = e−iĤ ′

1t1

= e−iĤ1t1

[
1 − ig̃

∫ t1

0
V̂ (t )dt + O(U 2)

]
, (30)

where V̂ (t ) = eiĤ1tV̂ e−iĤ1t . Since Ĥ1 is a linear combination
of the sp(4, R) Lie algebra, according to Refs. [46,47], the
operator �k evolves as

eiĤ1t�ke−iĤ1t = e−iκH1t�k. (31)

With this transformation, V̂ (t ) can be calculated. Then, the
time evolution operator after two period of driving up to the
first order in g̃ has the following form:

Û (2T ) = Û2Û
′
1Û2Û

′
1

=
[

1 − ig̃
∫ t1

0
dtÂV̂ (t )Â†

− ig̃
∫ t1

0
dtÂ2V̂ (t )(Â†)2 + O(g̃2)

]
Â2

≡ [1 − ig̃V̂ + O(g̃2)]Â2, (32)

where we define Â = e−iĤ2t2 e−iĤ1t1 , and denote the integral
terms as V̂ . Here, ÂV̂ (t )Â† and Â2V̂ (t )(Â†)2 can also be cal-
culated using the method in Eq. (31). As a result, the particle
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FIG. 5. Particle numbers at the end of the 2T for each species of
boson with (a) varying γ and (b) varying E . For all these cases, the

matrix η = (1/2 1/6
1/6 1/4)ε0, where ε0 = 2η11 serves as an energy unit.

number at the end of the 2mth period is given by

ni,k(2mT ) = 〈0|[Û †(2T )]mn̂i,k[Û (2T )]m|0〉
= m2g̃2〈0|V̂ †n̂i,kV̂ |0〉 + O(g̃3), (33)

where n̂i,k = a†
i,kai,k. Here, we use the relations Â2|0〉 = −|0〉

and Â2n̂i,k(Â†)2 = n̂i,k. Then, the expectation value part of the
above expression can be evaluated numerically. In addition,
we can conclude that the to the leading order, the particle
numbers increase quadratically with interaction strengths g̃.

In Fig. 5, we show the numerical results for the particle
numbers ni,k(2T ) at the end of the second driving period
varying with the parameters E and γ with ηi j fixed. From
Fig. 5(a), we can see that for different fixed values of E ,
the particle numbers increase exponentially with increasing
γ . However, the particle numbers decrease as the parameter
E increases. This result can be understood as follows: γ

controls the hopping between the excitations and the con-
densate in zero momentum. When increasing γ with fixed
kinetic term parameter E , more particles will be excited since
the echo-breaking interactions are between the excited par-
ticles. Thus, more excited particles will result in a stronger
echo-breaking effect. However, when increasing E with fixed
γ , the ratio γ /E gets smaller, thus, the particles’ exciting
is suppressed. Hence, the echo-breaking effect is weaker in
this case.

VI. POSSIBLE EXPERIMENTAL IMPLEMENTATION

In previous sections we explore a general driving proto-
col to facilitate quantum echo in two-component BECs and
examine the influence of symmetry-breaking interactions on
this phenomenon. In this section, we will propose a possible
experiment implementation for this quantum echo.

The model in Eq. (1) involves the hopping between the
bosonic modes in opposite momenta ±k. The similar hop-
ping also appears in the single-component BEC case and is
proposed to be implemented in a double-well structure in mo-
mentum space in Ref. [15]. This kind of double-well structure
can be implemented in various experimental setups such as
the shaken optical lattice, spin-orbit coupling, and periodic
driving [15]. For the two-component case, we propose using a
shaken optical lattice [62] setup. The experimental procedure
would start with preparing a two-component BEC, initially
condensing all particles in the zero momentum state. Sub-
sequently, altering the band structure to form a double well

FIG. 6. Schematics for the shaken optical lattice implementation
of hopping terms between opposite momenta of two-component
BEC Hamiltonian. Red and blue dots represent two species of
bosons.

would populate the particles in opposite momenta as shown
in Fig. 6. This process corresponds to the hopping described
in Eq. (1) from opposite momenta.

In the second step of our driving protocol, the cou-
pling term between opposite momenta disappear, however,
the spin-orbit coupling terms like a†

i,ka j,k with i �= j are al-
ways present. Importantly, the implementation of spin-orbit
coupling is also feasible in cold atom experiments [63].
Therefore, the driving protocol we propose can be effectively
realized within the current frameworks of cold atom experi-
mental setups.

VII. CONCLUSION

In this paper we addressed the question of how quan-
tum echo can be achieved in a two-component Bose-Einstein
condensate system using the Sp(4, R) group formalism. We
showed that under a periodic driving protocol consisting of
two steps in each period, any Sp(4, R) coherent state of two-
component BEC can reverse to itself after two periods of
driving. We also developed a general method to construct the
second-step Hamiltonian Ĥ2 from the first-step Hamiltonian
Ĥ1 based on the property of real symplectic matrices and ap-
plied our method to two examples, one with time-independent
Ĥ1 and one with time-dependent Ĥ1, then verified our theo-
retical prediction numerically. Furthermore, we investigated
how the interaction effect breaks the quantum echo process
and found that the particle number deviation from the perfect
revival is influenced by the ratio between the strengths of the
kinetic terms and interaction in the first-step Hamiltonian Ĥ1.

Our work extends the previous studies on quantum echo
in single-component BEC and reveals additional features of
two-component BEC dynamics. Our work also showcases the
usefulness and elegance of the Sp(4, R) group formalism for
studying quantum systems with real symplectic structures.
Since our proof on the occurrence of the quantum echo in
two-component BEC system is solely based on the symplectic
properties of the time evolution matrix, our result can also
have potential use in the spinor BEC and N-component boson
system. Meanwhile, given the presence of real symplectic
matrices in various areas of physical study [48–57], we hope
that our work will stimulate further research on this topic
and inspire new applications of the quantum echo in ultracold
atom systems and beyond.
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APPENDIX A: REAL SYMPLECTIC GROUP Sp(2n, R)

In this Appendix, we will give a brief introduction to the
real symmetric group Sp(2n, R), where n is a positive integer
and R denotes the field of real numbers. When n = 2, we have
the group Sp(4, R). More details can be found in Ref. [59].

The real symplectic group Sp(2n, R) is the set of 2n × 2n
real matrices preserving a nonsingular skew symmetric matrix
�, i.e., for a real matrix M ∈ Sp(2n, R), it satisfies

MT �M = �, (A1)

where MT is the transpose of M. Here, the matrix � is defined
as

� =
(

0 In

−In 0

)
, (A2)

where In is the n × n identity matrix. Then, one can diagonal-
ize the matrix � by a unitary transformation

U�U † = iκ, (A3)

where κ is a diagonal matrix

κ =
(

In 0
0 −In

)
, (A4)

and the unitary transformation U is given by

U = 1√
2

(
R −iR
R iR

)
, (A5)

where R is n × n matrix

R =

⎛
⎜⎜⎜⎜⎝

0 0 · · · 0 1
0 0 · · · 1 0
...

... 1
...

...

0 1 · · · 0 0
1 0 · · · 0 0

⎞
⎟⎟⎟⎟⎠. (A6)

Then, by substituting Eq. (A3) into Eq. (A1), we have

(UMU †)†κ (UMU †) = κ, (A7)

where we use the fact that M is a real matrix. Thus, by defining
M as

M = UMU †, (A8)

we have another representation of the Sp(2n, R) group. And
M satisfies the constraint

M†κM = κ. (A9)

By substituting Eq. (A3) into Eq. (A7), we can see that the
matrix M has the form

M =
(
U V
V∗ U∗

)
, (A10)

where U and V are n × n matrices. Thus the constraint in
Eq. (A9) becomes

UU† − VV† = In, UVT = VTU . (A11)
Note that in this representation, the matrix M is no

longer real matrix in general. However, this representation
is suitable for describing the quantum dynamics of the two-
component BEC.

APPENDIX B: EXPLICIT EXPRESSION OF U0

In this Appendix, we will give the explicit expression of
U0 of the matrix U0 = e

i
2 (ηi jY i j+η∗

i jYi j ). The explicit form of the
matrix generators {Yi j,Y i j,Y k

l } is [59]

(κYi j )ab = δa,2+iδb, j + δa,2+ jδb,i,

(κY i j )ab = δa,iδb,2+ j + δa, jδb,2+i, (B1)

(κY k
l )ab = δa,kδb,l + δ2+k,bδ2+l,a,

where κ = diag(1, 1,−1,−1). Then, we define

A = 1

2
ηi jY

i j + 1

2
η∗

i jYi j =
(

0 η

−η∗ 0

)
. (B2)

According to the authors of Ref. [46], its eigenvalues are of
the form {λ+, λ−,−λ+,−λ−}, where

λ± = 1
2

√
Tr(A2) ±

√
Tr(A2)2 − 16 det(A). (B3)

It can be calculated directly by MATHEMATICA that U0 is
given as

U0,11 = |η11|2 − |η22|2
2(λ2+ − λ2−)

[cos(λ−) − cos(λ+)] + 1

2
[cos(λ−) + cos(λ+)],

U0,12 = η11η
∗
12 + η∗

22η12

λ2+ − λ2−
[cos(λ−) − cos(λ+)],

U0,21 = η∗
11η12 + η22η

∗
12

λ2+ − λ2−
[cos(λ−) − cos(λ+)],

U0,22 = −|η11|2 − |η22|2
2(λ2+ − λ2−)

[cos(λ−) − cos(λ+)] + 1

2
[cos(λ−) + cos(λ+)]. (B4)

If U0 is Hermitian, U0,11 and U0,22 should be real, meanwhile U0,12 = U∗
0,21. These conditions lead to that cos(λ+), cos(λ−), and
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λ2
+ − λ2

− should be real numbers. On the other hand, from Eq. (B3), we have

λ2
+ − λ2

− = 1
2

√
Tr(A2)2 − 16 det(A)

= 1
2

√
4(|η11|2 + |η22|2 + 2|η12|2)2 − 16|η2

12 − η11η22|2

=
√

(η11|2 + |η22|2 + 2|η12|2 + 2|η2
12 − η11η22|)(η11|2 + |η22|2 + 2|η12|2 − 2|η2

12 − η11η22|)

�
√

(η11|2 + |η22|2 + 2|η12|2 + 2|η2
12 − η11η22|)(η11|2 + |η22|2 + 2|η12|2 − 2|η12|2 − 2|η11||η22|)

=
√

(η11|2 + |η22|2 + 2|η12|2 + 2|η2
12 − η11η22|)(η11|2 − |η22|2)2

� 0. (B5)

Hence, λ2
+ − λ2

− is real. Meanwhile, since Tr(A2) = −2(|η11|2 + |η22|2 + 2|η12|2), according to Eq. (B3), both λ+ and λ− are
imaginary. Thus, cos(λ+) and cos(λ−) are real. Hence, the conditions of U0 being Hermitian are all satisfied. As a result, we
prove that U0 is a 2 × 2 Hermitian matrix.
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