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Density-wave-type supersolid of two-dimensional tilted dipolar bosons
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We predict a stable density-wave-type supersolid phase of a dilute gas of tilted dipolar bosons in a two-
dimensional (2D) geometry. This many-body phase is manifested by the formation of the stripe pattern and
elasticity coexisting together with the Bose-Einstein condensation and superfluidity at zero temperature. With
the increasing of the tilting angle the type of the gas-supersolid transition changes from the first order to the
second-order one despite the 2D character of the system, whereas the anisotropy and many-body stabilizing
interactions play crucial roles. Our approach is based on the numerical analysis of the phase diagram using the
simulated annealing method for a free-energy functional. The predicted supersolid effect can be realized in a
variety of experimental setups ranging from excitons in heterostructures to cold atoms and polar molecules in
optical potentials.
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I. INTRODUCTION

Remarkable progress on creating ultracold clouds of di-
atomic polar molecules [1–3], degenerate gases of large-spin
atoms [4–7], and long-lived excitons in solid-state sys-
tems [8–14] makes it realistic to observe a large variety
of interesting phenomena in dipolar systems and confirm
seminal theoretical predictions [15–19] (for a review, see
Refs. [20–24]). Among nonconventional many-body phases
of ultracold matter, a supersolid state attracts special at-
tention [25–30]. In such an unusual state, the condensate
wave function has a lattice structure on top of a uniform
background [31–35]. In addition to ultracold dipolar gases,
supersolidity takes place in a range of systems, such as
two-component systems [36], Bose-Fermi mixtures [37], and
condensates in optical lattices [38,39].

There are several mechanisms for the realization of su-
persolidity in ultracold quantum dipolar gases. Dilute weakly
interacting dipolar gases of bosons in two dimensions may
demonstrate the roton-maxon structure of the spectrum by
fine-tuning the short-range part of the interaction poten-
tial [40]. It is then possible to achieve vanishing the roton gap,
the so-called the roton instability regime, where the system
is unstable with respect to periodic modulations of the order
parameter [34]. However, instead of forming a supersolid
state when approaching the roton instability, the condensate
depletion diverges [41–43]. One of the possible ways to
avoid this divergence has been suggested in the case of tilted
dipoles with the anisotropy of the excitation spectrum [44].
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Alternatively, the supersolid state of dipolar bosons can be
rallied in the dense (strongly correlated) regime [45–48], in
which the corresponding crystal has one particle per lattice
site [49,50]. In this regime the supersolid state is possible in
the presence of thermodynamically nonequilibrium defects in
crystals only [51]. The presence of this phenomenon has been
confirmed numerically [52–56] and in experiments [57,58].

Nevertheless, one of the most intriguing questions relates
to the possibility to obtain supersolidity in the dilute regime,
where the mean-field description of the dilute trapped dipolar
degenerate gases may be still valid [41,59,60]. The crucial
requirement for obtaining supersolidity in the dilute regime
is stabilizing the system [61,62], which can be achieved, for
example, by adding a three-body repulsion [35]. Without tak-
ing into account the many-body stabilization, the supersolid
state can be considered as transient [63]. Recent advances in
the study of supersolids of quantum gases are related to prob-
ing the roton excitation spectrum [64–67], forming quantum
stripes or droplets maintaining phase coherence [68–71], and
eventually experimental observing supersolidity [67]. A com-
plimentary mechanism for forming supersolidity in a dipolar
quantum gas is related to the aforementioned anisotropy with
respect to the rotational symmetry for a system of tilted
dipoles, which leads to the convergence of the condensate
depletion up to the threshold of the roton instability [44]. The
latter approach to forming supersolid states has a potential
advantage in the form of an additional level of controllability,
which is possible by manipulating the tilting angle of dipoles.

We note that two-dimensional (2D) systems of tilted
dipoles and the formation of stripe phases have been studied
via numerics yielding varying conclusions about the presence
(or absence) of the striped supersolid phase [72–75]. However,
details of numerical approaches and magnitudes of statistical
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FIG. 1. Supersolid state of a two-dimensional dilute gas of dipo-
lar bosons. In panel (a), the 2D anisotropic excitation spectrum of the
system when the roton gap is vanishing, which leads to the instability
of the homogeneous phase, is shown. In panel (b), the 2D order pa-
rameter in the real space with the signatures of the density-wave-type
supersolid is illustrated (p0 = 2π h̄

√
nav, the dimensionless parame-

ter is α3 = 0.402 and the tilting angle is θ = 46◦; for details, see
Sec. III).

errors may influence the conclusion [76,77], so additional
analytical approaches are required to study the striped su-
persolid phase. We also note that aforementioned works have
considered both zero and nonzero temperatures, whereas our
consideration below is for the zero-temperature case only.

In this work, we solve the Gross-Pitaevskii (GP) equa-
tion by means of a straightforward minimization for the
GP (i.e., free-energy) functional. We consider a 2D sys-
tem of tilted dipoles in a finite-thickness layer [44] under
a stabilization by many-body effects [61]. As many-body
effects, we employ both externally imposed three-body in-
teractions [35,78] and the Lee-Huang-Yang (LHY) correction
for dilute dipolar systems [79,80]. Remarkably, both method-
ologies yield qualitatively identical outcomes. We predict a
stable density-wave-type supersolid state of a 2D dilute Bose-
Einstein-condensed (BEC) gas of tilted dipoles. We obtain the
full phase diagram of the system with both first and second
kinds of the transition. We demonstrate the coexistence of
superfluidity with elasticity and the crystalline stripe pattern
at zero temperature (see Fig. 1 for the illustration), indicating
the density-wave-type supersolid phase, which is possible due
to the smallness of the condensate depletion [44].

Our paper is organized as follows. In Sec. II, we intro-
duce the model of tilted dipolar bosons in a thin 2D layer
and the stabilization by three-body interaction, with basic
quantities of interest being defined. The technique that we
use is based on the numerical minimization of the energy
functional using stimulated annealing. In Sec. III, we present
the results of the numerical investigation for such a model
and observe numerically the evidence of a density-wave-type
supersolid phase. In Sec. IV, we employ the same approach,
but with many-body stabilization achieved through the LHY

correction, yielding qualitatively similar results. We summa-
rize our results in Sec. V.

II. TILTED DIPOLAR BOSONS: GENERAL RELATIONS

In this work, we consider a 2D BEC gas of tilted dipoles
(for the detailed description of the system, see Ref. [44]).
We consider the corresponding free-energy functional in the
following form:

F [ψ (r)] − μN

=
∫ [

ψ∗(r)

[
(−ih̄∇+mv)2

2m
−μ

]
ψ (r) + e0(|ψ (r)|2)

]
dr

+ 1

2

∫
U (r − s)|ψ (r)ψ (s)|2drds, (1)

which accounts for the 2D system (r = {x, y} and p =
{px, py}) at zero temperature, T = 0, while maintaining a
constant chemical potential μ. Here, ψ (r) represents the or-
der parameter, N = ∫ |ψ (r)|2dr is the particle number, m is
the particle mass, and v is the velocity of the nondissipative
current. The equation of state for the homogeneous phase with
density n = N/S is as follows:

e0(n) = g2

2
n2 + g3

6
n3 + · · · . (2)

Therefore, it describes the energy of the ground state per unit
area as a function of the density n. In Eq. (2), the term with
g3 yields the three-body interaction [35,78], serving as a good
model for many-body stabilization [81]. An implementation
with independently controlled two-body and three-body in-
teractions can be achieved with a bilayer featuring tunneling
between layers; for details, see Ref. [78]. The coupling con-
stants are defined as follows:

g2 = gs + (3 cos2 θ − 1)gd , gs = 2
√

2π h̄2

mz0
as,

gd = 2
√

2π h̄2

mz0
ad . (3)

Here g2 represents the two-body interaction, gs corresponds to
the s-wave scattering, gd denotes the dipole-dipole interaction.
Additionally, θ stands for the tilting angle of dipoles with
respect to the 2D plane, and z0 = √

h̄/mωz, where z0 and h̄ωz

correspond to the Gaussian of the wave function along the
tight direction. In the 2D regime, z0 and h̄ωz coincide with
the trap oscillator length and frequency, while beyond the 2D
regime, the calculation is described in Sec. IV.

The parameters as and ad = md2/3h̄2 represent the 3D s-
wave and dipole-dipole scattering lengths, respectively, with d
being the dipole moment of the particles; S = ∫

dr → ∞ de-
notes the area of the periodic quantization box. In the Fourier
transform of the interparticle interaction U (r),

U (r) =
∫

U (p)eipr/h̄ dp
(2π h̄)2

, (4)

the momentum-dependent component in the following form
has been distinctly isolated:

U (p) ≡ U (p) − U (0) =
∫

U (r)(e−ipr/h̄ − 1)dr. (5)
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Here U (p) = ∫
U (r)e−ipr/h̄dr is the effective 2D interaction

potential for the thin-layer motion [44], and normalization
condition U (0) = 0 is imposed. This normalization arises
from the fact that the momentum-independent contribution
U (0) = ∫

U (r)dr = 0 has already been accounted for within
the quantity d2e0(n)/dn2. For tilted dipoles we have the fol-
lowing (see Ref. [44]):

U (p) = Uh(p) sin2 θ + Uv (p) cos2 θ, (6)

Uh(p) = 4d2

h̄

∫ ∞

0

p2
xd pz

p2
x + p2

y + p2
z

exp

(
− p2

z z2
0

2h̄2

)
, (7)

Uv (p) = −4d2

h̄

∫ ∞

0

(p2
x + p2

y )d pz

p2
x + p2

y + p2
z

exp

(
− p2

z z2
0

2h̄2

)
, (8)

and, finally, we assume the two-dimensionality of the prob-
lem (h̄ωz 	 4π h̄2n/m) and the weakly interacting regime
(gs, gd , g3n 
 4π h̄2/m).

A. Trial wave function and details of the minimization

The Bogoliubov excitation spectra,

εp = √
Tp(Tp + 2Up),

Tp ≡ p2

2m
,

Up ≡
(

d2e0(n)

dn2
+ U (p)

)
n, (9)

of systems with the free-energy functional of the form given
by Eq. (1) exhibit a roton-maxon effect along the y axis, as
expressed by Eqs. (6)–(8), which is stronger than that along
the x axis, i.e., εp,0 > ε0,p. As a result, the density wave (DW)
in the emerging supersolid phase may be oriented along the x
axis, with the vector aligned along the y axis. Consequently, as
a trial function for the functional F [ψ (r)] − μN [see Eq. (1)],
we consider complex-valued functions that are periodic with
a period λ, depending only on the variable y:

ψ (r) ≡ ψ (y) = ψ (y + λ). (10)

In the Fourier series expansion of functions ψ (y), we consider
a finite number of harmonics to achieve the desired accuracy.
The function e(|ψ (y)|2) is integrated in the position repre-
sentation. For the undeformed DW, we are looking for the
global minimum of the functional with respect to both λ and
the amplitudes of the harmonics. In the case of the deformed
DW, the minimization is performed only with respect to the
amplitudes of the harmonics. In the absence of the velocity,
the function ψ (y) is an even real function.

B. Computed quantities

For both phases, the homogeneous gas and the supersolid
DW, we numerically compute a number of quantities.

(i) The compressibility

m2

χ
= 1

∂n/∂μ
. (11)

(ii) The pressure

P = μn − F0

S
. (12)

Here, F0 = F [ψ0(y)] represents the value of the functional F ,
when F − μN reaches its minimum, and ψ0(y) is the value of
the order parameter at the minimum of F − μN at a fixed μ.
In the gas phase ψ0(y) = √

n.
(iii) The square of the roton gap in the Bogoliubov spec-

trum (9) in the homogeneous phase is given by

E2
r = min

p
ε2

p, (13)

with the minimization performed separately for px and py,
starting from the maxon momentum (if it exists).

(iv) The magnitude of the diagonal long-range order
(DLRO) for the DW is given by

� =
∫ λ0

0

(|ψ0(y)|2 − n)2

n2

dy

λ0
, (14)

where λ0 is the value of the DW period λ at the minimum of
F − μN . At small (nmax − nmin)/n, from Eq. (14) we obtain

� ≈ (nmax − nmin)2

8n2
,

where nmax and nmin are the respective maximum and mini-
mum values of the quantity |ψ0(y)|2.

(v) The average density is given by

n =
∫ λ0

0
|ψ0(y)|2 dy

λ0
. (15)

(vi) The diagonal elements Yx and Yy of the helicity mod-
ulus tensor for the superfluid component [82] are given by

Yx = 1

m2S

d2F0(v)

dv2
x

∣∣∣∣
v=0

, Yy = 1

m2S

d2F0(v)

dv2
y

∣∣∣∣∣
v=0

. (16)

Here F0(v) represents the value of F0 with fixed v. The
temperature Tc of the Berezinskii-Kosterlitz-Thouless tran-
sition [83] (crossover [84,85]) is determined by the total
superfluid density ns(T ) as [86] Tc = π h̄2ns(Tc)/2m. The
temperature-dependent quantity ns ≡ ns(T ) can be calculated
as the geometric mean [87,88] of x and y components of the
helicity modulus

ns

m
= √

YxYy. (17)

(vii) The stretching-compression deformation coefficient
ux and the shear deformation coefficient uy (which, for the
DW, is equivalent to the rotation of the DW) are given by

ux = 1

S

d2F0[(1 + β )λ0]

dβ2

∣∣∣∣
β=0

, uy = 1

S

d2F [ψ (Rβr)]

dβ2

∣∣∣∣
β=0

.

(18)
Here, F0(λ) represents the value of F0 with fixed λ, and

Rβ =
(

cos(β ) sin(β )
− sin(β ) cos(β )

)
(19)

is the rotation matrix by an angle β. For convenience, we
rotate the Hamiltonian with respect to the DW, using the
function U (R−βp) instead of U (p).

C. Details of minimization

The ground state of a supersolid, which is characterized
by a stationary and undeformed DW, is to be determined
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by minimizing the functional F − μN with a fixed chemical
potential μ [see Eq. (1)], according to the principles of a
first-order phase transition. As a result of this procedure, we
obtain ψ0(y), with which we calculate the particle number
as N = ∫ |ψ0(y)|2dxdy for the same μ. Subsequently, while
keeping the particle number fixed at N [89], we minimize the
functional F with additional constraints imposed on the veloc-
ity dv and the deformation dβ. From this minimization, we
derive the tensors for the helicity modulus and deformation.

Below we show the results of the numerical minimiza-
tion of both functionals, F and F − μN , with the use of the
simulated annealing method. To compute the ground state of
the supersolid, we start with a random configuration and set
the initial “temperature” T in the Metropolis algorithm to be
of the order of Se0(n). For the calculation of the deformation
tensor and the superfluid component, we use the previously
determined ground-state profile as the initial configuration.
The initial temperature is on the order of Nm(dv)2/2 when
calculating the helicity modulus tensor and Se0(n)(da)2/2
when computing the deformation tensor. The final tempera-
ture is approximately 12–16 orders of magnitude lower than
the initial temperature, and the temperature reduction follows
a monotonically decreasing exponential trend. The number
of iterations is chosen to achieve complete annealing, and
poorly annealed calculations in the immediate vicinity of
phase transitions are disregarded. For a fine exploration of the
first-order phase transition, we employ multiple annealings,
initiated from various random configurations.

III. SUPERSOLID DENSITY WAVE

The results presented below numerically indicate the ex-
istence of a stable supersolid DW following the scenario of
rotonlike attraction with stabilizing many-body repulsion [35]
and the decisive role of anisotropy [44]. The calculations are
performed for m = 164 a.u. and ad = 7 nm, which correspond
to dysprosium atoms [5]. The problem is characterized by five
dimensionless control parameters:

ν = ad

z0
, η = μmz2

0

h̄2 , α = as

ad
, α3 = mg3

2π h̄2z0ad
, (20)

and θ . In all the data, we use the following set of parame-
ters: ν = 7/150, η = 0.0042, and α = −3/7, corresponding
to μ = 0.76 nK, z0 = 150 nm, as = −3 nm, and we work
within the variables α3 and θ .

A. Stable supersolid density wave

According to the numerical calculation with α3 = 0.161
and θ = 44.3◦, we clearly observe the effect of a supersolid
density wave in a 2D array of tilted dipoles. The squared
profile of the order parameter |ψ0(y)|2 exhibits periodic os-
cillations with a relative amplitude of (nmax − nmin)/n = 3.2.
The magnitude of DLRO [see Eq. (14)] is � = 1.26, which in-
dicates its nonzero value. Superfluidity is also observed. Both
diagonal elements of the helicity modulus tensor in its princi-
pal axes, Yx = n/m and Yy = 0.28n/m, are nonzero. Elasticity
is present since the stretching-compression deformation
coefficient ux = 1.4e0(n)m and the shear deformation coef-
ficient uy = 2.9e0(n) are both nonzero. Both stability-related

FIG. 2. The (a) first-order gas to supersolid density-wave tran-
sition at θ = 44.3◦ and the (b) second-order transition at θ = 46◦

are illustrated. Both components of the helicity modulus tensor, Yx

and Yy, and the deformation tensor, ux and uy, are shown, along with
the diagonal long-range order parameter �, the square of the roton
gap E 2

r , and the average density n. The first-order (second-order)
transition corresponds to the jump in panel (a) [kink in panel (b)].

quantities, the compressibility m2/χ = 0.0053(4π h̄2/m) and
the pressure P = 10.2e0(n), are positive. Finally, in the 2D
weakly correlated system at T = 0, a Bose-Einstein conden-
sate is indeed present, and its existence does not require
further verification. To conclude, we see all the features of
the supersolid phase.

We summarize our results in phase diagrams, which are
presented in Fig. 2. As is known, in the 2D isotropic case, the
gas-supersolid transition is of the first order [35]. Therefore,
even with a sufficiently weak anisotropy, the nature of this
transition should be of the first kind. This is precisely evident
in Fig. 2(a): at the tilt angle θ = 44.3◦, the magnitude of
the DLRO and both components of the strain and helicity
modulus tensors, as well as the square of the roton gap and
the average density, undergo abrupt changes at the transition
point.

However, with increasing anisotropy, i.e., with the growth
of the tilt angle θ , the magnitudes of these jumps decrease,
as it is illustrated in Fig. 3(a). At the certain critical value
θc = 45.3◦, all jumps simultaneously vanish. With further in-
crease in anisotropy at angles θ > θc, only kinks are present
instead of jumps. These kinks indicate a second-order tran-
sition, as shown in Fig. 2(b). The phase diagram of the
gas-supersolid transition has a point of intersection between
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FIG. 3. In panel (a), the jump magnitudes at the transition are
shown for the Yy component of the helicity modulus, both compo-
nents ux and uy of the strain tensor, the DLRO magnitude �, the
density jump between supersolid and gas, and the square of the roton
gap E 2

r , as functions of the tilt angle θ . (b) The phase diagram of
the θ -α3 variables is presented. The pink star denotes the intersection
point of the first- and second-order transitions.

the first- and second-order transitions at θ = θc [see Fig. 3(b)]:
the first-order transition for weaker anisotropy (θ < θc) and
the second-order transition for stronger anisotropy (θ > θc).

IV. LHY CORRECTION

Up to this point, we have considered a model case of the
stabilization by three-body interactions. However, for atoms,
an experimentally interesting scenario involves many-body
stabilization via the LHY correction. Therefore, below we
derive the equation of state e0(n) with the LHY correction
instead of Eq. (2) and minimize the free energy functional (1),
specifically with this e0(n).

A. Relations

We start with the three-dimensional interaction Hamilto-
nian incorporating the LHY correction:

Ĥint = 1

2

∫
d�r d�s U3D(�r − �s)�̂+(�r)�̂+(�s)�̂(�s)�̂(�r)

+
∫

d�r e3D
LHY(�̂+(�r)�̂(�r)). (21)

Here �r = {x, y, z}, and

U3D(�r ) = d2

�r 5
[�r 2 − 3(x sin θ + z cos θ )2] (22)

represents the dipole-dipole interaction potential with a tilt,
and the last term is given by

e3D
LHY(n3d ) = g3D

s

2
n2

3D + 2

5
g3D

LHYn5/2
3D , (23)

where the quantity

g3D
s = 4π h̄2as

m
(24)

corresponds to the three-dimensional s-wave scattering, and
the quantity [80]

g3D
LHY = 128

3m
h̄2a5/2

s

[
1 + 3

2

(
ad

as

)2
]

(25)

is responsible for the LHY correction.
In contrast to Sec. III, physical parameters for numerical

estimation, as observed in Sec. IV B, occur in the crossover
regime with μ several times larger than h̄ωz. To tackle such a
problem, we approximate by separating variables z and r for
the lowest branch of the 3D field operator, and we write

�̂(�r ) ≈ ϕ(z)�̂(r) + �̂1(�r ). (26)

Here, the 2D field �̂(r) and the wave function ϕ(z) cor-
respond to the lowest branch, while in �̂1(�r), all excited
branches are combined.

Further, we make the following two simplifications.
(i) At low temperatures (T � μ) and weak interactions

(n − n0 
 n0), the excited modes are weakly populated, al-
lowing us to neglect the contribution of �̂1(�r ), because it
corresponds to the noncondensed fraction [90].

(ii) For values of μ only a few times larger than h̄ωz, we
can still approximately assume that the wave function ϕ(z) has
a Gaussian profile with an oscillation frequency of the order
of the trap frequency [91].

As a result of these simplifications, we obtain

ϕ(z) ≈ exp
(−z2/2z2

0

)
/

√√
πz0, �̂1(�r) ≈ 0. (27)

Subsequently, all considerations are analogous to those in
Ref. [44] and lead to the same Hamiltonian as Eq. (1), with
the exception that instead of formula (2), we obtain

e0(n) = g2

2
n2 + 2gLHY

5
n5/2 + · · · , (28)

where g2 is defined in Sec. II and Ref. [92], and

gLHY = g3D
LHY

√
2
5 z

− 3
2

0 π− 1
4 . (29)

In this approach, three-body interactions are not considered at
all (g3 = 0).

B. Results

In all subsequent results, we use the following values: μ =
33 nK, z0 = 500 nm, while the adjustable parameters are α

and θ .
We observe that LHY stabilization in a wide layer results

in a supersolid phase exhibiting both first- and second-order
transitions, as depicted in Fig. 4.
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FIG. 4. (a) First-order gas to supersolid density-wave transition
at θ = 56.6◦ and (b) second-order transition at θ = 64◦ are illus-
trated. Both components of the helicity modulus tensor, Yx and Yy,
and the deformation tensor, ux and uy, are shown, along with the di-
agonal long-range order parameter �, the square of the roton gap E 2

r ,
and the average density n. The first-order (second-order) transition
corresponds to the jump in panel (a) [kink in panel (b)].

In the phase diagram (Fig. 5), the point of intersection
between the first- and second-order transitions is clearly vis-
ible. As the anisotropy increases (with the tilting angle θ ),
the supersolid effect intensifies: the superfluid transitions into
a supersolid. Additionally, with the increasing influence of
many-body effects [i.e., with increasing α, see Eqs. (25)

FIG. 5. The phase diagram of the θ -α variables is presented. The
pink star denotes the intersection point of first- and second-order
transitions.

and (29)], the system moves from a first-order transition to
a second-order transition. The same takes place with the in-
crease of anisotropy [i.e., with increasing θ ].

Thus, the scenario for a supersolid stabilized by LHY is
totally analogous to the previously examined model situation
with stabilization by three-body interactions.

V. DISCUSSION AND CONCLUSION

Let us consider the case of finite temperature. Due to
the infrared divergence of the Hohenberg type [93] in a
macroscopic system, there exists a quasicondensate with su-
perfluidity instead of a Bose-Einstein condensate. Also, there
is no macroscopic long-range order, only quasi-long-range
order and elasticity [83,94]. Furthermore, at nonzero tem-
perature, the mechanism responsible for the convergence of
condensate depletion for the second-order transition, as de-
scribed in Ref. [44], will be disrupted. Nonetheless, this is
not a significant concern as the system will still be within a
regime of weak correlations. Additionally, near the zero-touch
spectrum, the gas will already exhibit a local density wave
due to the redistribution of population from k = 0 to modes
with k ≈ ±kroton. Therefore, at sufficiently low temperatures,
it is plausible that second-order transitions may become first-
order transitions, albeit with small jumps (at low temperatures
and/or a thick layer). The calculation is nontrivial and war-
rants further research.

In this work, we have presented the results of the investiga-
tion of the supersolidity effect in the system of tilted dipolar
bosons with stabilizing many-body repulsion. We have exam-
ined both model stabilization by the three-body interactions
and by the LHY term. We have identified the second-order
transition from gas to density-wave-type supersolid and the
point of intersection with the first-order transition line appears
to be a general feature in 2D at T = 0 and inherently arises
from the anisotropy of the system. The observed pattern of
first- and second-order transitions in the gas-supersolid tran-
sition for anisotropic 2D systems aligns with the touching of
the Bogoliubov spectrum zero-energy points at two-roton mo-
menta ±kroton [44]. Indeed, the zero-roton gap allows for the
macroscopic population transfer from the homogeneous con-
densate to these two states due to the touching. Consequently,
the superposition leads to the density wave of the condensate:
ψ (r) = a0 + a1 cos(krotonr) + · · · . Moreover, the absence of
Fischer-like [41] divergence beyond the condensate under the
conditions of roton gap closing at two points [44] allows the
system to remain within the regime of weak correlations.

As we expected, the proposed approach can be used in
ongoing experiments on the study of supersolidity of dipo-
lar bosons. In particular, in the experiment with untilted
dipoles (θ = 0), but in a cigar-shaped trap [95], a point of
the intersection between first- and second-order transitions
in the gas-supersolid transition has also been observed (this
is consistent with the theory provided in Refs. [66,95]). In
this experiment, the anisotropy is imposed by the geometry:
DWs are indeed formed along the cigar. In our case, in the
2D system anisotropy can be imposed by the control of the
electric field in the case of polar molecules [1–3] or an ex-
ternal magnetic field for ultracold atoms with induced dipole
moment, such as erbium [7] or dysprosium [5,6]. Finally, we
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expect qualitatively similar results regarding the supersolid of
density waves for excitonic realizations in both monolayers
of transition metal dichalcogenides [13] and GaAs quantum
wells [96].
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