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Over the past couple of decades, quantum simulators have been probing quantum many-body physics with
unprecedented levels of control. So far, the main focus has been on the access to novel observables and dynamical
conditions related to condensed-matter models. However, the potential of quantum simulators goes beyond the
traditional scope of condensed-matter physics: Being based on driven-dissipative quantum optical platforms,
quantum simulators allow for processes that typically are not considered in condensed-matter physics. These
processes can enrich in unexplored ways the phase diagram of well-established models. Taking the extended
Bose-Hubbard model as the guiding example, in this work we examine the impact of coherent pair injection, a
process readily available in, for example, superconducting circuit arrays. The interest behind this process is that,
in contrast to the standard injection of single excitations, it can be configured to preserve the U(1) symmetry
underlying the model. We prove that this process favors both superfluid and density-wave order, as opposed to
insulation or homogeneous states, thereby providing a route towards the access of lattice supersolidity.

DOI: 10.1103/PhysRevA.109.063324

I. INTRODUCTION

Macroscopic quantum states capable of surviving deco-
herence constitute some of the most intricate phases of
matter. Understanding properties such as superconductivity
and superfluidity holds the promise for key technological
applications. These exotic types of behavior emerge from
the interplay between different microscopic processes in-
volving many particles and are typically associated with the
phenomenon of spontaneous symmetry breaking. Recently,
Feynman’s idea for quantum simulation in its modern in-
carnation [1–7] has become of central importance. In this
emerging research field, many-body complexity relies on an
ever-increasing number of degrees of freedom, and in fact,
extraordinary progress in recent decades has led to an ex-
plosion of experimental quantum platforms over which we
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have unprecedented levels of control. It is now possible to
engineer systems that can simulate quantum models expected
to exhibit a rich variety of phases otherwise difficult to ob-
serve. A number of lattice models, such as the Hubbard model
[8–12], are successful examples which can be experimen-
tally implemented with, e.g., cold atoms in optical lattices
[2,13,14], photonic devices [15–19], and superconducting cir-
cuits [5,20–26].

Until now, a wide range of many-body models borrowed
from condensed-matter physics have been explored theoreti-
cally and experimentally in quantum simulators. In contrast,
much less attention has been given to processes that do
not traditionally appear in condensed-matter systems, but are
available in modern simulators. Examples of these are the co-
herent injection of excitations or tailored dissipation [27–31].
In this work we focus on one process that stands out among
this class: down-conversion, where a single excitation of a
driving field is coherently transformed into two excitations
of the system (and vice versa) [32–40]. In contrast to the
common coherent injection of single excitations, it can be
configured to preserve the symmetries that need to be spon-
taneously broken in order to build the macroscopic quantum
coherence present in, e.g., superfluidity. Down-conversion
has been a fundamental tool in quantum optics and modern
technologies [41–44] and we believe that it can become a
powerful tool in modern quantum simulators as well. Hence
it is of paramount importance to understand emergent physics
induced by this process.
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As a first step towards this goal, here we address the ques-
tion of which phases are favored by the presence of coherent
pair injection. We focus on its action on the extended one-
dimensional (1D) Bose-Hubbard model, where several types
of (lattice) insulating and superfluid ground-state phases have
been predicted to appear [45–49]. As a generic conclusion,
we find that pair injection favors both density-wave order
and superfluidity, thus effectively extending the region of the
phase diagram where supersolid order is expected to appear.
This opens the possibility of stabilizing supersolid phases as
robust steady states once dissipation is included in the model.

II. MODEL AND MAIN RESULTS

To demonstrate the effects of pair injection on a many-body
bosonic system, we consider the ground state of the extended
soft-core Bose-Hubbard Hamiltonian in one dimension with
the periodic boundary condition L + 1 → 1,

Ĥ =
L∑

j=1

(
−μn̂ j + U

2
n̂ j (n̂ j − 1) − ε

2

(
â†2

j + â2
j

)

+ V n̂ j+1n̂ j − J (â†
j â j+1 + â†

j+1â j )

)
, (1)

where the bosonic operators satisfy canonical commutation
relations [â j, âl ] = 0 and [â j, â†

l ] = δ jl . The operator n̂ j =
â†

j â j is the number operator, μ is the chemical potential, U
(V ) is the on-site (nearest-neighbor) repulsion energy, J is the
hopping rate, and ε is the coherent pair injection rate. All
parameters are taken real and positive throughout the work.
This is an effective model in the sense that the full driven-
dissipative problem will involve relaxation towards steady
states that inherit their properties from this Hamiltonian, as
we discuss at length in Sec. VII. It is also important to note
that the continuous U(1) symmetry characteristic of particle-
conserving Bose-Hubbard problems is replaced by a discrete
Z2 symmetry â j → −â j for ε �= 0. However, in Sec. VI we
extend the model to accommodate full U(1) symmetry with-
out impacting the physics derived for the model (1), which we
describe now.

When ε = 0, we recover the standard extended Bose-
Hubbard Hamiltonian, which displays a global U(1) symme-
try under â j → eiθ â j ∀ j for any θ ∈ R as well as translational
symmetry â j → â j+d ∀ j for any d ∈ N. Setting aside for
the moment subtleties associated with the 1D nature of the
model, we review the structure of the mean-field (MF) phase
diagram [45,47,50,51] in the (zJ/U, μ/U ) plane (z is the
lattice coordination number; z = 2 in our 1D case) in Fig. 1,
which is convenient for introducing qualitative features of
the model. The MF ground-state phases can be character-
ized according to which of the symmetries above are broken
spontaneously. The boundary between phases with lattice su-
perfluidity, which spontaneously break the U(1) symmetry,
and insulating phases, which do not, has the well-known
pancake-stack structure (which we derive analytically in
Appendix B). In the presence of nearest-neighbor interac-
tions, both of these phases can be homogeneous or staggered,
leading to four types of phases: Mott insulator (MI), pre-
serving both symmetries; density waves (DWs), breaking
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FIG. 1. MF ground-state phase diagram in the (2J/U, μ/U )
plane for representative values of 2V/U . Here DW and MI (SF
and SS) refer to density-wave and Mott insulating (homogeneous-
superfluid and supersolid) phases, respectively. The solid lines
correspond to ε = 0 while the dashed lines represent how the bound-
aries move as ε increases. The phase boundaries have been artificially
smoothened out for clarity (see the raw data in Appendix B). The
inset in (c) shows the J = 0 = ε phase diagram in the (μ/U, 2V/U )
plane, with Fock states |n1n2n3n4 · · · 〉.

translational symmetry only; superfluid (SF), breaking only
U(1); and supersolid (SS), breaking both symmetries. For
0 < 2V/U < 1 the insulating domes alternate between MI
and DW phases, with SS phases appearing as a small region
over DW domes. In contrast, for 2V/U > 1 MI phases disap-
pear, and SS phases are able to take over a larger portion of
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the superfluid region, generating a SS-SF boundary that tends
to a straight line for large densities.

We identify ground-state phases by analyzing the correla-
tion functions

CSF( j, l ) = 〈â†
j âl〉, (2a)

CDW( j, l ) = 〈δn̂ jδn̂l〉, (2b)

with density fluctuations δn̂ j = n̂ j − ∑L
j=1〈n̂ j〉/L [47]. In the

insulating phases, CSF( j, l ) decays exponentially (or faster)
with the distance | j − l|; in contrast, it remains finite or de-
cays as a power law in superfluid phases. Moreover, spatially
ordered phases such as DW or SS present subexponential
decay of CDW( j, l ).

In the presence of pair injection (ε �= 0), the rigorous
presence of superfluid order is ruled out, but it still allows
for spontaneous Z2 symmetry breaking associated with the
θ -phase order. Whenever a remark on the discreteness of the
phase is needed, we denote its corresponding phases by Z2SF
and Z2SS. Nevertheless, as we mentioned above, we show in
Sec. VI that the model (1) can be extended to restore a full
U(1) symmetry without impacting our main conclusions.

In the following we analyze the ground states of (1) using
complementary approaches: the density-matrix renormaliza-
tion group (DMRG), a powerful variational optimization
algorithm for low-dimensional systems, to demonstrate our
main point conclusively; MF approximation for a more ex-
haustive check of the parameter space; the coherent-state
ansatz to obtain analytical insight; and finally the Gaussian-
state ansatz to confirm the robustness of the coherent-state
ansatz predictions. All these methods converge to two basic
conclusions. First, pair injection ε generally favors the Z2

superfluid phases over the insulating ones; in other words, the
insulating regions of the phase diagram shrink as we increase
ε. Second, more intriguingly, deep in the region with broken
phase symmetry, ε favors Z2SS order over Z2SF order. While
this is a subtle trend in Fig. 1 that focuses on the small-
J/U region, it becomes more and more evident as one gets
deeper into the superfluid (large-J/U ) region (note that the
Z2SS-Z2SF boundary lines for ε = 0 and ε �= 0 cross as J/U
increases, such that for larger J/U the critical μ/U separating
them is smaller for ε �= 0). We discuss these results at length
throughout the following sections.

III. DMRG RESULTS

We run DMRG using a matrix-product-state ansatz
[52–54]. To simulate the soft-core bosonic model we intro-
duce a truncation in the maximum occupation number per
site, NL. The accuracy of the ansatz is controlled by the
bond dimension χ , which determines the degree of many-
body entanglement available in the ansatz. In the results
presented below, we have checked convergence of the cor-
relation functions (2), as well as the energy and the bipartite
entanglement entropy, requiring NL = 10 and χ = 4000 in the
hardest cases.

To determine the ground state for a given parameter set, we
perform a finite-size scaling of the correlation ratios [55]

RSF = CSF(L/2)

CSF(L/4)
, RDW = CDW(L/2)

CDW(L/4)
, (3)

where CSF/DW(d ) ≡ CSF/DW( j, j + d ) and the ratios are in-
dependent of j. These ratios are expected to approach 1 as
L → ∞ when the system has long-range order or fall to 0 if
the corresponding correlation function decays exponentially.
We also use the Binder cumulant [56]

BDW = 1

2

(
3 − 〈φ̂4〉

〈φ̂2〉2

)
, (4)

which is defined to behave as BDW → 1 (BDW → 0) for
L → ∞ in the phase with (without) density-wave order. Here
φ̂ = ∑L/2

l=1(n̂2l−1 − n̂2l ) is the density-wave order parameter.
The BDW turns out to be less sensitive to finite-size effects
in our model and thus better suited for analyzing a density-
wave transition. In addition, BDW, as well as RSF and RDW,
is expected to be system-size independent at a critical point
and therefore form a crossing point between curves with
different L.

In Fig. 2(a) we first examine the impact of the injection
rate ε on the phase boundary between the insulating and Z2

superfluid regions. We set 2V/U = 1.5 and μ/U = 1.8 and
show RSF as a function of 2J/U for different values of ε/U .
The observed tendency towards a step function for larger L
suggests a second-order transition. We also observe that the
superfluid phase is enlarged as ε increases (the crossing occurs
for lower 2J/U ). The same conclusion is drawn for any other
set of parameters we have tested with DMRG.

In Figs. 2(b) and 2(c) we analyze the Z2SF-Z2SS boundary.
We set 2V/U = 1.5 and 2J/U = 0.8, for which we confirm
RSF → 1 as L → ∞ irrespective of the remaining parameters,
meaning that the ground state retains the Z2 superfluid order
in the entire (μ/U, ε/U ) plane shown here. Figure 2(b) shows
RDW in the (μ/U, ε/U ) parameter space for L = 16, together
with the critical points (thick solid line) that we determine by
performing a finite-size scaling analysis of BDW, as shown in
Fig. 2(c). Except for very low densities (small 2J/U and ε/U ),
it is clear that the boundary separating the Z2SF (RDW → 0)
and the Z2SS (RDW → 1) regions moves down as ε increases,
concluding that pair injection extends the supersolid region.
Moreover, for larger ε there is a clear linear tendency of the
boundary on ε. Indeed, our coherent-state ansatz (see Sec. V)
predicts a critical μ given by

μc = 4J (2V/U − 1)−1 − ε (5)

and existing for 2V/U > 1. Note that Eq. (5) also predicts a
linear relation between μc and 2J with slope 2/(2V/U − 1),
which is consistent with previous ε = 0 numerical results [48]
and with the MF picture described above. Hence, our high-
precision DMRG calculation allows us to univocally conclude
that pair injection favors Z2SS.

IV. MF APPROACH

To show that the enhancement of supersolidity via pair
injection can be expected for a wider parameter range, we
extend the well-known [50,57–59] MF approach by incor-
porating the ε term. The MF approximation is based on a
separable ansatz of the type

⊗L
j=1 |ψ j〉, which ensures that the
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FIG. 2. (a) RSF as a function of 2J/U for different values of L
and ε/U with μ/U = 1.8 and 2V/U = 1.5. As ε/U increases, a
smaller value of 2J/U can bring the system to a quantum critical
point separating insulating and Z2 superfluid phases. (b) RDW in
the (μ/U, ε/U ) plane with 2J/U = 0.8 for L = 16. The Z2 phase
symmetry is broken in the entire region shown here. (c) Binder
parameter BDW as a function of μ/U for different values of L and
ε/U with 2J/U = 0.8. The crossing points determine the critical
μ/U for each ε/U and are shown in (b) as black dots. (b) and (c)
show that ε clearly favors density-wave order in the superfluid region,
that is, supersolidity.

coupling between the quantum fluctuations at different lattice
sites is negligible. In particular, given two operators Â and B̂
acting on different sites, and their corresponding fluctuations

δÂ = Â − 〈Â〉 and δB̂ = B̂ − 〈B̂〉, we have

ÂB̂ = (〈Â〉 + δÂ)(〈B̂〉 + δB̂) ≈ 〈Â〉〈B̂〉 + 〈Â〉δB̂ + 〈B̂〉δÂ

= 〈Â〉B̂ + 〈B̂〉Â − 〈Â〉〈B̂〉. (6)

In our Hamiltonian (1) we find two of such type of terms,
the hopping and the nearest-neighbors interaction, which we
rewrite under the MF approximation as

â†
j â j+1 ≈ φ∗

j â j+1 + â†
jφ j+1 − φ∗

j φ j+1, with φ j = 〈â j〉,
(7a)

n̂ j n̂ j+1 ≈ ρ j n̂ j+1 + n̂ jρ j+1 − ρ jρ j+1, with ρ j = 〈n̂ j〉.
(7b)

The Hamiltonian then takes the form

Ĥ ≈
L∑

j=1

ĥ j + E ≡ ĤMF, (8)

with local Hamiltonian operators

ĥ j = −[μ − V (ρ j−1 + ρ j+1)]n̂ j − ε

2

(
â2

j + â†2
j

)
+ U

2
n̂ j (n̂ j − 1) − J[(φ∗

j−1 + φ∗
j+1)â j + H.c.] (9)

and a constant term

E =
L∑

j=1

[J (φ∗
j φ j+1 + φ jφ

∗
j+1) − V ρ jρ j+1]. (10)

The mean-field Hamiltonian ĤMF is a collection of local
Hamiltonians coupled through the {φ j, ρ j} j=1,2,...,L expec-
tation values. Hence, finding the ground state becomes a
nonlinear problem, since the ĥ j’s depend on the state one is
trying to determine. The problem is simplified even further by
noting that we expect the ground state to be invariant under
translations by an even number of sites. Denoting by j = e
and j = o some reference odd and even sites, respectively, so
that the ansatz can be rewritten as

⊗L/2
j=1 |ψo〉 ⊗ |ψe〉, finding

the MF ground state becomes then equivalent to finding the
common ground states |ψo〉 and |ψe〉 of the local operators

ĥo(|ψe〉) = −(μ − 2V ρe)n̂o − ε

2

(
â2

o + â†2
o

)
+ U

2
n̂o(n̂o − 1) − 2J (φ∗

e âo + φeâ†
o), (11a)

ĥe(|ψo〉) = −(μ − 2V ρo)n̂e − ε

2

(
â2

e + â†2
e

)
+ U

2
n̂e(n̂e − 1) − 2J (φ∗

o âe + φoâ†
e ), (11b)

respectively. The notation emphasizes that ĥo and ĥe depend
on the state of the even and odd sites |ψe〉 and |ψo〉, re-
spectively. Starting from an initial guess for these states, or
rather the expectation values {φ j, ρ j} j=o,e, we find the ground
state of ĥo(|ψe〉) and ĥe(|ψo〉), update the states |ψo〉 and
|ψe〉, and iterate the procedure as many times as required for
〈Ĥ〉 to converge. This is sometimes called a self-consistent
Hartree-Fock procedure. We perform the calculation in the
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small hopping rate favors Z2SS over the homogeneous Z2SF, ex-
cept for the perturbative region (small ε). We assume ρo � ρe for
definiteness.

local (truncated) Fock basis {|n〉}n=0,1,...,N , with n̂ j |n〉 = n|n〉,
where N is a suitable truncation (N = 20 is usually enough
to reach high accuracy in the parameter region analyzed
in this work). For a given parameter set, we perform the
self-consistent Hartree-Fock procedure starting from several
educated or random guesses {φ j, ρ j} j=o,e and then choose
among all final states the one leading to the smallest 〈Ĥ〉.
The phase of the system is then characterized by the following
conditions (	ρ = ρo − ρe):

φo = 0 = φe, 	ρ = 0 (Mott insulator),

φo = 0 = φo, 	ρ �= 0 (density-wave insulator),

φo = φe �= 0, 	ρ = 0 (homogeneous Z2 superfluid),

φo �= φe, 	ρ �= 0 (Z2 supersolid). (12)

The results shown in Figs. 1 and 3 support the conclu-
sions drawn with DMRG. The (2J/U, μ/U ) phase diagram of
Fig. 1 illustrates how the insulating lobes shrink as ε increases.
Moreover, for 2V/U > 1 the Z2SF-Z2SS phase boundary for
large 2J/U asymptotically follows the coherent-state predic-
tion (5), demonstrating that the supersolid phase is enlarged
with ε. This linear tendency is most clearly observed in Fig. 3,
where we set 2J/U = 0.8 (for which φ j �= 0) and represent
	ρ/ρo in the (ε/U, μ/U ) plane (for definiteness we assume
ρo � ρe). The critical boundary separating 	ρ = 0 (Z2SF)
from 	ρ �= 0 (Z2SS) has a positive slope for small ε/U , but
very early the slope changes sign, quickly adhering to the
expected linear relation of Eq. (5), similarly to the DMRG
results of Fig. 2(b). We remark that the region with initial
positive slope shrinks as 2J/U increases.

Let us point out that the boundaries of the phase diagrams
of Fig. 1 have been smoothened for ease of presentation. For
completeness, in Appendix B we provide the same diagrams
plotted from the raw data without any smoothing.

V. COHERENT-STATE ANSATZ

We introduce now another variational treatment that allows
us to obtain an analytical estimation of the Z2SF-Z2SS bound-
ary. We use a coherent-state ansatz [35,36,44]

⊗L
j=1 |α j〉, with

â j |α j〉 = α j |α j〉 and {α j ∈ C} j=1,2,...,L. For large 2J/U , the
ground state can be expected to develop a large superfluid
order parameter φ j and therefore to be dominated by a strong
coherent component α j . Indeed, we find that the overlap be-
tween the MF state and the coherent-state ansatz is above 90%
at all investigated points, increasing with 2J/U and ε/U .

In the coherent-state ansatz, the uniform superfluid and
supersolid phases are distinguished by whether the coherent
amplitude is uniform (α j = α ∀ j) or staggered (|α j | �= |α j+1|
and α j = α j+2). In the following we determine analytically
these type of solutions and show how they lead to the for-
mula (5) for the Z2SF-Z2SS boundary. The variational energy
functional 〈Ĥ〉 assumes the following polynomial form as a
function of the coherent amplitudes α j :

E =
L∑

j=1

(
−μ|α j |2 − J (α jα

∗
j+1 + α∗

j α j+1)

− ε

2

(
α2

j + α∗2
j

) + U

2
|α j |4 + V |α j |2|α j+1|2

)
. (13)

The J term is minimized when all sites have the same phase
so that Re(α jα

∗
j+1) � 0. On the other hand, in order to min-

imize the ε term, the amplitudes α j must be real. Hence,
we conclude that the amplitudes are real and either all pos-
itive or all negative. In contrast, since the energy functional
is invariant under the Z2 transformation α j → −α j ∀ j, we
can take the positive sign for the amplitudes for definiteness,
just keeping in mind that from any minimizing configuration
{α j � 0} j=1,2,...,L we can build an equally valid configuration
simply by inverting the sign of all amplitudes. The minimiza-
tion condition ∂E/∂α j = 0 becomes then[−(μ + ε) + Uα2

j + V α2
j+1 + V α2

j−1

]
α j = J (α j+1 + α j−1),

(14)

with α j real and positive for all j. These equations possess
three types of analytic solutions, which happen to be the only
relevant minima according to our exhaustive numerical ex-
ploration, as we discuss in Appendix C. The simplest among
these is the trivial one, α j = 0 ∀ j, with null energy E = 0
in all parameter space. One can also easily find in (14) a
nontrivial homogeneous solution (which we simply denote by
Z2 superfluid or SF in this coherent context)

α j =
√

μ + ε + 2J

U + 2V
≡ αSF ∀ j, (15)

with energy

E = −2LJ2 (ν + 1)2

U + 2V
≡ ESF < 0, (16)

where we have defined the parameter ν = (μ + ε)/2J that
will reappear throughout this section on occasion. This SF
solution has then lower energy than the trivial one. If we
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would allow for negative chemical potentials, this superfluid
solution would cease to exist as soon as μ < −(ε + 2J ) or
ν < −1, the parameter region where the trivial solution takes
over (actually, for ν < −1 the trivial solution is a minimum,
while for ν > −1 it becomes an unstable saddle point). How-
ever, this is not relevant to our present work where we are
analyzing the μ > 0 region, since this is the usual accessible
region in condensed-matter physics.

The third analytic solution is the staggered one (which we
denote by Z2 supersolid or SS)

α j =
{
αSS for j ∈ odd
rαSS for j ∈ even,

(17)

where we assume that the density is larger at odd sites (0 �
r � 1) for definiteness, but the opposite case is also a solu-
tion, owed to the translational invariance of the Hamiltonian.
Particularizing (14) to odd j leads to

α2
SS = μ + ε + 2rJ

U + 2r2V
, (18)

which inserted into (14) particularized now to even j leads to
an equation for r that reads

(1 − r2)(1 + r2 − ar) = 0, (19)

where we have defined a = ν(2V/U − 1). Apart from the r =
1 root that simply leads to the SF solution discussed above, we
obtain another root satisfying 0 � r � 1, namely, 2r = a −√

a2 − 4, which exists only for a � 2, a condition that can be
recast as

V

U
� 1

2
+ 1

ν
⇔ μ � 4J

2V/U − 1
− ε. (20)

Let us remark that the equality in this expression leads pre-
cisely to the SF-SS boundary that we have presented in (5).
Indeed, for a = 2 we get r = 1, meaning that the staggered
solution converges to the homogeneous one at the boundary.
Moreover, inserting the staggered solution into the coherent
energy functional (13) leads to

E = −LJ2

U

(
ν2 + 2

2V/U − 1

)
≡ ESS, (21)

which is easily shown to be smaller than ESF in all the domain
of existence of the solution. Hence, we conclude that a = 2 is
the coherent-state prediction for the phase boundary between
the SF and SS regions. This method predicts a continuous
second-order phase transition, since ESF and ESS and their
first-order derivatives are continuously connected at the phase
boundaries, with the discontinuity appearing at the second-
order derivative. The coherent-state ansatz provides then a
phase diagram that is easily summarized in terms of just two
relevant parameters ν and 2V/U , as we show in Fig. 4. Let
us remark that these results are confirmed also when consid-
ering a fully general Gaussian ansatz, which we present in
Appendix D.

VI. MODEL WITH FULL U(1) SYMMETRY

The pair-injection term −∑
j ε(â2

j + â†2
j )/2 considered in

previous sections explicitly breaks the U(1) symmetry of the

tri
via

l

0 1

2

4

2

6

8

−1

SS
SF

ν (μ + ε)/2J

2V
/U

FIG. 4. Phase diagram arising from the coherent-state ansatz,
which is fully characterized by two reduced parameters only, ν =
(μ + ε)/2J and V/U . The trivial phase refers to the α j = 0 config-
uration for all coherent amplitudes (vacuum state). Here SF refers
to a configuration with all amplitudes equal and nonzero (homoge-
neous superfluidlike) and SS refers to a configuration with alternating
amplitudes, different for even and odd sites (supersolidlike). The
boundary between the trivial and SF phases is ν = −1. The boundary
between SF and SS phases is 2V/U = 1 + 2/ν and exists only for
ν > 0 and 2V/U > 1.

extended Bose-Hubbard model, leaving only a Z2 symmetry
â j → −â j ∀ j. However, as we mentioned in the Introduction,
one can consider more elaborate extensions of the Bose-
Hubbard model with pair-injection terms that still possess full
U(1) symmetry. Here we put forward one such model and
show that, at the coherent-state-ansatz level, pair injection has
the same effect as in the simpler model (1) studied in the
previous sections.

Consider a chain with two bosonic modes per site, with
annihilation operators {â j, b̂ j} j=1,2,...,L, satisfying canonical
commutation relations [â j, â†

l ] = δ jl = [b̂ j, b̂†
l ] with any other

commutator vanishing. Each set of bosonic modes is subject
to an extended Bose-Hubbard Hamiltonian

Ĥa =
L∑

j=1

(
−μâ†

j â j + U

2
â†2

j â2
j

− J (â†
j â j+1 + â†

j+1â j ) + V â†
j+1â j+1â†

j â j

)
, (22a)

Ĥb =
L∑

j=1

(
−μb̂†

j b̂ j + U

2
b̂†2

j b̂2
j

− J (b̂†
j b̂ j+1 + b̂†

j+1b̂ j ) + V b̂†
j+1b̂ j+1b̂†

j b̂ j

)
, (22b)

with the different modes coupled locally through the particle
nonconserving term

Ĥab = −
L∑

j=1

ε(â j b̂ j + â†
j b̂

†
j ). (23)

Just as in the previous model, this term injects pairs of excita-
tions in the system, but now the excitations are distinguish-
able (nondegenerate pair injection). The resulting Hamil-
tonian Ĥ = Ĥa + Ĥb + Ĥab is invariant under continuous
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transformations of the relative phase between the modes,
that is, {â j → eiθ â j, b̂ j → e−iθ b̂ j} ∀ j and θ ∈ R, providing
a U(1) symmetry to the model.

We consider now a coherent-state ansatz of the form⊗L
j=1 |α j, β j〉, with â j |α j, β j〉 = α j |α j, β j〉 and b̂ j |α j, β j〉 =

β j |α j, β j〉, where {α j ∈ C, β j ∈ C} j=1,2,...,L are the vari-
ational parameters. The energy functional 〈Ĥ〉 takes
the form

E =
L∑

j=1

(
−μ(|α j |2 + |β j |2) − 2J Re(α jα

∗
j+1 + β jβ

∗
j+1)

− 2ε Re(α jβ j ) + U

2
(|α j |4 + |β j |4)

+ V (|α j |2|α j+1|2 + |β j |2|β j+1|2)

)
. (24)

As in our original model (1), the J term is minimized when
the complex amplitudes of all sites have the same phase. In
addition, the ε term is minimized when each product α jβ j is
real and positive, that is, the phase sum of α j and β j is an
integer multiple of 2π . Of course, the symmetry of the model
allows the relative phase between α j and β j to be arbitrary,
that is, given a minimizing configuration {α j, β j} j=1,2,...,L, the
configuration {eiθα j, e−iθβ j} j=1,2,...,L is also a minimum for
any value of θ . To simplify the derivation, let us take θ = 0
as the representative minimum, specifically taking α j and
β j real and positive. The minimization conditions ∂E/∂α j =
0 = ∂E/∂β j read now(

Uα2
j − μ

)
α j +V α j

(
α2

j+1 + α2
j−1

) = J (α j+1 +α j−1) + εβ j,

(25a)(
Uβ2

j − μ
)
β j +V β j

(
β2

j+1 +β2
j−1

) = J (β j+1 + β j−1) + εα j .

(25b)

These equations possess balanced solutions with
α j = β j as well as unbalanced ones with α j �= β j .
The variational energy of the balanced ones is
equal to twice the one we studied in the preceding
section for the previous model, Eq. (13). Hence, such
balanced configurations have the same energy landscape
and phase diagram as the one we studied in the previous
case. Specifically, a homogeneous solution dominates
when V/U � 1/2 + 1/ν, with ν = (μ + ε)/2J , while
a staggered solution appears when V/U > 1/2 + 1/ν.
Hence, the coherent-state ansatz predicts a transition from a
homogeneous superfluid to a supersolid phase in the balanced
sector, in both cases breaking a continuous U(1) symmetry
spontaneously.

It is possible to find analytically or semianalytically un-
balanced solutions to (25), as we show in Appendix E.
Moreover, in that same Appendix we explain how we have
used imaginary-time dynamics to perform an exhaustive nu-
merical search of other local minima. In all cases, we have
found that the balanced solutions have always lower energy
than the unbalanced ones.

These results provide solid arguments that show that it
is possible to extend the model studied in the previous sec-

tions in such a way that pair injection retains a full U(1)
symmetry while still leading to the same enhancement of
supersolidity in the phase diagram.

VII. CONNECTION OF OUR WORK TO
DRIVEN-DISSIPATIVE EXPERIMENTAL PLATFORMS

In previous sections we have studied the ground state of
the extended Bose-Hubbard Hamiltonian onto which we add
a coherent pair injection term −ε(â2

j + â†2
j )/2 at each lattice

site j. The motivation behind our study comes from the fact
that such a process is accessible in modern experimental quan-
tum simulation platforms such as superconducting circuits
[32–34,37–40], photonic devices [15,16,19,60], and even cold
atoms [61–66]. However, our description based on adding that
time-independent Hamiltonian is a simplification, not aimed
at truly modeling experiments, but just at understanding the
generic effect of ε, in particular proving that it favors super-
solidity. Here we introduce a more rigorous theoretical model
for pair injection as implemented in experiments and connect
it to our simplified description.

Our starting point is a system consisting of a set of
identical bosonic modes with characteristic energy ω0. In
an experiment, these can correspond, for example, to the
microwave modes of a superconducting circuit [5,20–26],
the photonic modes of an optical cavity array [16,67],
or the Wannier modes of cold atoms trapped in optical lat-
tices [2,13,14]. In these experimental platforms ω0 is usually
the dominant energy scale, so any other processes such as
hopping or interactions are implemented effectively as some
sort of perturbation. We thus assume that a model includ-
ing all the particle-conserving terms present on the extended
Bose-Hubbard Hamiltonian has been implemented in such a
platform:

Ĥ0 =
∑

j

(
ω0n̂ j + U

2
n̂ j (n̂ j − 1)

− J (â†
j â j+1 + â†

j+1â j ) + V n̂ j+1n̂ j

)
. (26)

Let us remark that at this point, ω0 does not have the signifi-
cance of a chemical potential and is the scale that dominates
over the rest ω0 � J,U,V . However, we will show shortly
that an effective chemical potential on the scale of the rest
of parameters appears in these systems when driven by an
external field.

Let us now explain how coherent pair injection is im-
plemented on these systems. Being a particle nonconserving
process, it requires coupling the system to some sort of envi-
ronment from which we can feed and extract excitations. This
implies that, in general, the description of the system has to
be made in terms of a mixed state ρ̂ rather than a pure one
[44,68–70] (since correlations emerge with the environment),
which will then be subjected to both driving and dissipation.
In Appendix F we provide a generic description for such a
system plus environment model and rigorously integrate out
the environment under standard Born-Markov assumptions
[44,68–70] to find a dynamical equation for the state of the
system alone. The resulting system dynamics is governed by
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a so-called master equation that reads

∂t ρ̂ = −i[Ĥ (t ), ρ̂] +
∑

j

γ
(
2â2

j ρ̂â†2
j − â†2

j â2
j ρ̂ − ρ̂â†2

j â2
j

)
+
∑

j

κ (2â j ρ̂â†
j − â†

j â j ρ̂ − ρ̂â†
j â j ), (27)

with the time-dependent Hamiltonian

Ĥ (t ) = Ĥ0 −
∑

j

ε

2

(
e−2iωdt â†2

j + e2iωdt â2
j

)
. (28)

Here γ and κ are real and positive and we assume the same for
ε for definiteness. Driving corresponds to the time-dependent
term of (28), where ε � ω0 provides the rate at which an
external drive at tunable frequency 2ωd exchanges pairs of
excitations with the system through the environment; in order
for this term to play a role, |ωd − ω0| must not be much larger
than the driving rate ε, as otherwise it is highly suppressed by
energy conservation (rotating-wave or secular approximation
[44]). The coupling to the environment has another important
effect, corresponding to the second and third terms in (27):
the incoherent loss of system excitations, either individually
at rate κ or by pairs at rate γ . In particular, the terms â j ρ̂â†

j

and â2
j ρ̂â†2

j effect random quantum jumps removing one or
two excitations at a time, respectively [44]. It is important
to remark that each of these terms comes from a different
environment and hence they are independent (see Appendix F
for more details).

Hence, experiments deal with a driven-dissipative problem
that deviates from the problem that we have analyzed in the
previous sections in two ways. First, the Hamiltonian is time
dependent. This, however, is avoided by moving to a picture
rotating at frequency ωd. The state in the new picture is ρ̂R =
R̂†(t )ρ̂R̂(t ), with R̂ = exp(−iωdt N̂ ), where N̂ = ∑

j â†
j â j is

the total number operator. This state is easily shown [44] to
evolve according to the same master equation (27) but with a
time-independent Hamiltonian

ĤR = eiωdt N̂ [Ĥ (t ) − ωdN̂]e−iωdt N̂

=
∑

j

(
(ω0 − ωd)n̂ j − ε

2

(
â2

j + â†2
j

) + U

2
n̂ j (n̂ j − 1)

− J (â†
j â j+1 + â†

j+1â j ) + V n̂ j+1n̂ j

)
, (29)

where we have used R̂†(t )âR̂(t ) = e−iωdt â. This is precisely
the Hamiltonian that we have used throughout. Note that an
effective chemical potential μ = ωd − ω0 emerges in this type
of driven-dissipative experiments, which can be controlled
via the detuning between the driving frequency ωd and the
characteristic energy ω0 of the bosonic modes.

The presence of dissipation at rate γ is the second way
in which the experiments deviate from the situation that we
have analyzed herein, in which we have just considered the
Hamiltonian part. In general, the interplay between the Hamil-
tonian and dissipation will make the system settle into some
kind of steady state defined by ∂t ρ̂R = 0; finding such a
state should be the ultimate goal of any theoretical approach
aiming at making precise experimental predictions. Unfortu-

nately, being a many-body driven-dissipative problem, this is
an exceedingly hard task. However, it is well known in the
few-body realm of quantum optics that the properties of such
steady states are typically inherited from the properties found
in the Hamiltonian when dissipative processes involved are of
the simple type we deal here with. For example, Hamiltonian
systems possessing squeezed ground states in the rotating
picture lead to squeezed mixed steady states when dissipation
is added [44,71]. Hence, understanding the effect that pair
injection has on the phases of the system’s rotating-picture
Hamiltonian is a crucial step in determining the type of steady
states that will be available via dissipative state preparation. In
our case, we have shown that supersolid states are favored at
the Hamiltonian level, so our work suggests that pair injection
should help stabilizing supersolid phases in driven-dissipative
setups. We plan on proving this statement rigorously in the
near future by applying stochastic phase-space techniques
[72–74] to the master equation (27).

VIII. CONCLUSION

As a first step towards understanding its effect on quantum
simulators, we have analyzed how coherent pair injection
affects the ground-state phase diagram of the extended Bose-
Hubbard model. We have shown that it favors supersolid order
over both insulating and homogeneous superfluid order, albeit
in a model with Z2 symmetry. However, our results have
been shown to be extensible to models with U(1) symmetry.
Driven-dissipative quantum optical platforms have become
the focus of intense research in recent decades due to their
potential for realizing unexplored many-body models. Re-
garding our model, we have pointed out that the injection
term usually comes from some sort of external field that ulti-
mately leads to dissipation [75,76]. Nevertheless, the interplay
between coherent and dissipative processes makes the sys-
tem settle into a nonequilibrium (steady) state that typically
inherits properties from the Hamiltonian [44,71]. Hence, we
hope that our work, which proves that pair injection provides
a controllable knob to access supersolid phases, will trigger
further effort in the stabilization of supersolidity as a steady
state through a dissipative phase transition [77–82].
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APPENDIX A: GROUND STATE IN THE J = 0 = ε LIMIT

Our work focuses on the analysis of the ground-state prop-
erties of the Hamiltonian (1). While no analytic solution exists
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FIG. 5. Phase diagram of the J = 0 = ε model (extended Bose-
Hubbard model at zero hopping). The labels of the states refer to
the Fock numbers on each lattice site, that is,

⊗L/2
j=1 |n̄o〉 ⊗ |n̄e〉 =

|n1n2n3n4 · · · 〉, as given by (A1).

for this problem in all parameter space, it is interesting to
consider the J = 0 = ε limit, where the problem is readily
solvable. In this limit, the Hamiltonian depends solely on
number operators n̂ j , so it is diagonalized in the Fock basis
{⊗L

j=1 |n j〉}n j=0,1,2,..., with n̂ j |n〉 = n|n〉. It is not difficult to

show that the ground state is given by alternating Fock num-
bers, particularly

⊗L/2
j=1 |n̄o〉 ⊗ |n̄e〉, with

n̄o =
{⌈

μ

U

⌉
for 2V/U > 1⌈

μ

U+2V

⌉
for 2V/U < 1,

(A1a)

n̄e =
{

0 for 2V/U > 1⌈
μ−2V
U+2V

⌉
for 2V/U < 1,

(A1b)

where �x� is the ceiling function, which corresponds to the
smallest integer not smaller than x. Of course, owed to the
translational invariance of the model, the state

⊗L/2
j=1 |n̄e〉 ⊗

|n̄o〉 has the same energy, but we take the density of odd
sites larger than that of even sites for definiteness. We rep-
resent the ground state in the (2V/U, μ/U ) phase diagram in
Fig. 5.

APPENDIX B: MORE ON THE MEAN-FIELD
APPROXIMATION

We start this Appendix providing the ground-state phase
diagrams built from the raw numerical data that we obtained
with the MF approach (self-consistent Hartree-Fock) that we
introduced in Sec. IV. We present them in Fig. 6, where they
are seen to coincide with less smooth versions of those of
Fig. 1.

In addition, for ε = 0 it is possible to find the boundaries
between insulating (MI or DW) and superfluid (SF or SS)
phases analytically. In short, the idea is to interpret the MF
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FIG. 6. Numerical MF phase diagrams (blue denotes SF; yellow, SS; red, DW; and purple, MI). The thick black line in the top row
corresponds to the analytical perturbative expression for the insulating-superfluid boundary [Eq. (B15)].
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approximation to E = 〈Ĥ〉 as sort of a Landau potential that
depends on the complex parameters φ = (φo, φe)T that we
collect into a column vector for later convenience. In the
insulating phases, the potential has a minimum at φ = 0,
but this minimum flattens out as the boundary towards the
superfluid phases is approached, until it becomes unstable
once we cross it and new minima emerge at φ �= 0. Hence,
in this Appendix we let the parameters φ of the MF Hamilto-
nian vary freely, using them as Landau order parameters and
seeking the points of the phase diagram at which the curvature
of E (φ) vanishes. This will provide analytic expressions for
the insulating-superfluid boundary. Note that throughout this
Appendix the other MF parameters keep their ρ j = 〈n̂ j〉 defi-
nition. Let us now elaborate on the details of this procedure.

Given the MF variational ansatz
⊗L/2

j=1 |ψo〉 ⊗ |ψe〉, we
begin by defining the variational energy per pair of sites as-
sociated with the Hamiltonian (1),

e = 〈Ĥ〉
L/2

= −μ(〈n̂o〉 + 〈n̂e〉) + U

2
[〈n̂o(n̂o − 1)〉

+ 〈n̂e(n̂e − 1)〉] − 2J (〈â†
o〉〈âe〉

+ 〈â†
e〉〈âo〉) + 2V 〈n̂o〉〈n̂e〉. (B1)

Similarly, writing the MF Hamiltonian per pair of sites from
(8) and (11) as

ĥMF ≡ ĤMF

L/2
= −μ(n̂o + n̂e) + U

2
[n̂o(n̂o − 1) + n̂e(n̂e − 1)]

+ 2V (〈n̂e〉n̂o + 〈n̂o〉n̂e − 〈n̂o〉〈n̂e〉)

− 2J (φ∗
e âo + φeâ†

o + φ∗
o âe + φoâ†

e − φ∗
oφe

− φ∗
e φo), (B2)

we can define the MF energy per pair of sites as

eMF ≡ 〈ĥMF〉 (B3)

= −μ(〈n̂o〉 + 〈n̂e〉)

+ U

2
[〈n̂o(n̂o − 1)〉 + 〈n̂e(n̂e − 1)〉] + 2V 〈n̂o〉〈n̂e〉

− 2J (φ∗
e 〈âo〉 + φe〈â†

o〉 + φ∗
o 〈âe〉 + φo〈â†

e〉
−φ∗

oφe − φ∗
e φo). (B4)

We then have the following relation between the variational
energy and the MF energy:

e = eMF − 2J[(〈âo〉∗ − φ∗
o )(〈âe〉 − φe) + c.c.]. (B5)

The goal is to relate e to φ and then check its curvature
at φ = 0, which is built from the second-order derivatives
K jk = ∂2e/∂φ j∂φk|φ=0. Hence, we do not care about the full
dependence of e on φ, but just about its quadratic expansion
around φ = 0. This is consistent with performing second-
order perturbation theory in J on ĥMF, which indeed leads
to a quadratic form in φ, as we show next. Moreover, recall
from Appendix A that for J = 0 = ε we know the exact
eigenstates of Ĥ and they have 〈â j〉 = 0, so J is precisely
the parameter that brings in the coherence φ �= 0. However,
applying perturbation theory to ĥMF is not as straightforward
as it might seem, since it is a function of 〈n̂ j〉, so it defines
a nonlinear eigenproblem, where the operator we want to

diagonalize depends on its eigenstates. We carefully perform
such perturbation theory at the end of this Appendix, but here
we just provide the final result for the ground-state energy,
which reads

eMF(φ) ≈ e(0)
n̄on̄e

+ 2J (φ∗
oφe + φoφ

∗
e )

− 4J2

U
χo|φe|2 − 4J2

U
χe|φo|2, (B6)

where

e(0)
n̄on̄e

= −μ(n̄o + n̄e) + 2V n̄on̄e

+ U

2
[n̄o(n̄o − 1) + n̄e(n̄e − 1)] (B7)

is the ground-state energy of the system in the J = 0 limit,
with {n̄ j} j=o,e given by (A1), and

χo = n̄o

μ/U − 2n̄eV/U + 1 − n̄o
+ n̄o + 1

n̄o − μ/U + 2n̄eV/U
,

(B8a)

χe = ne

μ/U − 2n̄oV/U + 1 − n̄e
+ n̄e + 1

n̄e − μ/U + 2n̄oV/U
.

(B8b)

Note that χ j � 0.
In order to turn the variational energy per pair of sites e

of Eq. (B5) into a function of φ, we also have to relate the
expectation values 〈â j〉 to φ. We do this by considering the
Hellmann-Feynman theorem [83] within the MF approxima-
tion, which states that

∂eMF

∂φ j
=
〈

∂ ĥMF

∂φ j

〉
. (B9)

Evaluating the right-hand side from (B2) and the left-hand
side from (B6), we obtain

〈âo〉 = 2J

U
χoφe, (B10a)

〈âe〉 = 2J

U
χeφo (B10b)

to leading order in J . Putting expressions (B6) and (B10)
together in (B5) and keeping terms only up to quadratic order
in φ, we obtain the quadratic form

e ≈ e(0)
n̄on̄e

+ 4J2

U
[χe|φo|2 + χo|φe|2 − 2Jχoχe(φ∗

e φo + φeφ
∗
o )]

= e(0)
n̄on̄e

+ φ†Kφ, (B11)

with the real symmetric curvature matrix

K = 4J2

U

(
χe −2Jχoχe/U

−2Jχoχe/U χo

)
. (B12)

We can diagonalize the curvature matrix as K =
STdiag(κ+, κ−)S , where S is an orthonormal matrix
(whose specific form is irrelevant for our purposes) and
the eigenvalues read

κ± = 2J2

U

[
χe + χo ±

√
(χe − χo)2 + 16J2χ2

o χ2
e /U 2

]
.

(B13)
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Defining then new complex parameters (φ+, φ−)T = Sφ, the
Landau potential e(φ) can be written as

e(φ) ≈ e0 + κ+|φ+|2 + κ−|φ−|2. (B14)

Therefore, the condition for stability of the φ = 0 configu-
ration is κ± > 0 (which J = 0 satisfies), while as soon as the
curvature κ− turns negative, that trivial configuration becomes
unstable (which happens for sufficiently large J). Hence, the
boundary between insulator and superfluid phases is deter-
mined by the condition

κ− = 0 ⇐⇒ J

U
= 1

2
√

χoχe
. (B15)

As shown in Fig. 6, this simple analytic condition fits
perfectly the insulating-superfluid boundaries found via the
self-consistent Hartree-Fock procedure in Appendix A.

To end this Appendix we prove Eq. (B6) by developing a
perturbative solution to the nonlinear eigenproblem defined by
ĥMF(〈n̂o〉, 〈n̂e〉). We start by writing the Hamiltonian as ĥMF =
ĥ0 + ŵ, where

ĥ0 = (−μ + 2V 〈n̂e〉J=0)n̂o + (−μ + 2V 〈n̂o〉J=0)n̂e

+ U

2
[n̂o(n̂o − 1) + n̂e(n̂e − 1)] − 2V 〈n̂o〉J=0〈n̂e〉J=0

(B16)

is the MF Hamiltonian per pair of sites at J = 0, which we
take as our unperturbed Hamiltonian, and

ŵ = −2J (φ∗
e âo + φeâ†

o + φ∗
o âe + φoâ†

e − φ∗
oφe − φ∗

e φo)

+ 2V [(〈n̂e〉 − 〈n̂e〉J=0)n̂o + (〈n̂o〉 − 〈n̂o〉J=0)n̂e

− (〈n̂o〉〈n̂e〉 − 〈n̂o〉J=0〈n̂e〉J=0)] (B17)

is the perturbation. Even though ĥ0 defines also a nonlinear
problem, its eigenstates are trivially found to be the Fock
states {|no, ne〉 ≡ |no〉 ⊗ |ne〉}n j=0,1,2,..., as it depends solely
on number operators. We thus have ĥ0|no, ne〉 = e(0)

none
|no, ne〉,

with

e(0)
none

= −μ(no + ne) + 2V none + U

2
[no(no − 1)

+ ne(ne − 1)]. (B18)

These coincide with the eigenenergies of the full Hamiltonian
per pair of sites Ĥ/(L/2) for J = 0 = ε. Hence, |n̄o, n̄e〉, with
Fock numbers provided by (A1), is the ground state of ĥ0. We
already found that this ground-state energy has a degeneracy
related to the translational invariance of the model. In addi-
tion, for 2V > U it is also degenerate when μ/U is a positive
integer or zero, leading to the same energies for |n̄o, 0〉 and
|n̄o + 1, 0〉. Similarly, for 2V < U the degeneracy appears
when μ/(U + 2V ) is a positive integer or zero. Neverthe-
less, we will see that nondegenerate perturbation theory gives
sensible results even at those degeneracy points, so there is
no need to treat them separately with degenerate perturbation
theory.

We consider the full MF eigenproblem

ĥMF|ψnone〉 = enone |ψnone〉 (B19)

and assume as usual in perturbation theory that the eigenstates
and eigenenergies admit a series expansion in J ,∣∣ψnone

〉 = |no, ne〉 + J
∣∣ψ (1)

none

〉 + J2
∣∣ψ (2)

none

〉 + · · · , (B20a)

enone = e(0)
none

+ Je(1)
none

+ J2e(2)
none

+ · · · . (B20b)

As we will see, we can choose 〈no, ne|ψ (1)
none

〉 ∈ R. Moreover,
we can demand that the eigenstates are normalized at all
orders so that

1 = 〈
ψnone

∣∣ψnone

〉
(B21)

=
1︷ ︸︸ ︷

〈no, ne|no, ne〉+J
(〈

no, ne

∣∣ψ (1)
none

〉 + 〈
ψ (1)

none

∣∣no, ne
〉)

+ J2
(〈
ψ (1)

none

∣∣ψ (1)
none

〉 + 〈no, ne

∣∣ψ (2)
none

〉+ 〈
ψ (2)

none

∣∣no, ne
〉)

+ · · · (B22)

implies 〈
no, ne

∣∣ψ (1)
none

〉 = 0, (B23a)〈
no, ne

∣∣ψ (2)
none

〉 + 〈
ψ (2)

none

∣∣no, ne
〉 = −〈

ψ (1)
none

∣∣ψ (1)
none

〉
. (B23b)

These expressions will be useful later. Next we evaluate the
expectation values appearing in the Hamiltonian,

〈n̂ j〉 =
n j=〈n̂ j 〉J=0︷ ︸︸ ︷

〈no, ne|n̂ j |no, ne〉 +J
( n j 〈no,ne|ψ (1)

none 〉=0︷ ︸︸ ︷
〈no, ne|n̂ j

∣∣ψ (1)
none

〉

+
n j 〈ψ (1)

none |no,ne〉=0︷ ︸︸ ︷〈
ψ (1)

none

∣∣n̂ j |no, ne〉
) + J2

(〈
ψ (1)

none

∣∣n̂ j

∣∣ψ (1)
none

〉
+ 〈no, ne|n̂ j

∣∣ψ (2)
none

〉 + 〈
ψ (2)

none

∣∣n̂ j |no, ne〉︸ ︷︷ ︸
−n j

〈
ψ

(1)
none

∣∣ψ (1)
none

〉
) + · · · ,

(B24)

so

〈n̂ j〉 − 〈n̂ j〉J=0 = J2
〈
ψ (1)

none

∣∣(n̂ j − n j )
∣∣ψ (1)

none

〉+ · · ·,
(B25a)

〈n̂o〉〈n̂e〉 − 〈n̂o〉J=0〈n̂e〉J=0 = J2
[
no
〈
ψ (1)

none

∣∣(n̂e − ne)
∣∣ψ (1)

none

〉
+ ne

〈
ψ (1)

none

∣∣(n̂o − no)
∣∣ψ (1)

none

〉]
+ · · · . (B25b)

It is then convenient to split the perturbation as ŵ = Jĥ +
J2v̂, with

ĥ = −2(φ∗
e âo + φeâ†

o + φ∗
o âe + φoâ†

e − φ∗
oφe − φ∗

e φo),

(B26a)

v̂ = 2V
[〈
ψ (1)

none

∣∣(n̂e − ne)
∣∣ψ (1)

none

〉
(n̂o − no)

+ 〈
ψ (1)

none

∣∣(n̂o − no)
∣∣ψ (1)

none

〉
(n̂e − ne)

]
, (B26b)

so that the MF Hamiltonian is written as

ĥMF = ĥ0 + Jĥ + J2v̂, (B27)

with all terms showing explicitly the order in J to which they
contribute. Inserting (B27) and (B20) in (B19) and matching
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like orders in J , we obtain

ĥ0|no, ne〉 = e(0)
none

|no, ne〉, (B28a)

ĥ0

∣∣ψ (1)
none

〉 + ĥ|no, ne〉 = e(0)
none

∣∣ψ (1)
none

〉 + e(1)
none

|no, ne〉,
(B28b)

ĥ0

∣∣ψ (2)
none

〉 + ĥ
∣∣ψ (1)

none

〉 + v̂|no, ne〉 = e(0)
none

∣∣ψ (2)
none

〉 + e(1)
none

∣∣ψ (1)
none

〉
+ e(2)

none
|no, ne〉, (B28c)

etc. The first identity is just the unperturbed eigenproblem.
On the other hand, projecting (B28b) onto |no, ne〉 and using
â j |n j〉 = √

n j |n j − 1〉 and â†
j |n j〉 = √

n j + 1|n j + 1〉, we ob-
tain the first-order correction to the eigenenergies,

e(1)
none

= 〈no, ne|ĥ|no, ne〉 = 2(φ∗
oφe − φ∗

e φo), (B29)

while projecting (B28b) onto |mo �= no, me �= ne〉, we find the
first-order corrections to the eigenvectors,〈

mo, me

∣∣ψ (1)
none

〉 = hmome,none

e(0)
none − e(0)

mome

, (B30)

with

hmome,none = 〈mo, me|ĥ|no, ne〉
= −2(

√
noφ

∗
e δmo,no−1δme,ne

+
√

no + 1φeδmo,no+1δme,ne

+ √
neφ

∗
oδmo,noδme,ne−1

+
√

ne + 1φoδmo,noδme,ne+1). (B31)

Finally, the second-order correction to the eigenenergies is
found by projecting (B28c) onto |no, ne〉, leading to

e(2)
none

= 〈no, ne|ĥ
∣∣ψ (1)

none

〉 + 〈no, ne|v̂|no, ne〉

=
∑

mo �=no

∑
me �=ne

∣∣hmome,none

∣∣2
e(0)

none − e(0)
mome

, (B32)

where we have used

〈no, ne|v̂|no, ne〉 ∼ 〈no, ne|(n̂ j − n j )|no, ne〉 = 0, (B33a)

〈no, ne|ĥ
∣∣ψ (1)

none

〉 =
∑

mo �=no

∑
me �=ne

hmome,none

e(0)
none − e(0)

mome

× 〈no, ne|ĥ|mo, me〉︸ ︷︷ ︸
h∗

mome,none

. (B33b)

Recombining the eigenenergies up to order J2 as in (B20b)
and particularizing to the ground state (no = n̄o, ne = n̄e), we
obtain the perturbative expression (B6) that we wanted to
prove.

APPENDIX C: NUMERICAL SEARCH
OF COHERENT-STATE MINIMA

In Sec. V we introduced the homogeneous and staggered
coherent-state ansatz solutions that admitted a fully analytic
treatment. One can ask whether there exist other solutions
with an even lower energy. We have performed an exhaustive
numerical search, finding many local minima, but never with
energies below ESF or ESS of Eqs. (16) and (21), respectively.

In this Appendix we present the way in which we have per-
formed the numerical search.

We have relied on imaginary-time evolution. In particular,
we know that the energy of the state

|ψ (τ )〉 = e−Ĥτ |ψ (0)〉
〈ψ (0)|e−2Ĥτ |ψ (0)〉 (C1)

should converge at τ → ∞ to that of the system’s ground
state, assuming that |ψ (0)〉 projects onto the ground subspace.
The differential form of (C1) is

∂τ |ψ (τ )〉 = −[Ĥ − 〈ψ (τ )|Ĥ |ψ (τ )〉]|ψ (τ )〉, (C2)

which has the form of a (nonlinear) Schrödinger equa-
tion where time has been replaced by an imaginary time
−iτ . We can particularize this equation to the coherent-state
manifold by considering the ansatz of Sec. V,

|ψ (τ )〉 =
L⊗

j=1

|α j (τ )〉, (C3)

but now with τ -dependent coherent amplitudes α j (τ ). We can
then turn (C2) into an evolution or flow equation for these
amplitudes by considering

∂τ 〈ψ (τ )|â j |ψ (τ )〉
= [∂τ 〈ψ (τ )|]â j |ψ (τ )〉 + 〈ψ (τ )|â j[∂τ |ψ (τ )〉]
= −〈ψ (τ )|(Ĥ â j + â j Ĥ )|ψ (τ )〉

+ 2〈ψ (τ )|Ĥ |ψ (τ )〉〈ψ (τ )|â j |ψ (τ )〉
= −〈ψ (τ )|[â j, Ĥ ]|ψ (τ )〉

+ 2[〈ψ (τ )|Ĥ â j |ψ (τ )〉︸ ︷︷ ︸
α j |ψ (τ )〉

−〈ψ (τ )|Ĥ |ψ (τ )〉

× 〈ψ (τ )|â j |ψ (τ )〉︸ ︷︷ ︸
α j

] (C4)

so that (here the overdot denotes derivative with respect to τ )

α̇ j = −〈[â j, Ĥ ]〉 = [μ − U |α j |2 + V (|α j+1|2 + |α j−1|2)]α j

+ εα∗
j + J (α j+1 + α j−1), (C5)

where, after performing the commutator, we have used〈
â†

j1
â†

j2
· · · â†

jJ
â jJ+1 â jJ+2 · · · â jJ+K

〉
= α∗

j1α
∗
j2 · · · α∗

jJ α jJ+1α jJ+2 · · · α jJ+K (C6)

for the normally ordered product of J creation operators with
K annihilation operators in a coherent state. From any initial
configuration {α j (0)} j=1,2,...,L (different from a fixed point),
this nonlinear system will deterministically flow towards one
of its attractors, corresponding to a local (or global) minimum
of the energy functional of Eq. (13). We have tried a huge
number of random initial configurations for sizes L as large
as a few hundreds, always flowing into either the analytical
solutions presented in the previous Appendixes or other con-
figurations with higher energy.
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APPENDIX D: GENERAL GAUSSIAN-STATE ANSATZ

In order to confirm the predictions from the coherent-state
ansatz, we have extended the variational space by considering
all possible Gaussian states. We will show that the predictions
from this general ansatz converge to the analytical ones ob-
tained in Appendix C as we move deeper into the region with
Z2-superfluid order.

Gaussian states refer to those with a Gaussian Wigner
function [44,84–87] such that their statistics are completely
characterized by first- and second-order moments. Let us
define the position and momentum quadratures x̂ j = â†

j + â j

and p̂ j = i(â†
j − â j ), which we collect in the column vector

r̂ = (x̂1, . . . , x̂L, p̂1, . . . , p̂L )T, where T transposes the array
without altering the operators that form it. Note that the canon-
ical commutation relations read

[r̂m, r̂n] = 2i�mn, with � =
(

0 I
−I 0

)
, (D1)

with I the L × L identity matrix and � known as the symplec-
tic form. First- and second-order moments are characterized
by the mean vector dm = 〈r̂m〉 and the covariance matrix
Vmn = 〈δr̂mδr̂n + δr̂nδr̂m〉/2, respectively, where we have de-
fined the quadrature fluctuations δr̂m = r̂m − dm. In a more
compact notation

d = 〈r̂〉 ∈ R2L, (D2a)

V = 〈δr̂δr̂T〉 − i� ∈ R2L × R2L, (D2b)

where we have used the commutation relations (4) in
(D2b). Higher-order moments can be found from first- and
second-order ones via the Gaussian moment theorem [44,88].
Consider a set of K operators {L̂k}k=1,2,...,K , all arbitrary linear
functions of the quadrature fluctuations; this theorem states
that

〈L̂1L̂2 · · · L̂K 〉 =
{

0 for odd K∑{k1,k2,...,kK }∈
(K−1)!! pairings

〈
L̂k1 L̂k2

〉 · · · 〈L̂kK−1 L̂kK

〉
for even K.

(D3)

Together with the relation 〈δr̂mδr̂n〉 = Vmn + i�mn, this allows
connecting the expectation value of any polynomial function
of the quadratures to a polynomial of the elements of the mean
vector and covariance matrix of the Gaussian state. Crucially,
since the Hamiltonian (1) is a fourth-order polynomial in the
annihilation and creation operators (or the quadratures, since
2â j = x̂ j + i p̂ j), the energy functional E (d,V ) = 〈Ĥ〉 can be
found as a function of the mean vector and covariance matrix
by using this Gaussian moment theorem (D3). While this can
be a tedious task, it is conceptually simple. The Binder param-
eter as defined in the main text is determined from the ratio
between eighth-order polynomials in the quadratures and it is
another quantity that we will use extensively in this Appendix,
which we compute via the Gaussian moment theorem.

It is not difficult to prove [44,84–87] that any pure Gaus-
sian state |ψ (V, d )〉 characterized by its mean vector and
covariance matrix can be generated by applying some Gaus-
sian unitary Ĝ onto the vacuum state

|ψ (V, d )〉 = Ĝ|vac〉, with â j |vac〉 = 0, (D4)

where Gaussian unitaries are defined as those that perform a
linear transformation on the quadratures

Ĝ†r̂Ĝ = Sr̂ + d. (D5)

Preservation of the canonical commutation relations imposes
that the matrix S is constrained to the special symplectic group
of L modes, Sp(2L,R), that is, it has unit determinant and
must leave invariant the symplectic form �,

S�ST = �. (D6)

Taking into account that the covariance matrix of vacuum is
the 2L × 2L identity, Eqs. (D2), (D4), and (D5) imply the
relation

V = SST (D7)

between the covariance matrix of the Gaussian state and
the Gaussian unitary that defines it. The coherent states of
Appendix C, Eq. (C3), correspond to Gaussian states with V
equal to the identity d j = 2 Re(α j ) and dL+ j = 2 Im(α j ).

In order to find the ground state within the Gaussian
variational manifold we make use again of imaginary-time
evolution. Considering a Gaussian state with τ -dependent
variational parameters d(τ ) and V (τ ), it is possible to show
[89] using (D4) that the imaginary-time Schrödinger equa-
tion (C2) is transformed into

ḋ = −2V u(d,V ), (D8a)

V̇ = 4�TM(d,V )� − 4VM(d,V )V, (D8b)

where we have defined a vector and a matrix containing the
derivatives of the energy functional with respect the varia-
tional parameters

um = ∂E

∂dm
, (D9a)

Mmn = ∂E

∂Vmn
. (D9b)

For a given parameter set, we simulate these flow equa-
tions (D8) starting from many random mean vectors and
covariance matrices, up to a sufficiently long time τ that
ensures convergence to a fixed point of the equations (cor-
responding, as in the coherent case, to a local minimum of
the energy landscape). We then select the one providing the
lowest energy.

Before presenting the results, let us comment on one subtle
point related to how we generate random (but physical) co-
variance matrices. We exploit the Bloch-Messiah reduction or
Euler decomposition of symplectic matrices [84,85,87] so that
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FIG. 7. Results from the general Gaussian ground-state ansatz for 2V/U = 1.5. (a) Binder parameter B as a function of μ/U for increasing
system sizes L. The values 2J/U = 0.8 and ε/U = 0.4 have been chosen for this plot, but similar plots emerge for other values. It is evident
that a transition from homogeneous to staggered superfluid (Z2-SF to Z2-SS) is predicted at some critical chemical potential. (b) Largest value
of the chemical potential for which the Binder parameter is zero, which we define as μc/U , as a function of the system size L, for different
values of ε/U and 2J/U = 0.8. It is clear that μc/U converges towards some value μ∞

c /U as L increases. In (c) we plot this value as a function
of ε/U for two values of 2J/U . We can appreciate a linear relationship that is also found for any other value of 2J/U . Finally, in (d) we
plot the slope of the previous straight lines, ∂μ∞

c /∂ε, for different values of 2J/U . The slope tends to −1 as 2J/U increases, confirming the
coherent-state prediction μc ∼ −ε.

Eq. (D7) allows us to sample covariance matrices as

V = KTDK, (D10)

where D = diag(e−2r1 , . . . , e−2rL , e2r1 , . . . , e2rL ) is a diagonal
matrix with real and positive random numbers r j (technically
D is the covariance matrix of L independent squeezed vacuum
states [44,84–87]) and K is a symplectic orthogonal matrix
(so-called interferometer) that can be built as [87]

K =
(

X −Y
Y X

)
, (D11)

with X and Y the real and imaginary parts of a random L × L
unitary matrix Q = X + iY that we can generate from the QR
decomposition of any random complex matrix.

Our results are summarized in Fig. 7. Our goal is show-
ing that the general Gaussian ansatz is compatible with the
coherent-state ansatz deep in the superfluid region. In partic-
ular, we aim at showing that there is an asymptotic μ ∼ −ε

relation between the chemical potential and the pair injection
at the critical boundary separating the SF and SS phases
as 2J/U increases. To this aim, we proceed as follows. We
set 2V/U = 1.5. Then, for any value of 2J/U and ε/U we
expect a transition from SF to SS for some value of μ/U . We

use the Binder parameter to perform a finite-size scaling and
determine the critical μ/U as a function of ε/U for different
values of J/U . An example of the behavior of this parameter is
shown in Fig. 7(a) for J/U = 0.4 = ε/U (similar figures are
found for any other values). We check system sizes ranging
from L = 8 to 128, as specified in the figure. For all of them,
the Binder parameter changes from zero (or right below zero)
to a positive increasing function closer to a step function the
larger L is. For a given system size L, we then define the
critical chemical potential μc as the largest μ for which B is
zero (we estimate it by interpolating the points via the Makima
algorithm, consisting of piecewise third-order polynomials
with continuous first-order derivatives). In Fig. 7(b) we show
this μc as a function of L (for different values of ε and J =
0.4), which is expected to adhere to a power law of the type
μc = μ∞

c + βL−η for some positive parameters {μ∞
c , β, η}.

Indeed, we find that such a curve fits nicely to our data,
allowing us to estimate the critical chemical potential μ∞

c /U
and find a nice linear dependence on ε/U [Fig. 7(c)] for each
value of J/U . Finally, we consider the slope ∂μ∞

c /∂ε of those
linear curves as a function of J/U , finding that it approaches
−1 as J/U increases, that is, as we move deeper into the
superfluid region. This serves as support for the coherent-state
predictions.
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APPENDIX E: UNBALANCED COHERENT-STATE ANSATZ
SOLUTIONS FOR THE MODEL WITH U(1) SYMMETRY

In Sec. VI we studied an extension of the original model
(1) with U(1) symmetry and two modes per site. Within a
coherent-state ansatz, we explained that the model had bal-
anced solutions with equal amplitudes for both local modes,
as well as unbalanced solutions, for which the amplitudes
of the local modes differ. The balanced subspace followed
the exact same results that we already found for the original
Hamiltonian (1). In this Appendix we discuss how we have
concluded that this is the relevant subspace, since the minima
of the unbalanced subspace have larger energy in all parameter
space.

It is easy to prove that homogeneous unbalanced solutions
to Eq. (25) exist only when 2ε � μ + 2J , with

2α2
j = μ + 2J ±

√
(μ + 2J )2 − 4ε2 ∀ j, (E1a)

2β2
j = μ + 2J ∓

√
(μ + 2J )2 − 4ε2 ∀ j. (E1b)

These have an energy E = −L[3ε2 + (μ + 2J )2/2]/(U +
2V ), which is easily proven to be larger than that of the
balanced homogeneous solutions, corresponding to twice that
in Eq. (16). It is also easy (but lengthy) to find staggered un-
balanced solutions semianalytically, but these are also shown
to have larger energy than the balanced solutions in the region
of parameters that we have discussed in this work. The same
conclusion is drawn from the exhaustive search that we have
carried by numerically simulating the imaginary-time dynam-
ical equations equivalent to those derived in Appendix C for
the previous model starting from random initial conditions,

α̇ j = −〈[â j, Ĥ ]〉 = [μ − U |α j |2 + V (|α j+1|2 + |α j−1|2)]α j

+ εβ∗
j + J (α j+1 + α j−1), (E2a)

β̇ j = −〈[b̂ j, Ĥ ]〉 = [μ − U |β j |2 + V (|β j+1|2 + |β j−1|2)]β j

+ εα∗
j + J (β j+1 + β j−1). (E2b)

APPENDIX F: DERIVATION OF THE MASTER EQUATION

Here we explain how the master equation (27) is ob-
tained as a model that closely describes how pair injection
is implemented experimentally. While the specifics of the
environment and its coupling to the system might differ on
each experimental platform, we can use a generic model that
has the essential ingredients that are found on all platforms.
To ease the notation, let us simplify the system to a single
bosonic mode with annihilation operator â and energy ω0

(the generalization to the full bosonic array will be easily
carried out later). We consider an environment consisting of
a continuous set of bosonic modes with annihilation operators
b̂(ω), labeled by their characteristic frequency ω, satisfy-
ing canonical commutation relations [b̂(ω), b̂(ω′)] = 0 and
[b̂(ω), b̂†(ω′)] = δ(ω − ω′) [44]. As specific examples, for an
optical cavity this environment models the external field in
empty space [90,91]; for a superconducting circuit, it might be
the microwave field propagating in a transmission line or the
modes of a lossy circuit [32]; for cold atoms trapped in optical
lattices, it might correspond to the same atoms in another
internal state [61–63,92,93] or to diatomic molecules [64–66]

trapped in a shallow potential. The Hamiltonian describing the
whole system plus environment is given by

Ĥs+e = ω0â†â︸ ︷︷ ︸
Ĥsys

+
∫

ω∈O(2ω0 )
dω ωb̂†(ω)b̂(ω)︸ ︷︷ ︸

Ĥenv

+
∫

ω∈O(2ω0 )
dω

√
g(ω)[â†2b̂(ω) + â2b̂†(ω)]︸ ︷︷ ︸

Ĥint

, (F1)

where we have included a coupling between the system’s
mode and each environmental mode with strength g(ω) � ω0

(note that the square root is added in the definition of the inter-
action so that g has units of energy). Any interaction aimed at
implementing pair injection needs to exchange environmental
excitations with pairs of system excitations, a process that
is only efficient for environmental modes with energies ω

around 2ω0. We emphasize this by limiting the integration
domain to O(2ω0), understood as frequencies around 2ω0

within a bandwidth proportional to the energy g provided by
the interaction. Of course, linear coupling to environmental
degrees of freedom around frequencies ω0 will most likely
exist as well in experiments, say, a term∫

ω∈O(ω0 )
dω

√
g(ω)[â†b̂(ω) + âb̂†(ω)]. (F2)

As we note at the end of this Appendix, this would induce
conventional linear damping in the system. We focus here
on the quadratic coupling of (F1) because it is the one we
use to drive the system, ultimately generating coherent pair
injection.

The way in which the interaction (F1) is accomplished
between the system and the environment varies from platform
to platform. Photonic systems systems are the neatest one,
since this interaction naturally occurs inside materials with
a second-order nonlinear polarization response to the elec-
tric field [44,71,90,94] so the electromagnetic energy inside
them (the polarization field times the electric field) contains a
term cubic in the field, ultimately leading precisely to (F1).
In this context, such an interaction is referred to as down-
conversion or three-wave mixing with more generality, since
one excitation of the environment is converted into two ex-
citations of the system and vice versa, involving three waves
in the process. In other platforms the coupling between the
system and the environment takes a four-wave-mixing form
of the type b̂+(ω)b̂−(ω)â†2 + H.c., where now the environ-
ment has two modes per frequency, which satisfy canonical
commutation relations [b̂σ (ω), b̂†

σ ′ (ω′)] = δσσ ′δ(ω − ω′) and
[b̂σ (ω), b̂σ ′ (ω)] = 0. In superconducting circuits [32–34,37–
40] this interaction emerges when the coupling between
the system’s mode at frequency ω0 and two environmental
modes close to the sidebands ω0 ± 	ω (with 	ω � g) oc-
curs through a Josephson junction, whose stored energy has a
quartic response to the flux crossing it. In cold atoms [61–63],
this quartic interaction comes about when, for example, the
atoms trapped in the optical lattice have a hyperfine magnetic
number 0, while the environmental atoms moving in a shallow
trap have hyperfine magnetic numbers ±1, so conservation
of angular momentum forces s-wave scattering to have the
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quartic form introduced above. From the theoretical point of
view, this quartic system-environment interaction just compli-
cates slightly the technical derivation that we present below,
but without adding any conceptual difference. Hence we stick
with the form (F1) to illustrate how the master equation (27)
comes about.

Before integrating out the environment, we need to dis-
cuss its state in the absence of coupling to the system.
Here is where the word “driving” gains a definition: This
usually refers to the fact that a coherent state is generated
in the environment, for example, by making it correspond
to the output of a laser or a microwave generator in

optical systems or superconducting circuits, respectively,
or to a Bose-Einstein condensate in cold atoms. Coherent
states are the most classical (pure) states one can build
in quantum field theory, essentially leading, when used
as an ansatz, to classical field theory onto which vac-
uum fluctuations are superimposed. Such coherent states are
characterized by the complex amplitude 〈b̂(ω)〉 ≡ β(ω)e−iωt

that they produce on the environmental modes, where
|β(ω)|2dω is the number of excitations present in the
infinitesimal interval [ω,ω + dω]. As Hilbert space vec-
tors, these coherent environmental states are written as the
functional [44]

|ψenv[β](t )〉 = exp

(∫
ω∈O(2ω0 )

dω[β(ω)e−iωt b̂†(ω) − β∗(ω)eiωt b̂(ω)]

)
︸ ︷︷ ︸

D̂(t )

|vac〉, (F3)

where we have defined the environmental vacuum state that
satisfies b̂(ω)|vac〉 = 0 and the so-called displacement opera-
tor D̂(t ). It is not difficult to see that these states satisfy the
environmental Schrödinger equation i∂t |ψenv〉 = Ĥenv|ψenv〉
[44]. For our purposes, we choose β(ω) = −βdδ(ω − 2ωd),
which corresponds to an environment that drives the system
monochromatically at frequency 2ωd, as we will shortly see
explicitly (the factor 2 in the driving frequency and the neg-
ative driving amplitude are chosen for later convenience). In
the following we take βd real and positive for definiteness.

In order to integrate out the environmental degrees of free-
dom, it is more convenient to work in a picture where the
environment is in the vacuum state. Denoting by ρ̂ (s+e)(t )
the state of the system plus environment in the Schrödinger
picture, we then work in a new picture where the displacement
(F3) is removed. To this aim, we define a new state ρ̂

(s+e)
D =

D̂†(t )ρ̂ (s+e)D̂(t ) that evolves according to the Hamiltonian
[44]

ĤD(t ) = D̂†(t )Ĥs+eD̂(t ) − iD̂†(t )∂t D̂(t )

= Ĥsys −
√

g(ωd)βd(e−2iωdt â†2 + e2iωdt â2)︸ ︷︷ ︸
Ĥd(t )

+Ĥenv

+ Ĥint, (F4)

where we have used

D̂†(t )b̂(ω)D̂(t ) = b̂(ω) + β(ω)e−iωt , (F5a)

i∂t D̂(t ) = D̂(t )

[ ∫ +∞

−∞
dωβ(ω)ωe−iωt

×
(

b̂†(ω) + β∗(ω)eiωt

2

)
− H.c.

]
. (F5b)

This picture deals with a simplified environmental state
(vacuum) at the expense of working with a more compli-
cated system Hamiltonian Ĥ ′

sys(t ) = Ĥsys + Ĥd(t ) but leaving
the environmental Hamiltonian Ĥenv and the interaction Ĥint

untouched.
Since we are about to use perturbation theory as a last

step, the integration of the environmental degrees of freedom

is better performed in the interaction picture. This is defined
by discounting all dynamics but the one generated by Ĥint.
We then define the unitary operator (T is the time-ordering
symbol [44])

Û (t ) = T
[

exp

(
−i

∫ t

0
dt ′Ĥ ′

sys(t
′)
)]

e−iĤenvt , (F6)

which transforms the environmental operators as

Û †(t )b̂(ω)Û (t ) = e−iωt b̂(ω). (F7)

The transformed state ρ̂
(s+e)
I = Û †(t )ρ̂ (s+e)

D Û (t ) evolves then
according to the von Neumann equation

i∂t ρ̂
(s+e)
I = [

ĤI(t ), ρ̂ (s+e)
I

]
, (F8)

with an interaction-picture Hamiltonian

ĤI(t ) = Û †(t ) [ĤD(t ) − Ĥ ′
sys(t ) − Ĥenv]︸ ︷︷ ︸
Ĥint

Û (t ) (F9)

=
∫

ω∈O(2ω0 )
dω

√
g(ω)

[
e−iωt â†2

I (t )b̂(ω)

+ eiωt â2
I (t )b̂†(ω)

]
,

where we have defined the interaction-picture system opera-
tors âI(t ) = Û †(t )âÛ (t ).

We now find an evolution equation for the reduced state of
the system ρ̂I = trenv(ρ̂ (s+e)

I ), by keeping effects on its dynam-
ics up to second order in the interaction. To this aim, let us first
consider the integral form of the von Neumann equation (F8)

ρ̂
(s+e)
I (t ) = ρ̂I(0) ⊗ |vac〉〈vac| − i

∫ t

0
dt ′[ĤI(t

′), ρ̂ (s+e)
I (t ′)

]
,

(F10)

where we have assumed that the system and the environment
start in an uncorrelated state. Reinserting this on the right-
hand side of (F8) and performing the partial trace over the
environmental modes, we obtain

∂t ρ̂I(t ) = −
∫ t

0
dτ trenv

{[
ĤI(t ),

[
ĤI(t − τ ), ρ̂ (s+e)

I (t − τ )
]]}

,

(F11)
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where we have used 〈vac|ĤI|vac〉 = 0 and made the integra-
tion variable change τ = t − t ′ for later convenience. This
equation is explicitly second order on the interaction. Hence,
if we want to stay at that order of approximation, we can
neglect all effects on ρ̂

(s+e)
I (t − τ ) beyond trivial order. This is

known as the Born-Markov approximation. The Born approx-
imation can be seen as a combination of two approximations:
First, the correlations between the system and the environment
are neglected; then the backaction of the system onto the
(comparatively larger) environment is neglected [44,69,70].
Hence, within the Born approximation, the state on the right-
hand side is approximated by ρ̂

(s+e)
I (t − τ ) = ρ̂I(t − τ ) ⊗

|vac〉〈vac|, which allows performing the environmental trace
explicitly, obtaining

∂t ρ̂I(t ) =
∫ t

0
dτ C(τ )

[
â2

I (t )ρ̂I(t − τ )â†2
I (t − τ )

− ρ̂I(t − τ )â†2
I (t − τ )â2

I (t )
] + H.c., (F12)

where we have defined the environmental correlation function
C(τ ) = ∫

ω∈O(2ω0 ) dω g(ω)eiωτ . In most common situations,
the couplings g(ω) vary slowly with ω, so this is a func-
tion that decays quite fast with τ as we show shortly. One
invokes then the Markov approximation [44,69,70], where it
is assumed that this decay is much faster than any evolution
rate of the system, so that we can set τ → 0 in the state
ρ̂I(t − τ ) and the bosonic operators âI(t − τ ). In order to
justify this assumption, let us recall that only frequencies
around 2ω0 contribute to the physics of the problem, so we
should not make a big error by extending the integration do-
main to ω ∈ [−∞,∞] and setting the value of the couplings
to g(2ω0) ∀ω. This is sometimes called the strong Markov
approximation and leads to C(τ ) = 2πg(2ω0)δ(τ ), that is, a
correlation function that decays infinitely fast (infinite decay
rate), allowing for contributions only at τ = 0. Performing the
Markov approximation (in its strong form for simplicity), we
turn (F12) into

∂t ρ̂I(t ) = g(2ω0)π
[
â2

I (t )ρ̂I(t )â†2
I (t )

− â†2
I (t )â2

I (t )ρ̂I(t ) + H.c.
]
. (F13)

Finally, returning to the original Schrödinger picture, the sys-
tem’s state ρ̂(t ) = Û (t )ρ̂I(t )Û †(t ) evolves according to the
master equation

∂t ρ̂ = −i[Ĥ (t ), ρ̂] + γ (2â2ρ̂â†2 − â†2â2ρ̂ − ρ̂â†2â2),

(F14)

with the Hamiltonian

Ĥ (t ) = ω0â†â − ε

2
(e−2iωdt â†2 + e2iωdt â2), (F15)

where we made the identifications ε = βdg(2ωd) and γ =
πg(2ω0). Note that the Markov approximation requires that
these parameters must be much smaller than the decay rate
of the environmental correlator. This is a condition that one
has to be careful to satisfy in experiments unless specifically
looking for non-Markovian effects.

The master equation (F14) is the single-mode equivalent of
the one we were set to derive, Eq. (27). The generalization to
a bosonic array is straightforward, assuming that each mode
of the array is connected to its own environment and that
the extended Bose-Hubbard Hamiltonian (29) satisfies the
Markov conditions (meaning that, in addition to ε and γ , the
rest of parameters J , U , V , and μ are also much smaller than
the decay rate of the environmental correlator).

Finally, let us comment on the effect that a linear coupling
of the system to the environment of the type (F2) would have.
Following the same procedure derived above for the quadratic
coupling but simplified by the fact that the environment
around frequency ω0 is in the vacuum state, we would obtain
an extra dissipative term in (F14) of the type κ (2âρ̂â† −
â†âρ̂ − ρ̂â†â), with κ = πg(ω0). This leads, when extended
to all lattice sites, to the terms introduced in the master equa-
tion (27). Note that no linear coherent injection of the type
ε(e−iωdt â† + eiωdt â) is added from this environment because
we are not driving it, that is, all environmental modes with
frequencies ω ∈ O(ω0) are in the vacuum state. Moreover,
we find it important to remark that the environments with
modes around frequencies 2ω0 and ω0 typically couple to
the system through completely different physical mechanisms
and hence γ and κ can be independently tuned. In other words,
one should not see the coupling in (F1) as second-order term
accompanying (F2) in a perturbative expansion, which would
suggest γ � κ . In fact, experiments reporting γ � κ have
been carried in superconducting circuits [33].
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