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Vortex-pair dynamics in three-dimensional homogeneous dipolar superfluids
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The static and dynamic properties of vortices in dipolar Bose-Einstein condensates (dBECs) can be con-
siderably modified relative to their nondipolar counterparts by the anisotropic and long-ranged nature of the
dipole-dipole interaction. Working in a uniform dBEC, we analyze the structure of single vortices and the
dynamics of vortex pairs, investigating the deviations from the nondipolar paradigm. For a straight vortex line,
we find that the induced dipolar interaction potential is axially anisotropic when the dipole moments have a
nonzero projection orthogonal to the vortex line. This results in a corresponding elongation of the vortex core
along this projection as well as an anisotropic superfluid phase and enhanced compressibility in the vicinity of the
vortex core. Consequently, the trajectories of like-signed vortex pairs are described by a family of elliptical and
oval-like curves rather than the familiar circular orbits. Similarly for opposite-signed vortex pairs their translation
speeds along the binormal are found to be dipole-interaction dependent. We expect that these findings will shed
light on the underlying mechanisms of many-vortex phenomena in dBECs such as quantum turbulence, vortex
reconnections, and vortex lattices.

DOI: 10.1103/PhysRevA.109.063323

I. INTRODUCTION

The quantization of circulation and discretization of vor-
ticity is a striking manifestation of superfluidity in interacting
atomic Bose-Einstein condensates (BECs). Whereas classi-
cal vortices are characterized by a continuous vorticity field
concentrated at the cores of individual vortices, the phase
coherence of superfluids results in a vanishing vorticity ev-
erywhere but along discrete topological defect lines where
the superfluid density must necessarily vanish. While su-
perfluid vortices undergo reconnections and annihilations,
thereby releasing compressible energy in the process in the
form of phonons, the overall vorticity of a nondissipative
superfluid is conserved [1]. In the absence of such processes
the dynamics of ensembles of quantum vortices in a uniform
superfluid background are well described theoretically by the
Biot-Savart law [2,3]. Furthermore, if all of the vortices are
polarized (anti)parallel to a given axis and are restricted to
move in the plane normal to this axis, they can be modeled as
incompressible point vortices [4–6]. Ensembles of quantum
vortices have been the subject of extensive theoretical and
experimental studies. Notably, the ground states of rotating
superfluids are generally triangular vortex lattices, accompa-
nied by a spectrum of lattice vibrations in response to external
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perturbations [7–10]. Meanwhile, highly agitated superfluids
exist in a state of quantum turbulence, a disordered state of
vortex lines and phonon excitations of the fluid [11–13]. In
these macroscopic systems of vortices, the interaction be-
tween vortices is key, for example, setting the equilibrium
distance between vortices in lattices and driving vortex-vortex
reconnections in turbulent systems, which are key to changing
the topology of the flow and transferring energy across scales
[14–16]. This motivates the importance of understanding the
microscopic detail of the vortex-vortex interaction.

These phenomena manifest themselves in strikingly con-
trasting ways in dipolar Bose-Einstein condensates (dBECs)
which are composed of lanthanide atoms with large, perma-
nent dipole moments, such as chromium [17], dysprosium
[18,19], erbium [20], and europium [21]. Here, assuming
that all of the atoms are uniformly polarized along an ap-
plied magnetic field, the superfluid properties of the system
are strongly modified by the dipole-dipole interaction (DDI)
between the atoms. Since the DDI is responsible for magne-
tostriction [22,23], the energetic preference for dipolar atoms
to mutually align themselves along the dipolar axis, a di-
rectional dependence manifests itself in the dynamics of a
dBEC including a direction-dependent speed of sound and
Landau critical velocity [24,25]. Thus, an intricate interplay
exists between the DDI and “environmental effects” such as
external trapping or rotation. Long before the first experimen-
tal detection of vortex structures in dipolar BECs (dBECs)
occurred in 2022 [26,27], a considerable body of research
has been conducted on single-vortex ground states, vortex
lattices, and the dynamics of vortex ensembles in dBECs
subjected to harmonic confinement either in all three dimen-
sions or with a dominant confinement parallel to the axis of
vorticity, viz., the quasi-two-dimensional regime. Notably, the
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geometry of vortex lattices has been predicted to be strongly
dependent on the direction of dipole alignment and strength
of the dipole moments, with striped density phases and the
possibility of square lattices when the vorticity and the applied
magnetic field are not (anti)parallel [28–32]. Additionally, in
these trapped dBECs the cores of individual vortices have
been found to be perturbed by the dipolar interaction, leading
to elongated cores along the dipolar axis or density rippling
associated with the excitation of rotons [33–35]. Furthermore,
the dynamical behavior of small ensembles of vortices in
trapped dBECs has been demonstrated theoretically to differ
qualitatively from those of the equivalent nondipolar systems
[36–39]. We also note that the competing influences of the
DDI and externally imposed confinement allows for vortices
to be seeded in a trapped dBEC through direct rotation of the
magnetic dipole moments by rotating the applied magnetic
field [40], a method which was responsible for the first un-
ambiguous observation of vortices in dBECs in 2021 [26].

However, relatively little work has been conducted on the
physics of vortices in dipolar superfluids in domains that are
(roughly) uniform over a significantly sized volume in all
three dimensions and which can be effectively realized in
optically generated “box traps” [41,42]. These would serve
as experimental platforms to investigate vortex-vortex inter-
actions in a relatively clean system where the interactions of
the vortices with boundaries and density inhomogeneities are
minimized [13], allowing for the study of quantum turbulence
in a regime where the vast majority of theoretical investiga-
tions, including in a dipolar setting [43], have been carried
out. The possibility of future experiments in this direction mo-
tivates the addressing of outstanding questions regarding the
elementary properties of vortices in this regime. For instance,
it is not presently known whether the anisotropic vortex cores
and dipole-mediated dynamics previously predicted in the
presence of at least some external confinement are inherent
in any dipolar superfluid or if these phenomena are the result
of instabilities arising from the interplay between the DDI and
the trapping. The work we present here aims to resolve some
of these questions and thereby shed light on the properties
of single-vortex lines and pairs of vortex lines in a uniform
three-dimensional (3D) dipolar BEC.

This article is structured as follows. In Sec. II we provide
an overview of the mean-field model employed to study vor-
tices in a three-dimensional, uniform dBEC while, in Sec. III,
we search for stationary states of the system containing a
single vortex and examine the ways in which its properties
diverge from those of a vortex in a nondipolar BEC. These
single-vortex stationary solutions provide insight into the dy-
namics of vortex pairs, which we first examine for the case
where both vortices boast the same circulation in Sec. IV
before proceeding to analyze pairs of opposite circulation in
Sec. V. These findings are summarized in Sec. VI along with
an outlook to future lines of enquiry in this field.

II. FORMALISM

In this work, we study the structure and dynamics of
quantum vortices in dipolar superfluids using the dipolar
Gross-Pitaevskii equation (dGPE), which adequately mod-
els the behavior of interacting BECs in the mean-field

approximation. Let us consider a single atomic species of
mass m and magnetic dipole moment μd which is polarized
uniformly by an applied magnetic field parallel to d. For this
dipolar BEC, the dGPE is given by [31,44,45],

ih̄∂tψ =
{

− h̄2

2m
∇2 + g[n + 3εddVdd(r) � n(r)] − μ

}
ψ.

(1)

Here, the two-body short-ranged interaction strength is
g = 4π h̄2as/m with as the scattering length of the atom-atom
scattering potential, n = |ψ |2 is the atomic density of the con-
densate, and μ the chemical potential of the condensate which
fixes the normalization of ψ and satisfies the self-consistency
relation

μ =
∫

d3r

{
h̄2

2m
|∇ψ |2 + gn2 + 3gεddn(r)[Vdd(r) � n(r)]

}
.

(2)

The parameter εdd = mμ0μ
2
d/(12π h̄2as), where μ0 is the

permeability of free space, serves as an effective dipolar-to-
contact interaction ratio that encapsulates the degree to which
the dynamics of the superfluid are governed by the dipolar
interaction. Furthermore, the two-body dipole-dipole interac-
tion is defined as [44]

Vdd(r) = 1

4π

[
1 − 3(d̂ · r̂)2

r3

]
, (3)

and has a Fourier transform given by

Ṽdd(q) = (d̂ · q̂)2 − 1
3 . (4)

Note that while the global isotropy of the dGPE is broken in
the presence of a dipolar interaction, a rotational symmetry is
still preserved about the dipolar axis d̂.

Since no external confining potential enters Eq. (1), its
ground-state solution is a constant density n0 and the cor-
responding chemical potential is given by μg = gn0{1 +
εdd limq→0[3(d̂ · q̂)2 − 1]}. Thus, in free space the solutions
to Eq. (1) are unstable when εdd > 1. While superfluids can
still remain stable beyond this threshold, as seen by the exper-
imental realization of self-stabilized quantum droplets [46,47]
and supersolids [48–50] in dipolar BECs in recent years, a
theoretical description of this regime requires an extension
of the mean-field dGPE to incorporate quantum corrections
to the interaction [51–53]. In this work, we explore only the
regime 0 � εdd < 1 for which the mean-field description is
sufficient [45].

We choose to work in natural units where energy is ex-
pressed in units of μg, length in units of the healing length
ξ = h̄/

√
mμg, time in units of h̄/μg, and ψ in units of

√
n0

[54]. Using these natural units, Eq. (1) can be written in
dimensionless variables as [24,43]

i∂tψ = [− 1
2∇2 + Vint (r) � n(r) − μ

]
ψ, (5)

where

Ṽint (q) = 1 + 3εddṼdd(q)

1 + 3εdd limq→0 Ṽdd(q)
(6)
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is the Fourier transform of the full scaled nonlocal two-body
interaction.

It is also helpful to recast the dGPE in a hydrodynamic
form by writing ψ in the Madelung form ψ = √

neiS and
interpreting the superfluid phase S as a velocity potential
for the superfluid velocity v such that v = ∇S. Under these
transformations, the dGPE may be reexpressed as a pair of
superfluid hydrodynamic equations [44]

∂t n = ∇ · (nv), (7)

m∂t v = −∇ · {
1
2 mv2 + Vint (r) � n(r) − μ

}
, (8)

from which we shall extract considerable intuition about the
expected form of numerical solutions to the dGPE. For in-
stance, the quantization of circulation of ψ [1], viz.,

� =
∮

ds · v = 2πq : q ∈ Z, (9)

is inherently a manifestation of the single-valued nature of ψ

while the fact that the superfluid density vanishes at the core
of a quantum vortex, where q �= 0, is a logical consequence of
finding a solution of Eq. (7) for n(r) where v(r) is divergent.
Hereafter, we consider only vortices with a single quanta of
circulation, i.e., |q| = 1.

Our results are based on numerical solutions of the dGPE
obtained by propagation via the split-step pseudospectral
method [55], in which the spatial derivatives on the right-hand
side of the dGPE are computed using Fourier-based methods
and are propagated separately to the remaining terms. Given
that we wish to simulate a system where, far from the vortex
cores, the density is approximately constant, the choice of
boundary conditions must reflect this. This necessitates the
use of distinct spatial grids and corresponding spectral meth-
ods for computing the spatial derivatives of ψ depending on
the total circulation generated by vortices in the system. These
shall be described in greater detail in the relevant sections of
this article.

III. SINGLE-VORTEX STRUCTURES FOR ORTHOGONAL
DIPOLE ALIGNMENTS

In order to best understand vortex pairs, it is important to
first examine the properties of individual vortex lines. Surpris-
ingly, vortex lines in uniform 3D dipolar BECs have received
little attention when compared to those in trapped 3D systems
or those that are uniform in quasi-2D limit, a regime where
the external confinement along the axis of vorticity is strong
enough to render the dynamics of the condensate effectively
two dimensional. We proceed thus to probe the structure of
a single vortex in a uniform dipolar BEC and explore the
effects of varying the dipolar interaction ratio εdd and the
dipole alignment axis d̂. Without loss of generality we take the
vortex to be parallel to the z axis and focus on the two most
disparate scenarios, viz., dipole alignments along either the z
or x axes, which represent alignments parallel or orthogonal
to the vorticity, respectively. If the circulation of v around the
boundary of a planar cross section of a computational cell
is nonzero, the boundary conditions in this plane cannot be
periodic if the density profile of the condensate is to remain
finite since a phase jump between opposite sides of the cell is

inevitable. Indeed, any attempt to solve the dGPE in a periodic
box with an initial state of nonzero circulation will result in
phase defects artificially emerging at the boundaries in order
to yield a vortex-neutral state inside the box. Thus, whenever
there exists an uneven number of vortices of positive and nega-
tive �, we employ Neumann (reflecting) boundary conditions
in the x-y plane [56,57], where the normal derivative of ψ

vanishes at the boundaries, and periodic boundary conditions
along the z axis. In what follows, the computational grid is of
size (Nx, Ny, Nz ) = (513, 513, 2) with with equal grid spac-
ings �x = �y = �z = 25/256, along each direction.1 To use
pseudospectral methods for computing the spatial derivatives,
we also require wave-number grids of the same size as the
position grids but with grid spacings �ki = π/[(Ni − 1)�ri]
in the kx-ky plane and �kz = 2π/(Nz�z). Then, the spa-
tial derivatives may be computed using the discrete cosine
transform [58] (DCT),2 while the derivative along the z axis
is computed via the discrete Fourier transform (DFT)/fast
Fourier transform [55] (FFT).

Let us first consider a dipole alignment parallel to the
z axis, for which the condensate solution will be uniform
along z. Writing ñ(k⊥) = F{n(r⊥); r⊥ → k⊥} and evaluating
[Vdd � n](r) explicitly yields

[Vdd � n](r) = 1

(2π )2

∫
d3k eik⊥·r⊥eikzzñ(k⊥)δ(kz )

(
k2

z − 1
3

)
= −n(r)/3, (10)

implying that the only effect of the dipolar interaction in this
regime is to shift the value of the chemical potential depending
on the value of εdd. Thus, neither the density or phase profile
of a straight vortex line are affected by the dipolar interaction
if the atomic dipole moments are polarized parallel to the
vortex line. In the limit of an infinite domain, the phase of
such a vortex at the position (x, y) = (xv, yv ) is thus given
by the nondipolar limit S∞(x, y) = q arctan(y − yv, x − xv ) :
n ∈ Z. On a grid with reflecting boundaries in the x-y plane,
the phase is modified at the edges of the grid to account
for the boundary condition and it is this modified phase that
we initially impose upon the trial state ψ prior to an at-
tempt to obtain a stationary state; a fuller discussion of the
nondipolar vortex phase in a reflecting box is provided in
the Appendix, Sec. A 1. We obtain this vortex solution by
propagating the dGPE via the normalized gradient method,
viz., evolving Eq. (5) with t 	→ it and renormalizing ψ at
each time step such that the mean value of the density obeys
〈n〉 = 〈|ψ |2〉 = 1 as well as reapplying the vortex phase at
each time step. The corresponding density profile is shown
in Fig. 1(a). As expected, the density is axially isotropic
due to the corresponding isotropy of the nondipolar GPE.
Furthermore, matching the properties of a q = 1 vortex in a
uniform nondipolar BEC, n(ρ) is proportional to ρ2 as ρ, the

1We use only 2 grid points along z as uniformity is assumed along
this dimension.

2More specifically, to ensure that the same parity conditions are
observed at both boundaries along a given axis, we employ the DCT-I
transform [81].
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FIG. 1. Cross sections of the density profiles n(r) in the x-y plane for a vortex of circulation 2π where the magnetic field is polarized
along the x axis and εdd = 0 (a), 0.3 (b), 0.6 (c), and 0.9 (d). The density n(ρ) ∼ ρ2 as ρ → 0 and approaches a constant value far from the
vortex core. For nonzero εdd, the core is elongated along the dipolar axis.

distance from the center of the vortex core, tends to zero, and
approaches μ/μg when ρ  ξ [1].

By contrast, whenever the dipole polarization has a
nonzero projection orthogonal to the vorticity, we must look
to the superfluid hydrodynamic equations to provide some
insight about the form of the stationary solutions. Let us
consider a dipole moment located at the origin and polarized
along the x axis. From the form of the DDI in real space,
we observe that its long-ranged interaction of this dipole
moment with a second moment is dependent on the angle
between the dipole polarization and the separation axis θd.
Since Vdd(r) ∝ 1 − 3 cos2 θd, it is energetically preferable for
the two dipole moments to minimize the angle θd, an effect
referred to as magnetostriction and which is responsible for
the elongation of trapped dipolar BEC clouds along the po-
larization axis. From a superfluid hydrodynamic perspective,
a lowered dipolar interaction potential along the axis of the
polarization naturally leads to higher values of the density
along this axis in stationary states of the Euler equation (8)
[22,23,59]. Via a similar line of reasoning, the anisotropy of
the density profile is diminished in the far field due to the 1/r3

dependence of the DDI.
In the particular case of a quantum vortex, its qualitative

features can be elucidated through a variation of the preceding
arguments. Given that a vortex line is characterized by a lo-
calized absence of dipolar superfluid atoms in its core, it may
be interpreted as a localized line of dipolar holes polarized
antiparallel to the atomic dipoles [33] in a manner analogous
to the counterparts of electrons in solid-state systems. Given
that the generalized form of the DDI for two dipole moments
not necessarily parallel to each other is of the form [44,45]

V (12)
dd (r) = 3

4π

[
1 − 3(d̂1 · r̂)(d̂2 · r̂)

r3

]
, (11)

it is clear that the energetically preferential alignment for an
atomic dipole-vortex hole dipole pair is such that the angle
between the applied magnetic field and the mutual separation
is π/2. Thus, the vortex core becomes elongated along the
direction of the applied magnetic field as the virtual vortex
dipole moments align preferentially along the magnetic field,
thereby expelling superfluid atoms in a larger domain along
this axis relative to the orthogonal axis. This, we note, is a
manifestation of the same magnetostrictive effect that induces
an elongation of the condensate density envelope of a trapped
dipolar BEC along the magnetic axis but is mediated by vir-
tual, rather than real, dipole moments [60].

While this core elongation has been discussed extensively
in the literature for both three-dimensional trapped [27,60]
and quasi-two-dimensional uniform [35,36] dipolar BECs,
little attention has been paid to its consequence on the phase
profile of the vortex. Focusing on the continuity equation (7)
rather than the Euler equation (8) we argue that a logical
consequence of an anisotropy of the stationary state density
profile must be a corresponding anisotropy of the superfluid
phase and velocity field. Thus, the normalized gradient de-
scent method is again used to find stationary states of the
dGPE with d̂ = x̂ where a single vortex is located at the
center of the numerical grid but, while the density is renor-
malized throughout the propagation, both the (normalized)
density and phase are allowed to evolve freely during the
search for a stationary state of Eq. (5). The results of these
simulations are depicted as cross sections of the density for
εdd = {0.3, 0.6, 0.9} in Figs. 1(b)–1(d), respectively. Here, it
is clear that the vortex core becomes elongated along the
dipolar axis for nonzero εdd and that the degree of elongation
increases with the dipolar interaction strength. Note that no
global density rippling is present in the system, unlike in the
quasi-two-dimensional limit where rotons can be excited in
the vicinity of the vortex core [35,36]; these rotonic ripples
are a consequence of external confinement which is absent in
our analysis.

To gain further insight into these deviations from the
nondipolar limit, we also compute

δn(r) = n(r) − 1

2π

∫ 2π

0
dϕ n(r, ϕ), (12)

the discrepancy of the density at a given point from the angle-
averaged density at that radius, and δS(r) = S(r) − SNB(x +
iy), the discrepancy of the phase from the incompressible
solution, satisfying Neumann boundary conditions, given by
Eq. (A1) in the Appendix, Sec. A 1. Furthermore, we evaluate
∇ · v, a measure of the compressibility of the superfluid veloc-
ity fields of the stationary solutions, and dd(r) = 〈Vdd(r)〉 ≡
n(r) �Vdd(r), the local expectation value of the dipolar inter-
action potential. Each of these quantities are presented, below,
in Fig. 2 for the values εdd = {0.3, 0.6, 0.9}.

From Fig. 2, it is immediately clear that the density profile
anisotropy δn(r) in the first row is inversely correlated with
dd(r) in the third row. In other words, the relative elongation
of the vortex cores along the x axis is reflected in the larger
values of dd along the x axis as the superfluid atoms are
ejected from regions in which the local dipolar interaction
energy is higher. As we had predicted earlier, the plots of δS in
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FIG. 2. Cross sections of the axial density anisotropy δn (first row), phase anisotropy δS (second row), local dipolar interaction energy
dd (third row), and compressibility ∇ · v (fourth row) as defined in the main text for εdd = 0.3 [first column, (a)–(d)], 0.6 [second column,
(e)–(h)], and 0.9 [third column, (i)–(l)]. An inverse correlation between δn and dd is evident and the maximum magnitude of both δn and δS
increases with εdd. Since v diverges at the phase singularity, we have set ∇ · v = 0 at the origin for the sake of clarity.

the second row demonstrate that the vortex phase is modified
by dipolar interaction. Interestingly, both δn and δS take the
form of lobes reminiscent of d-wave orbitals, a symmetry
obeyed by the DDI, with the lobes corresponding to δn being
out of phase compared to those of δS by π/4. We also observe
that the fact that the maximum magnitude of δn increases with
εdd is accompanied by a similar behavior exhibited by δS,
which we note is a consequence of n and S mutually satisfying
the continuity equation (7). It is also evident that the phase
discrepancy manifests itself in the superfluid velocity field in
the form of a non-negligible compressibility in the vicinity
of the vortex core in the fourth row of Fig. 2. In particular,
this behavior exhibited by δS suggests that the velocity of test
particles around the vortex is not uniform for a given radius
and that this nonuniformity is enhanced for more strongly
dipolar condensates. This, in conjunction with the anisotropy

of dd, bears intriguing consequences for the trajectory of a
second vortex with respect to this vortex, which we explore
for the remainder of this article.

IV. SAME-SIGNED VORTEX PAIR DYNAMICS

In Sec. III, it was observed that orthogonal magnetic
dipole polarizations had a considerable effect upon the density
structure of a vortex and a small, but non-negligible, effect
upon its phase structure. Just as the necessity of satisfying
the superfluid continuity equation in the stationary regime
provides an explanation for the interplay between the axial
anisotropies of the density and phase, we would expect diver-
gent time-dependent dynamics of small numbers of vortices
with orthogonal polarizations. Conversely, as the structure of
a straight vortex line was found to be unmodified relative to
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FIG. 3. Trajectories of a vortex of circulation � = 2π initially imprinted at the position x(t = 0) = 0, y(t = 0) = −s/2, where s = 3.125
(a), 6.25 (b), or 12.5 (c), and accompanied by a vortex of the same circulation located initially at x(t = 0) = 0, y(t = 0) = s/2. In each plot,
we have εdd = 0.3 (blue), 0.6 (red), 0.9 (black). Due to the redistribution of energy at the start of each simulation the vortices initially increase
their mutual separation and we present the trajectories of one closed orbit after a new equilibrium has been attained. Here, an increasing degree
of divergence from perfectly circular orbits for larger (smaller) values of εdd (s) is apparent.

its nondipolar counterpart when the vorticity is parallel to the
dipole polarization, it would be expected that the dynamics of
ensembles of such vortices would likewise be unaffected by a
nonzero dipolar interaction strength.

Thus, we employ the same numerical grid parameters and
mixed Neumann-periodic boundary conditions as in Sec. III
and imprint the phases of two vortices, both of circulation
� = 2π at the positions (x, y) = (0,±s/2), continuously dur-
ing a normalized gradient descent propagation of the dGPE
until convergence of the stationary solution is obtained. Sub-
sequently, these stationary solutions are propagated in real
time with a time step of �t = 0.001; the positions of each
vortex are tracked throughout the simulation by identifying
points on the grid around which the circulation is approx-
imately 2πq, q ∈ Z [61,62] and then employing a subgrid
least-squares interpolation method to further refine the es-
timated positions of the vortices [63]. In the nondipolar,
incompressible limit, the dynamics of an ensemble of straight,
(anti)parallel vortex lines is governed by the point-vortex
model. More specifically, assuming a vorticity about the z axis
and indexing each vortex by its position ri, the positions of
each vortex evolve according to the following coupled set of
equations:

ṙi = −1

2π

∑
j �=i

� j
ẑ × (ri − r j )

|ri − r j |2 . (13)

For a pair of same-signed vortices of circulation �i = � j =
2π and initial separation r, it is easy to show that the solution
of Eq. (13) is the vortex pair orbiting their center of mass at a
fixed radius, i.e., in a circular orbit, and moving anticlockwise
with an angular velocity ω = 2ẑ/r2. Thus, the solution of the
point-vortex model for the two imprinted vortices in our dGPE
simulations is that the two vortices are locked in two circular
orbits around the center of mass r = 0 at a radius s/2 and
period 4πs2.

However, our numerical simulations demonstrate the ex-
istence of orbits whose profiles are distinctly noncircular. In
Fig. 3, we present plots of the same-signed vortex trajecto-
ries with an initial displacement parameter s = 3.125ξ (a),

s = 6.25ξ (b), and s = 12.5ξ (c), with εdd ∈ {0, 0.3, 0.6, 0.9}
and d̂ aligned along the x axis throughout the simulations. For
the sake of clarity, only one of the two vortex trajectories is
plotted for each parameter set; the phase shift of the second
vortex with respect to the depicted vortex is always approxi-
mately π/2. We also note that there is an initial transient of
phonons released from the vortices at t = 0 as the solution
adjusts, and that this leads to a small initial increase in vortex
separation; in Fig. 3 we plot only the trajectories after the
vortices have relaxed into the equilibrium orbits that they
occupy thereafter.

In Fig. 3 the qualitative shape of the trajectory of the vortex
at fixed εdd appears to be largely independent of the initial
separation as the plots in each panel of the figure are very
similar to each other. However, striking differences are evident
when focusing on any one of the three panels, thereby fixing
the initial vortex-vortex separation, and instead varying εdd.
When εdd = 0.3, the trajectory of the vortex is almost per-
fectly circular and is characterized by only a small ellipticity
with a semimajor axis along ŷ. A larger degree of ellipticity
is seen for εdd = 0.6, though, and for εdd = 0.9 the vortex
trajectories are clearly no longer elliptical but are instead
reminiscent of Cassini ovals [64].

We interpret these qualitative differences in the trajectories
of the same-signed vortices as being due to the anisotropy
of the local dipolar interaction energy dd, experienced by
either vortex due to the presence of the other [cf. Figs. 2(c),
2(g), and 2(k)]. Whereas the dipolar interaction energy for a
dipolar atom located along the x axis relative to a vortex (and
thus separated from the vortex line parallel to the dipolar axis)
is higher than that for an atom along the y axis, the presence
of a second vortex line at a separation parallel to the dipolar
axis is energetically favorable compared to the orthogonal
case because the second vortex is, as argued in Sec. III, effec-
tively a line of virtual dipole moments polarized antiparallel
to the atomic dipole moments. Thus, the higher kinetic energy
arising from the dipole moments being closer together when
their separation is parallel to the x axis is counterbalanced
by the lower dipole-dipole interaction energy, thereby aris-
ing in elliptical and oval-like orbits with a semimajor axis
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orthogonal to the dipole polarization. Since the dipole-dipole
interaction energy decays with the distance from the vortex
core, as evident in the third row of Fig. 2, it is less favorable
for orbits to be anisotropic as the mean intervortex distance
increases and this is evident in comparing the trajectories in
each panel of Fig. 3 for a given value of εdd.

It is important to note that in previous theoretical stud-
ies of vortex dynamics in quasi-two-dimensional systems,
like-signed vortex pairs were observed to undergo a similar
transition in orbit from circular, through elliptical, to oval-
like with increasing εdd when the dipole polarization had a
nonzero projection in the x-y plane [36]. The same studies in
the quasi-2D limit found a similar dependence of the dipolar
energy cost associated with the existence of a vortex pair
on the orientation of the intervortex separation axis, thereby
explaining the deviations from the nondipolar point-vortex
paradigm. Similarly, a study of same-signed vortex pairs in a
harmonically trapped dBEC subject to dissipation predicted
different decay rates for the vortex trajectories depending
on the initial angle between the vortex separation and the
dipolar axis [37]. Given our results, we conclude that these
discrepancies are an intrinsic feature of same-signed vortex
pairs in dBECs and do not arise necessarily from the interplay
of external confinement and the DDI. Crucially, whereas ro-
tons play an important role in the dynamics of dipolar BECs
confined strongly along the vortex alignment, it can be seen
in Fig. 3 that, by comparison with Ref. [36], the presence
of a roton minimum in the excitation spectrum of a dipolar
BEC is not necessary for the trajectories of vortices in a
uniform background to deviate strongly from the point-vortex
paradigm.

V. VORTEX-DIPOLE DYNAMICS

We now proceed to explore the dynamics of straight, an-
tiparallel vortex lines, i.e., vortex dipoles, in an orthogonally
polarized dipolar BEC. Returning to the point-vortex dynam-
ics of the incompressible limit and setting �1 = −�2 = 2π

one finds that ṙ12 is now conserved and that Ṙ12 = (ẑ ×
r̂12)/r12. Thus, the vortex-antivortex pair undergoes transla-
tion along the binormal axis parallel to ẑ × r̂12 at the constant
speed v = 1/r12. For instance, for a pair of vortices with
circulations ±2π at the initial positions (x, y) = [x(0), y(0) ±
s/2], the trajectories of the vortices as predicted by the point-
vortex model are

[xi(t ), yi(t )] =
[

x(0) + t

s
, y(0) ± s

2

]
. (14)

In the preceding section, however, it was shown that the
strongly enhanced compressibility of the superfluid flow and,
more crucially, the vortex-vortex dipolar interaction cause
deviations from the point vortex model that are observable
even when the vortex cores are not overlapping. Such de-
viations would then be detectable in future experiments in
box-trapped dipolar BECs [41,42] where vortex-antivortex
pairs are generated by dragging a potential barrier through
the system. Hence, we imprint a pair of vortices of circu-
lation � = ±2π at the positions (x, y) = (0,±s/2), for a
given choice of initial intervortex separation s, on a grid
with periodic boundary conditions in all three directions since
the neutral overall circulation of the system allows for a

stationary state without the formation of phase defects at the
boundaries. Specifically, in this case the dGPE is solved on a
(Nx, Ny, Nz ) = (512, 512, 2) grid with equal grid spacings in
each direction, given by �x = �y = �z = 25/256, and the
spatial derivatives are computed via FFTs; the wave-number
grids have spacings �ki = 2π/(Ni�ri ). As in the previous
section, the true phase of the vortex-antivortex pair is not sim-
ply a composition of the phases of the two vortices in the limit
of an infinite domain, arctan(y, x − s/2) − arctan(y, x + s/2),
as we need to account for the effect of the boundaries. Assum-
ing incompressibility yields this modified phase, SPB(x, y),
which is specified by Eq. (A3) in the Appendix, Sec. A 2, and
is used in the initial conditions of these simulations. Similar
to our analysis of the same-signed vortex pair, we choose to
vary εdd from 0 to 0.9 and allow d̂ to be parallel to x̂, ŷ, and ẑ.

The results of these simulations reveal that for s ≡ �y(t =
0)  ξ , the vortex-antivortex trajectories are still straight
lines along the binormal axis except at the earliest times when
the intervortex separation �y(t ) adjusts slightly due to the
initial transient rearrangement of energy in the simulations.
In order to compare the velocities of a vortex-antivortex pair
for different configurations of {s, εdd, d̂}, we consider only the
dynamics after the new equilibrium intervortex separation is
reached by neglecting the first 25 units of time (h̄/μ) and scal-
ing the time average of the translational velocity after this time
vx by the time average of the separation of the vortices 〈�y〉.
Figures 4(a)–4(c) present vx〈�y〉 as a function of εdd over
the range εdd ∈ [0, 1). For the sake of comparison, we also
provide plots of the equilibrium intervortex separation after 25
units of time, 〈�y〉, in Figs. 4(d)–4(f). Note that in Fig. 4, we
have s = 3.125 in the first column ]Figs. 4(a) and 4(d)], 6.25
in the second column [Figs. 4(b) and 4(e)], and 12.5 in the
third column [Figs. 4(c) and 4(f)], and that all of the subplots
include data pertinent to dipole orientations along the x axis
(ϕB = 0, blue curves) and the y axis (ϕB = π/2, red curves).
Furthermore, as the system is considered homogeneous along
the z axis, our results for any given value of εdd with a dipole
orientation along ẑ are exactly those of the εdd → 0 limit for
any choice of dipole orientation.

As per Eq. (14), the quantity vx〈�y〉 should be equal
to unity in the point-vortex limit. In the nondipolar limit,
our dGPE simulations yield values of vx〈�y〉 slightly larger
than 1, which we attribute to numerical error arising from
the discretization of space and time as well as the nonzero
compressibility of the superfluid flow. However, instead of
the scaled translational velocity being equal to the nondipolar
value regardless of the parameters of the dipolar interaction,
we find that this quantity is strongly dipole dependent as
illustrated in Figs. 4(a)–4(c). For instance, over the full range
of εdd that we have probed, vx〈�y〉 increases monotonically
with εdd when the dipole polarization is along the y axis,
viz., parallel to the intervortex separation. It is also evident in
comparing Figs. 4(b) and 4(c), in which s/ξ = 6.25 and 12.5,
respectively, that vx〈�y〉 is almost linear in εdd for sufficiently
large intervortex separation. The corresponding plots of 〈�y〉
in Figs. 4(e) and 4(f), respectively, are also very similar to
each other with a monotonically increasing value of 〈�y〉 as a
function of εdd. However, for smaller initial separations such
as s/ξ = 3.125 in Figs. 4(a) and 4(d), vx〈�y〉 is not at all
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FIG. 4. Velocities along the x axis of a vortex-antivortex pair of circulation � = ±2π with an initial separation along the y axis of s ≡
�y(t = 0) = 3.125ξ (a), 6.25ξ (b), and 12.5ξ (c). The vortices initially approach each other slightly before relaxing into a new equilibrium
separation due to the effects of the transient energy and thus we ignore the first 25 units of time. We scale the time-averaged velocity along the
binormal axis for t > 25, vx , by the time-averaged vortex-antivortex separation along the y axis, 〈�y〉.

linear in εdd as 〈�y〉 attains a global maximum at εdd ≈ 0.9
rather than increasing monotonically with εdd.

The corresponding behavior of the vortices when the dipole
moments are polarized along the x axis, i.e., the translational
axis, is more complicated. Let us first describe the features of
Fig. 4(a), where the vortex separation is initially s = 3.125ξ .
Here, the scaled translational velocity initially increases with
εdd and attains a global maximum (which exceeds the corre-
sponding value of vx〈�y〉 with the dipole moments polarized
along the y axis) in the range εdd ∈ (0.05, 0.1) before de-
creasing for larger εdd. By contrast, in Figs. 4(b) and 4(c),
where s = �y(t = 0) equals 6.25ξ and 12.5ξ , respectively,
the scaled translation velocity decreases monotonically for
small εdd. For larger values of εdd, regardless of the initial
intervortex separation, s = �y(t = 0), the scaled translational
velocities attain a global minimum at a value of εdd that is
smaller for larger s. The intervortex separations for polar-
izations along the x axis, as depicted in Fig. 4, also behave
qualitatively differently to the corresponding solutions for
polarizations along the y axis; whereas 〈�y〉 increases mono-
tonically with εdd regardless of s, we observe an inflexion
point of 〈�y〉 at εdd ≈ 0.5 when s = 3.125ξ . In general, we
attribute the divergent behavior of the vortex dynamics at
small s relative to the larger vortex separations to the effects
of a slight overlap of the vortex cores in Fig. 4(a). On the
other hand, the dipolar dependence of the translational veloc-
ities and equilibrated intervortex separations is likely due to
an interplay between the dipolar correction to the superfluid

velocity induced by a single vortex, as elucidated in Sec. III,
and the dipole-dipole interaction between the vortices them-
selves.

We note that our solution scheme approximately preserves
the total energy of the system and, due to the point-vortex
prediction of constant intervortex separation being upheld by
our simulations after the initial mutual approach, the vortex-
vortex dipolar energy is also conserved after this initial time.
Thus, in comparison to the trajectories of same-signed pairs in
Sec. IV, a simple explanation of the vortex-antivortex transla-
tion velocity discrepancy in terms of conserving the dipolar
interaction energy is less forthcoming. Further investigations
of this regime are necessary to clarify these questions. It
is also pertinent to note that previous theoretical studies of
vortex-antivortex pairs in dipolar superfluids have noted a
dependence of the critical velocity of vortex-antivortex forma-
tion when dragging an obstacle through a dipolar superfluid
on the angle between the obstacle velocity and the dipole
polarization, an effect attributed to the anisotropy of the roton
dispersion at finite wave number resulting from the obstacle’s
presence [24,65]. Other studies in the quasi-two-dimensional
regime have suggested that the presence of a transverse
dipole-dipole interaction can even suppress the annihilation
of a vortex-antivortex pair initially separated closely enough
that the equivalent pair in a nondipolar condensate would
be annihilated [36]. However, to the best of our knowledge,
no prior investigations have uncovered a relation between
the vortex-antivortex propagation velocity as opposed to the
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critical velocity of an obstacle dragged through a superfluid
that is required to nucleate such a pair and the direction of the
dipole polarization.

VI. CONCLUSION

In this work, we have demonstrated that the anisotropy
of the magnetic dipolar interaction can fundamentally alter
the properties of both the stationary states and dynamics of
quantum vortices in a superfluid as compared to the nondipo-
lar paradigm. Whereas prior studies had focused on scenarios
that were then more amenable to experimental probes, such as
harmonically trapped systems and systems strongly confined
along the axis of vorticity, we have shown that the qualita-
tive deviations that these investigations observed are evident
even in a wholly uniform, three-dimensional system. First, the
stationary states of a single, straight vortex line are shown to
exhibit axial anisotropy in both the density and phase profiles.
This is seen to be due to the effective dipolar interaction near
the vortex core between the dipolar atoms of the bulk and the
virtual oppositely polarized dipolar holes of the vortex line.
While a modification of the phase had been noted in a previ-
ous study of single vortices in harmonically trapped dBECs
[60], this phenomenon had not previously been predicted in
the uniform limit. For systems of pairs of vortices, both the
like-signed and opposite-signed cases exhibit deviations from
the nondipolar regime. In the case of both vortices having the
same circulation, we have found that their orbits are described
by a family of curves from circles to ovals depending on
the strength of the dipole-dipole interaction and their initial
separation, a phenomenon we attribute to the effective dipolar
interaction between the vortex lines. When the two vortices
comprise a vortex dipole, their trajectories remain a transla-
tion at constant velocity but these velocities are found to be
dipole dependent; for intervortex separations larger than ∼ 4
healing lengths, the relationship between the translational ve-
locities, dipole orientation, and dipolar interaction strength is
found to be essentially universal with vortex-antivortex pairs
in a dBEC polarized parallel to the mutual separation moving
at a higher velocity than those in a dBEC polarized along the
translational axis.

While the direct relevance of our study is for straight vortex
lines in a three-dimensional uniform dBEC, it is pertinent
to note that the qualitative ramifications of our findings ex-
tend beyond this regime to any system with phase defects
in a uniform background. For instance, we expect that the
non-negligible dependence of the translational velocity of a
vortex-antivortex dipole on the direction and strength of the
magnetic dipoles is a general feature of solitonlike excitations
in dipolar BECs, regardless of the effective dimension of the
system, such as Jones-Roberts solitons, vortex rings, and rar-
efaction pulses [65–68]. Indeed, to the best of our knowledge,
the properties of vortex rings have not been studied systemati-
cally in a dipolar BEC. Furthermore, given our demonstration
that the phase of a vortex is modified by the dipolar inter-
action when the dipole orientation is not fully parallel to the
vortex line, it must be assumed that the superfluid velocity
field induced by any two- or three-dimensional phase defect
is similarly modified.

We also note that our findings complement preexisting re-
sults on vortices in dBECs in the quasi-2D regime [36] where

the straight vortex lines are effectively point vortices and the
system is endowed with an excitation spectrum exhibiting
rotons. In both geometries, the trajectories of same-signed
vortex pairs deviate considerably from the circular orbits pre-
dicted by the point-vortex model, although sufficiently large
and positive values of εdd are predicted to lead to suppression
of vortex corotation. This, being a manifestly roton-driven
characteristic, would not occur in the fully three-dimensional
regime. More notably, in the quasi-2D limit, Eq. (3) is re-
placed with an effective dipolar interaction kernel [24,69] that
modifies the stationary states and dynamics of dBECs polar-
ized along the confinement axis, such that the properties of
vortices when d ‖ ẑ are not identical to those of their nondipo-
lar counterparts, unlike in our system. Thus, the stabilization
against collapse of a vortex-antivortex pair with mutually
overlapping cores that might occur for dipole polarizations
parallel to the vortex lines in quasi-2D systems [36] cannot
occur in the fully 3D regime.

These results also raise further questions about the deeper
nature of a vortex in a dipolar BEC. For instance, the pres-
ence of d-wave-like lobes of compressibility about the vortex
core when the dipole moments are orthogonal to the vortex
warrants a semianalytical treatment of the radial and angular
dependence of the discrepancy of the phase profile relative
to the nondipolar paradigm. We also believe that the strong
divergence of the same-signed vortex pair trajectories from
the familiar point-vortex predictions warrants an investiga-
tion into extending the point-vortex model to account for the
dipolar interaction heuristically, thereby allowing for compu-
tationally inexpensive predictions of the trajectories of larger
ensembles of vortices; we note that such modified point-
vortex models have been employed in the studies of BECs
subjected to effects such as external trapping, dissipation, or
the presence of multiple species [70–72]. Additionally, we
note that while the effects of transversely polarized mag-
netic dipoles on the Kelvin wave excitations of single-vortex
lines have been studied in trapped dBECs [33,73,74], the
phase profile modification observed in our study would bear
ramifications for the Kelvin wave spectrum of straight vor-
tex lines in uniform dBECs as well. It is also possible that
the dipolar dependence of the vortex-antivortex translational
velocities bears consequences for reconnection dynamics in
three-dimensional dBECs where the translational motion of
the vortices induces growth of Kelvin waves; our results
would suggest the existence of a directional dependence in
quantities such as the reconnection timescale. Finally, while
the Tkachenko oscillations of a vortex lattice in a transversely
polarized dipolar BEC have been studied theoretically in har-
monically trapped systems [38], our predictions of a large
degree of modification to the dynamics of same-signed vortex
pairs suggests that the Tkachenko oscillation spectrum would
be modified in the uniform background case as well due to the
influence of the vortex-vortex dipolar interaction on the lattice
dynamics.
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APPENDIX: VORTEX PHASE PROFILES
IN THE NONDIPOLAR LIMIT

1. Neumann boundary conditions in the x-y plane

In a 3D domain with Neumann boundary conditions in the
x-y plane and periodicity in the z direction, the infinite-domain
expression for the phase of a nondipolar quantum vortex at
(x, y) = (xv, yv ), S(x, y) = n arctan(y − yv, x − xv ), does not
respect the boundary conditions. Previous studies of vortex
dynamics in systems with these boundary conditions have
avoided any resulting issues by imprinting additional image
vortices outside the computational domain in such a way that
the velocity projections normal to the grid boundaries are
roughly zero [56,75].

In this work we adopt an alternative approach. In a suffi-
ciently large but finite domain, we assume incompressibility
and take the phase to be the harmonic conjugate of the 2D
Poissonian Green function in this domain which, in turn,
represents the superfluid equivalent of the stream function.
To wit, in a rectangular grid x ∈ [0, Lx], y ∈ [0, Ly] with re-
flecting boundaries, the appropriate incompressible phase for
a vortex at (x, y) = (xv, yv ) is given by [76,77]

SNB(w) = �

2π
Arg

[
σ (w − wv; ω)σ (w + wv; ω)

σ (w − wv; ω)σ (w + wv; ω)

]
, (A1)

where w = (x + Lx/2) + i(y + Lx/2), wv = (xv + Lx/2) +
i(yv + Lx/2), and ω = (Lx, iLy) represents the pair of half-
periods of the Weierstrass σ function,

σ [w; (ω1, ω2)] =
∞∏

m,n=−∞
(m,n)�=(0,0)

[(
1 − w

ωmn

)(
w

ωmn
+ w2

2ω2
mn

)]
,

ωmn = mω1 + nω2. (A2)

2. Periodic boundary conditions in the x-y plane

By contrast, the imposition of periodic boundary condi-
tions in the x-y plane precludes the existence of solutions
to the dGPE with a nonzero circulation of v, the superfluid
velocity. Thus, we can only consider ensembles of vortex-
antivortex pairs and the fundamental building block of their
incompressible velocity profiles, and their corresponding su-
perfluid phases, is that of a single vortex-antivortex pair for
the specified computational grid.

For a single vortex-antivortex dipole where the vortex
with circulation ±2π is located at the position (x±, y±),
the effects of the periodic domain boundaries on the cor-
responding superfluid can be evaluated by considering not
only the given pair but an infinite series of image copies
comprising a tiling of the x-y plane. The solution for the
phase is thus the summation of the solution in the infinite-cell
limit, S∞(r) = arctan(y − y+, x − x+) − arctan(y − y−, x −
x−) with (x±, y±) replaced by the coordinates of a given
periodic copy of the original vortex pair. For a grid with x ∈
[0, Lx ) and y ∈ [0, Ly), the solution for the superfluid phase
has been provided in the literature by [78]

SPB(x, y) =
∞∑

p=−∞

{
∓ atan

[
tanh

(
πY±
Ly

+ pπ

)

× tan

(
πX±
Ly

− π

2

)]
+ π [�(X+) − �(X−)]

}
− 2π (x+ − x−)y

LxLy
, (A3)

where X± = x − x± and Y± = y − y±. Taking the gradient of
this expression yields an equivalent quantity, up to a constant
shift, to the well-established result for the superfluid veloc-
ity of a vortex-antivortex dipole in a periodic grid [79,80].
Following the procedure of Ref. [78], we replace the infinite
series

∑∞
p=−∞ with a finite series

∑P
p=−P for the sake of

computational tractability; we have found that no significant
suppression of initial “transient” in the real-time propagation
of the dGPE occurs if P is increased beyond O(101). Thus, in
our work, we have set P = 11.
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