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Finite-temperature quantum matter with Rydberg or molecule synthetic dimensions
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Synthetic-dimension platforms offer unique pathways for engineering quantum matter. We compute the phase
diagram of a many-body system of ultracold atoms (or polar molecules) with a set of Rydberg states (or rotational
states) as a synthetic dimension, where the particles are arranged in real space in optical microtrap arrays
and interact via dipole-dipole exchange interaction. Using mean-field theory, we find three ordered phases—
two are localized in the synthetic dimension, predicted as zero-temperature ground states by Sundar et al.
[Sci. Rep. 8, 3422 (2018); Phys. Rev. A 99, 013624 (2019)], and one is a delocalized phase. We characterize
them by identifying the spontaneously broken discrete symmetries of the Hamiltonian. We also compute the
phase diagram as a function of temperature and interaction strength for both signs of the interaction. For system
sizes with more than six synthetic sites and attractive interactions, we find that the thermal phase transitions can
be first or second order, which leads to a tricritical point on the phase boundary. By examining the dependence
of the tricritical point and other special points of the phase boundary on the synthetic dimension size, we shed
light on the physics for thermodynamically large synthetic dimension.
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I. INTRODUCTION

Synthetic-dimension platforms are more than a powerful
tool for investigating interesting physics from broad fields;
they are also a pathway for simulating interacting quantum
matter that has no analog in other systems. A synthetic dimen-
sion is built using the internal or motional states of quantum
particles such as ultracold atoms, molecules, and photons.
When the levels are coupled with electromagnetic radiation,
these platforms can be used to engineer Hamiltonians that are
identical to a wide variety of Hamiltonians describing motion
in real space. They are highly tunable, allowing independent
control of the system parameters, including tunneling ampli-
tudes and phases, and the on-site synthetic potentials.

Since the first proposal [1], several platforms have been ex-
perimentally realized. Examples include synthetic dimensions
based on nuclear spin states [2–4], momentum states [5–13],
optical clock states [14], harmonic trap states [15,16], Floquet
states [17], and Rydberg states [18–20] of ultracold atoms
and time and frequency states of photons [21–25]. There are
also proposals to build synthetic dimensions using rotational
states of polar molecules [26]. Observation of topological
edge states [3,6,11,19,27–34], Anderson localization [7,12],

*Contact author: sohail.dasgupta@rice.edu
†Contact author: cfeng@flatironinstitute.org
‡Contact author: bgadway@illinois.edu
§Contact author: scalettar@physics.ucdavis.edu
‖Contact author: kaden.hazzard@rice.edu

nonlinear physics [10], and the non-Hermitian skin effect [13],
and the realization of synthetic gauge fields [2,3,35] and hy-
perbolic lattices [36,37] are some of the highlights. Proposals
to engineer topological quantum field theory models [38] and
other topological physics [39] further the versatility of these
platforms.

Synthetic-dimension platforms have been utilized to ob-
serve not only single-particle phenomena but also unique
interacting physics. Alkaline-earth atoms with nuclear spin
states interact via SU(N) symmetric interactions that are non-
local in the synthetic space [3,40–43], photonic states interact
via synthetic-site-preserving interactions [23], momentum-
space lattices have local (on-site) attractive interactions
[44,45], and Rydberg atoms interact via dipolar exchange
interactions [20] that are local (roughly nearest neighbor) in
synthetic space.

In this work, we focus on a model of dipolar interacting
quantum many-body systems first proposed to be built with
rotational states of ultracold polar molecules trapped in optical
microtraps [26]. The same model can also be realized with
Rydberg states of ultracold atoms [19,20,27].

One of the intriguing features of this system is that for
strong interactions compared to the synthetic-tunneling rates,
the ground states are localized to finitely many sites in the syn-
thetic dimension. They resemble thick strings (membranes)
in one- (two-) dimensional real-space arrays of molecules
or Rydberg atoms fluctuating in a two- (three-) dimensional
real + synthetic space and hence are named the string or
membrane phases. The essential features of these phases
have been studied for some special cases. In Ref. [46], the
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FIG. 1. Two real-space sites of a Rydberg atom (n � 1) array
with Ns synthetic sites. The synthetic sites are indexed by ν (1 to
Ns). Resonant microwaves couple alternating s (odd ν) and p (even
ν) angular momentum states. Atoms interact via dipolar exchange.
Deep traps prevent real-space tunneling

wave function for the string phase was exactly solved for
one real dimension and one synthetic dimension when the
synthetic-tunneling rates vanished. Mean-field theory [26] and
the density-matrix renormalization group (DMRG) [46] pre-
dict that the string or membrane phase persists to infinitely
large synthetic dimensions for any synthetic tunnelings for
attractive interactions, while for repulsive interactions there
is a critical synthetic tunneling at which the system tran-
sitions from a string or membrane to a disordered phase.
Recently, stochastic Green’s-function quantum Monte Carlo
studies [47] showed that in two-dimensional real-space arrays,
the membranes survive to finite temperatures in systems with
a finite number of synthetic lattice sites and undergo a thermal
phase transition into the disordered phase as temperature is
raised.

However, fundamental questions remain unanswered: (1)
Are these the only phases of this model? (2) Is there a simple
physical understanding of the phases? (3) Do they persist at
finite temperature for repulsive interactions? (4) How does
the size of the synthetic dimension affect the phases and the
critical temperature?

In this paper, we make progress on these questions. We
identify three symmetry-broken phases, accessible to experi-
ments by tuning a single system parameter. Two of the phases
are localized in the synthetic dimension and were predicted in
Ref. [26] and studied in [46,47], while our calculations reveal
an additional ordered delocalized phase. By identifying the
symmetry groups and a mean-field theory, we classify them
by the discrete symmetries that they break and show that
all of the nontrivial phases persist to finite temperature. We
characterize the dependence on the synthetic-dimension size
of all the phases and the transitions between them.

We also find a tricritical point on the thermal phase bound-
ary for attractive interactions when there are more than six
synthetic sites. In this case, the thermal transition is first order
for weak synthetic tunnelings and second order for strong
synthetic tunnelings with a tricritical point in between. We
discuss the analogy of this phenomenon with the classical
Potts and p-state clock model later.

We remark that one could alternatively view the system as
a large spin model in lieu of using the synthetic-dimension
perspective. However, the synthetic-dimension language and
concepts emphasize the analogy of single particles with in-
ternal couplings to a particle hopping in a periodic lattice,
which makes the powerful tools associated with Bloch wave-
function description natural. This also is the natural language
for experiments that realize different coupling schemes such
as topological Su-Schrieffer-Heeger chains [19,48,49] and the
artificial gauge field on a ring [20] in one dimension and
Aharonov-Bohm caging in two dimensions [50]. Moreover,
the internal symmetries are naturally those associated with
a synthetic dimension (i.e., translation in the synthetic di-
mension) that are awkward to describe in the spin language,
where the natural symmetries are usually SU(N) or its various
subgroups, such as SU(2), U(1), and Z2.

This paper is organized as follows: Sec. II discusses
the platform and the Hamiltonian, Secs. III and IV de-
scribe the mean-field theory and the resulting phase diagram,
and we conclude in Sec. V and suggest interesting open
questions.

II. RYDBERG ATOM AND MOLECULE
SYNTHETIC DIMENSIONS

We consider a system of ultracold Rydberg atoms or polar
molecules, trapped individually in optical microtraps or sites
of an optical lattice in a one- or two-dimensional bipartite real-
space geometry (Fig. 1). (Results for attractive interactions
also apply to nonbipartite lattices.) Rydberg levels of atoms
or rotational states of molecule are separated by microwave
frequencies, allowing coherent control of several levels. The
lattice is sufficiently deep to prevent real-space tunneling.
Throughout the rest of this paper, we describe the system
in terms of Rydberg states of ultracold atoms, but equivalent
physics exists in polar molecules as well.

A set of Rydberg states, alternating between s and p angu-
lar momentum levels, is resonantly coupled with microwaves
to form a linear synthetic dimension, as depicted in Fig. 1.
This forms an open boundary condition, or the last state can
be coupled to the first to have a periodic boundary condition.
The power of the microwaves coupling pairs of synthetic sites
sets the corresponding tunneling amplitude. The detuning of
the microwaves from the resonant frequency sets the on-site
potential energy. In our model, we fix all the synthetic tunnel-
ings to be equal to each other and all the detunings to be zero,
which is easy to achieve experimentally.

Pairs of Rydberg atoms interact strongly via the dipole-
dipole interaction [51]. In general, interactions depend on the
synthetic sites of the two atoms. But our choice of alternating
s and p angular momentum states implies that the interaction
can be nonzero only between sites of different parities with the
pairs of states next to each other being the strongest. For most
scenarios, the interaction strength between sites separated by
three synthetic sites is small and is ignored in our calcula-
tions. The interaction strength does not vary significantly with
the principal quantum numbers n of the Rydberg states for
large n. Hence, we approximate to having nonzero interaction
strengths only when two atoms are separated by exactly one
synthetic site and assume they are equal.
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The Hamiltonian describing the situation is

H = − J
Ns∑

ν=1

∑
i

|ν, i〉 〈ν − 1, i| + H.c.

+ V
Ns∑

ν=1

∑
〈i, j〉

|ν, i; ν − 1, j〉 〈ν − 1, i; ν, j| + H.c.,

(1)

where Ns is the total number of synthetic sites; J is the
tunneling amplitude between a pair of synthetic sites, which
we assume throughout is positive; V is the interaction en-
ergy between two atoms; and |ν, i〉 represents an atom at
real (synthetic) site i (ν), with ν = 0 and ν = Ns identi-
fied to induce the periodic boundary condition. We have
assumed the quantization axis is perpendicular to the array (or
otherwise oriented so that the dipolar interaction is isotropic)
and have truncated the 1/r3 interaction to nearest neighbors.
In one dimension we expect this truncation to have only rela-
tively small effects on the phase diagram, and that is likely
also true in two dimensions. In three dimensions the 1/r3

interaction and anisotropy are likely to play major roles, a
question we leave to future work. Some further discussion on
these points can be found in the conclusions.

Considering an infinitely large lattice in real space and
the periodic boundary condition in the synthetic dimension,
the Hamiltonian in Eq. (1) has a D2Ns × T symmetry; D2Ns

is the symmetry group of a regular polygon of Ns sides, and T
is the discrete symmetry group of the real-space lattice.

III. MEAN-FIELD THEORY

To calculate the phase diagram of the Hamiltonian in
Eq. (1), we employ a mean-field approximation to decouple
the interaction terms, giving

H =
Ns∑

ν=1

∑
s=±1

(
−J

2
+ Ṽ φ∗

ν,s̄

)
|ν, s〉 〈ν − 1, s| + H.c., (2)

where s = ±1 label the two sublattices of the bipartite lattice,
s̄ = −s; Ṽ = V z

2 , with z being the number of nearest-neighbor
atoms; and

φν,s = 〈|ν, s〉 〈ν − 1, s|〉 (3)

are the mean fields. As mentioned above, the periodic bound-
ary condition is imposed by identifying ν = 0 and ν = Ns. We
allow the mean fields to differ on the two different sublattices
in the real dimension. This will be necessary to describe the
phases for V > 0. Expanding the expectation value on the
right-hand side of Eq. (3), we see that the mean fields satisfy
the self-consistent equation

φν,s = 1

Z
∑

α

〈α |ν, s〉 〈ν − 1, s| α〉 e−Eα/T , (4)

where Z = ∑
α e−Eα/T is the mean-field partition function and

|α〉 and Eα are the αth eigenstate and eigenenergy of the mean-
field Hamiltonian in Eq. (2), respectively. Note that |α〉 and Eα

are functions of the mean fields, {φν,s}ν=1,...,Ns;s=±1. We have
set the Boltzmann constant kB = 1.

The mean-field approximation identifies all real lattice
points in a sublattice, thus reducing the symmetry group T

to Z2. Therefore, the mean-field Hamiltonian [Eq. (2)] has
D2Ns × Z2 symmetry when all the mean fields are equal,
which corresponds to the disordered phase.

We iteratively solve for the mean fields using Eq. (4). We
start with a random initial seed for each mean field in (−1, 1).
The results are considered converged when |φk

ν,s − φk−1
ν,s | <

10−6 ∀ ν, s; k labels the iteration step. We estimate a relative
error of less than 2%, where the relative error is defined as
|(φkmax

ν,s − φkmax/2
ν,s )/φkmax

ν,s |, where kmax is the number of itera-
tions needed for the mean fields to be considered converged.

IV. PHASE DIAGRAM

Mean-field theory predicts a phase diagram with four
phases (Fig. 2). They are characterized by the subgroups of
D2Ns × Z2, the symmetries of the Hamiltonian in Eq. (2).
The localized I phase (green) breaks the D2Ns symmetry but
retains the Z2 symmetry, while the localized II (blue) phase
breaks both. The delocalized II (red) phase preserves only
the symmetry of simultaneous rotation by half the synthetic-
dimension size and real-space exchange. The delocalized I
(white) phase is the trivial or disordered phase where all the
mean fields are equal and the system has the full D2Ns × Z2

symmetry. Insets (iv)–(vii) of Fig. 2 depict the ground-state
wave functions |ψg〉 in different phases, corresponding to the
white semicircles in the main plot.

The phases are diagnosed with three order parameters,

ϕrot
s =

∣∣∣∣∣
Ns∑

ν=1

φν,se
−ι2πν/Ns

∣∣∣∣∣, (5)

ϕZ2 =
Ns∑

ν=1

|φν,1 − φν,−1|2, (6)

ϕrNs/2×Z2 =
Ns∑

ν=1

∣∣φ(ν+Ns/2),1 − φν,−1

∣∣2
(7)

for even Ns. Each vanishes if and only if the corresponding
symmetry is preserved. ϕrot

s distinguishes phases with from
those without all the rotation symmetries of the dihedral
group D2Ns . The value of s is irrelevant for the phases in
the mean-field theory. From panel 3 in Fig. 2, it is evident
ϕrot separates the trivial phase, delocalized I, from the rest of
the phases. ϕZ2 distinguishes phases with sublattice exchange
symmetry. The sublattice exchange symmetry, characterized
by ϕZ2 , is never broken for attractive interactions, as seen in
panel 2 in Fig. 2, but is broken in all the nontrivial phases for
repulsive interactions. For even Ns, the delocalized II phase
(red region in Fig. 2) is the only nontrivial phase preserving
the rNs/2 × Z2 symmetry. For odd Ns, rotation by Ns/2 is not
well defined. Instead, if we perform rotation by (Ns ± 1)/2
sites, then r(Ns±1)/2 × Z2 is “almost” a symmetry. The order
parameter in the delocalized II phase is small (<0.1) com-
pared to localized I and II phases (0.3–1) but not exactly zero.
The phase diagram of Fig. 2 is sketched by adding the three
different colors (in an RGB sense) of panels 1–3 at individual
points.

In addition to their symmetry-breaking features, an in-
triguing feature of the localized I and II phases is that they
are localized along finitely many synthetic sites (i.e., the
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FIG. 2. Phase diagram for Ns = 12 in the T/ ˜|V |-J/Ṽ plane. The green, blue, and red regions correspond to the ‘localized I,” “localized
II,” and “delocalized II” phases, respectively, and the white area corresponds to the disordered phase, “delocalized I.” On the right, panels 1,
2, and 3 show the density plots of the three order parameters, ϕrNs/2×Z2 , ϕZ2 , and ϕrot. The x and y axes in panels 1, 2, and 3 are identical
to those in the main plot. The phase diagram is obtained by superposing the three order parameters, colored as in panels 1, 2, and 3, so
that each phase is uniquely identified. The black solid (dashed) line demarcates the phase boundaries corresponding to first- (second-) order
transitions between the ordered and disordered phases. The black circle (magenta square) on the phase boundary denotes the tricritical point
(meeting point of the localized II, delocalized II, and localized I phases). Insets (i) and (ii): The average of the three order parameters, ϕav =
1
3 (ϕrNs/2×Z2 + ϕZ2 + ϕrot ) versus T/|Ṽ |; blue squares (red dots) correspond to the blue dotted (red solid) vertical cut. Inset (iii): The average
of the order parameters plotted versus J/Ṽ for the dark blue dash-dotted horizontal cut. Insets (iv)–(vii): The ground-state wave function |ψg〉
of the mean-field Hamiltonian at T = 0 corresponding to J/Ṽ at the white semicircles. The y axis corresponds to the Ns discrete synthetic
sites, labeled by n. The columns correspond to the two sublattices, s = ±1. Both the color intensity and marker size vary proportionally with
the absolute value of the wave function.

probability decays exponentially outside of a finite number of
synthetic sites), as seen for the ground states shown in insets
(v) and (vi) in Fig. 2. The existence of two localized ground
states was already predicted in Ref. [26] using mean-field
theory. For J = 0, Ref. [46] analytically proved that one-
dimensional real-space arrays have ground states confined
to two or three adjacent synthetic sites. Similar behavior is
observed in our J = 0 mean-field theory: width-2 and width-3
states are degenerate and lower in energy than the disordered
phase when Ns > 4, as shown in Appendix A.

The delocalized II phase, not reported in Refs. [26,46], is
spread over a large fraction of the synthetic dimension, but
the atoms are spread over opposite sets of synthetic sites on
each sublattice. The system, however, remains invariant under
simultaneous rotation by half of the synthetic sites and real-
space sublattice exchange for an even number of synthetic
sites.

We expect the localized I–delocalized I and delocalized
I–delocalized II quantum critical points (J/V )c to scale as
O(Ns), whereas the localized II–delocalized II one scales as
O(1). Transitions from the disordered phase to any ordered
phase suppress the kinetic energy by O(1/Ns) while enhancing
the interaction energy by O(1). However, transitions between
the two ordered phases enhance the interaction energy only
by O(1). The scaling of the quantum critical points with Ns is
further discussed and shown in Appendix B and Fig. 4.

All three nontrivial phases extend to nonzero temperatures
for finite Ns � 5. However, the transition temperatures tend to
zero as Ns → ∞. A Peierls-like argument comparing the free
energies, 	F = Fordered − FDelocalized I, of the ordered phases
and the delocalized I phase suggests this, and it is consistent
with our analysis of the critical temperatures’ dependence on
Ns. We plot the highest critical temperature in each of the three
ordered phases as a function of Ns in Fig. 3(a).

The orders of the thermal phase transitions depend on Ns

and the ratio J/Ṽ . The phase boundary between the localized
I and delocalized I phases hosts a tricritical point for Ns > 6.
We observe that the phase transition changes from being first
order at small J/|Ṽ | to being second order at large J/|Ṽ |
with a tricritical point in between (black circle in Fig. 2).
The value of T/|Ṽ | (J/|Ṽ |) at the tricritical point decreases
(increases) with Ns [Fig. 3(b)]. The inset in Fig. 3(b) strongly
suggests that in the limit Ns → ∞, the tricritical point is at
T/|Ṽ | = 0, J/Ṽ = −∞. This is consistent with the arguments
of Ref. [26] that the V < 0 ground state for Ns → ∞ is always
a string.

We understand the qualitative behavior of the tricritical
point in two ways: an analytic argument for J = 0 and analo-
gies to previously studied classical models. In Appendix A,
we analytically show that the thermal phase transition is first
(second) order at J = 0 for Ns > 6 (Ns � 6). Furthermore,
we note that the Ns dependence of the order of the phase
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FIG. 3. Trends of the phase diagram with Ns. (a) Scaling of the
highest critical temperature in each of the three phases with Ns. It
appears that all three T max

c scale to zero with Ns, but at different rates.
(b) Scaling of the tricritical point with Ns. The plot suggests that the
tricritical point scales to JNs=∞, T Ns=∞ = −∞, 0. This is even more
prominent in the inset, where the x axis is inverted to Ṽ /J . (c) Scaling
of the meeting of the localized II, delocalized I, and delocalized II
phases with Ns. The plot suggests that it scales to zero temperature
but a finite tunneling as Ns → ∞.

transition resembles that of the classical Potts model [52],
if the synthetic sites are considered to be spin indices of
a large spin [S = (Ns − 1)/2] system. For example, for the
two-dimensional Potts model, the thermal phase transition
is second (first) order when Ns � 4 (Ns > 4). For another
large-spin model, the clock model, the analogy is less direct:
the system undergoes a second-order thermal phase transition
when Ns � 4 and has a Berezinskii-Kosterlitz-Thouless phase
intermediate to ordered and disordered phases for Ns > 4.

In making the analogy to classical models, it is worth
noting that the synthetic-dimension Hamiltonian (1) has qual-
itative differences from both the Potts and clock models.
The Potts model has a different symmetry—a full spin-
permutation symmetry—whereas the clock model has the
same D2Ns symmetry but has nonlocal interactions between
all synthetic sites.

A model that captures both the symmetry and the lo-
cality of the interactions in synthetic space was introduced
and studied in Ref. [53]. It includes same-synthetic-site (J0)
and nearest-synthetic-site (J1) interactions. When J1 � J0, the
naive case corresponding to the quantum model, a direct phase
transition from a narrow sheet (dubbed “ferromagnetic” there)
to the disordered phase is found. For large Ns this is clearly
first order, while for smaller Ns, the order is less clear—it is
either a less drastic first-order or second-order transition (e.g.,
Fig. 3 of Ref. [53]). This classical analogy also suggests other
interesting phenomena. For example, when J1 is sufficiently

FIG. 4. Zero-temperature phase boundaries between (a) the lo-
calized I and Delocalized I phases and (b) the localized II and
Delocalized II phases as a function of 1/Ns. Black dashed lines
are guides to the eye for the mean-field extrapolation to Ns → ∞
(using cubic polynomials). DMRG results (green band) are for one
real dimension plus one synthetic dimension with six real sites [46].
The QMC phase transition point [red circle in (a)] is for two real
dimensions plus one synthetic dimension and Ns = 10 [47].

larger than J0, the transition becomes second order and may
involve a second crossover or Berezinskii-Kosterlitz-Thouless
transition, an interesting possibility in the quantum model.

The Ns dependence of the meeting point of the localized II,
delocalized II, and delocalized I phases for repulsive interac-
tions shows that the localized II phase extends only to finite
J/Ṽ even as Ns → ∞, in contrast to the localized I phase
[Fig. 3(c)]. From Fig. 3(c), it seems that T/Ṽ goes to zero,
but J/Ṽ tends to a finite value as Ns → ∞. This qualitatively
agrees with the findings of Ref. [26] and DMRG calculations
of Ref. [46] that for Ns → ∞ and repulsive interactions, the
system undergoes a quantum phase transition. For a more
quantitative comparison between our mean-field theory and
DMRG, see Appendix B.

Our phase boundary for attractive interactions is also
qualitatively consistent with that computed with stochastic-
Green’s-function (SGF) quantum Monte Carlo (QMC) [47].
The SGF-QMC method is sign problem free for attractive
interactions (only) and thus can calculate observables to high
precision. Figure 9 of Ref. [47] shows the phase diagram for
Ns = 10 for a two-dimensional square lattice, finding a finite-
temperature phase transition between the quantum membrane
(localized I) and disordered (delocalized I) phases, as we
predict from mean-field theory. The SGF-QMC transition
temperature is similar to, although shifted from, the mean-
field predictions, and the trends with Ns and J/Ṽ are similar.
For example, both the QMC and the mean-field theory predict
that the system undergoes a T = 0 quantum phase transition
at finite J/Ṽ ; for Ns = 10, QMC finds this transition to be
at J/Ṽ ≈ −1.2, whereas our mean-field results determine it
is at J/Ṽ ≈ −1.7. Mean-field theory predicting the quantum
critical point at a larger J/Ṽ is unsurprising since it ignores
all fluctuations. For a more detailed comparison of the two
methods see Appendix B.
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Additionally, QMC observes only second-order phase tran-
sitions for Ns = 10. This could be because the tricritical point
for Ns = 10 is very weakly first order or because it occurs at a
much lower value of J/Ṽ than shown in the QMC studies, or it
could be that the transitions at all J/Ṽ for Ns = 10 are second
order. In the latter case, it is possible that the critical Ns above
which the tricritical point first appears has been shifted from
the Ns = 6 value predicted by mean-field theory to Ns > 10.
We believe this is likely, as the QMC results for Ns = 14 and
V = −5J (Fig. 7 of Ref. [47]) show a step feature suggestive
of a first-order transition.

V. CONCLUSION AND OUTLOOK

We calculated the phase diagram of a dipolar interacting
quantum system with real and synthetic dimensions and an-
alyzed the features of the phase diagram as a function of
interaction, temperature, synthetic tunnelings, and synthetic-
dimension size. This model can be engineered with ultracold
Rydberg atoms or polar molecules arranged in optical mi-
crotraps or optical lattices and external microwave couplings,
with a recent study of its dynamics given in Ref. [20]. Tuning
a single parameter, J/Ṽ , realizes a rich phase diagram with
four distinct phases and both thermal and quantum phase
transitions, which may be either first or second order.

Using mean-field theory and analyzing the results accord-
ing to order parameters constructed based on the symmetry
group, we classified the string or membrane phases predicted
in Refs. [26,46]. Both these phases spontaneously break the
D2Ns symmetry of the model, with some remnant symmetries
depending on the sign of V and whether Ns is even or odd. For
V > 0, this phase breaks the real-space sublattice-exchange
Z2 symmetry.

In addition, we predict the existence of another symmetry-
broken phase that is not string or membrane-like. This phase
occurs for V > 0 over an intermediate range of J/Ṽ , and it
enjoys a remnant symmetry under a simultaneous rotation
by half the synthetic sites and sublattice exchange (for even
Ns). Moreover, the system is delocalized over a finite fraction
of the synthetic space. It is an open question to what extent
the localization plays a role beyond symmetry breaking—are
the universal properties of the low-energy excitations of the
ordered phases solely determined by the symmetry, or does
the stringiness also play some additional role?

We observed the presence of both first- and second-order
transitions with a tricritical point in between for Ns > 6 and
V < 0. The thermal phase transitions are second order for
Ns � 6. The dependence of the order of the transition on Ns

resembles Potts-model physics.
The scaling of the phase boundaries with Ns is consistent

with earlier T = 0 mean-field calculations and the special
cases that have been treated numerically. We showed that the
tricritical point scales to (J/Ṽ → −∞, T → 0) as Ns → ∞;
hence, the localized I phase persists to arbitrarily large |J/Ṽ |
at T = 0 for Ns → ∞. Similarly, we showed that the meeting
point of the localized II, delocalized II, and delocalized I
phases scales to a finite J/Ṽ and zero T with Ns → ∞. These
results are qualitatively consistent with previous predictions
[26,46] that the string phase for V > 0 (V < 0) persists to
finite (arbitrarily large) J/Ṽ .

The physical realization of the different phases and ob-
servation of the phase transitions appear within reach of
current experiments, for example, using the Rydberg tweezer
platform of Ref. [20]. Usually, in experiments it is conve-
nient to start with a product state, e.g., |ψ〉 = |1111 · · ·〉.
The T = 0 ground state for different J/Ṽ values can be
adiabatically prepared by slow variations of the microwave
parameters (detunings and amplitudes). Importantly, to cap-
ture features of the (de)localized II phase one also needs to
break the spatial translation and reflection symmetries during
state preparation, as demonstrated in Ref. [54] for a special
Ns = 2 case. Following adiabatic preparation, the properties
of the ground state can then be explored to identify the dif-
ferent phases discussed. For example, measurements of the
counting statistics—measuring the number of Rydberg atoms
in a chosen level in a given shot and then taking a histogram
of this quantity—can provide a means to distinguish between
the localized and the delocalized phases. Delocalized phases
would have broad, roughly Poissonian fluctuations around a
mean value, whereas localized phases would have a bimodal
character: a peak with O(1/Ns) probability of seeing around
O(Ns) Rydberg atoms in a given level and an O(1) peak for
seeing no particles in the level. Alternatively, by attempting
to ramp from and then back to the state |1111 · · ·〉, one can
identify accessible phase transitions by finding breakdowns in
adiabaticity at particular J/Ṽ values.

The effects of long-range interactions and interactions that
vary with the synthetic site on the phases are left for fu-
ture investigations. For the dipolar real-space interactions,
states that preserve sublattice symmetry will remain mean-
field eigenstates with the same eigenenergy, where their only
consequence is to change the effective z factor in Ṽ . For
states breaking the sublattice symmetry, the intrasublattice
(A-A) versus intersublattice (A-B) interactions will couple to
different mean fields. Although a weak dependence of the
interactions on the synthetic site index itself should not dras-
tically change the phase diagram (localized-delocalized phase
transitions change to sharp crossovers), having interactions
nonlocal in the synthetic space could have nontrivial effects.

In the future, we expect the dipolar synthetic-dimension
platform to be a powerful tool for studying the interplay of in-
teractions, topology, and synthetic gauge fields. Incorporating
different synthetic-tunneling schemes or geometries along the
synthetic dimension is experimentally feasible, so the already
rich physics observed here is likely to be the tip of an iceberg.
Different tunneling schemes can be implemented by simply
adjusting the power of the microwaves similar to the schemes
in Ref. [55]. The Su-Schrieffer-Heeger model, which hosts
topological edge states, was already realized in a single Ry-
dberg atom [19], and systems with gauge fields were realized
in the platform of Rydberg atom tweezer arrays [20].
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APPENDIX A: J = 0 ANALYTIC SOLUTION

When J = 0, we can derive a set of simplified equations for
the mean-fields and infer that the thermal phase transition is
first order for Ns > 6 and second order otherwise. In this limit,
the mean-field Hamiltonian is

H =
∑

ν

∑
s=±1

Ṽ φ∗
ν,s̄ |ν, s〉 〈ν − 1, s| + H.c. (A1)

Numerically solving the mean-field equations, we find two
solutions, a disordered phase in which all mean fields are
equal and a string or membrane phase in which one or two
adjacent mean fields are nonzero. Using this information as
an ansatz, an analytic understanding of the phases and phase
transitions can be obtained. For Ns > 4, the mean-field ground
state is the string or membrane state. For Ns = 4, they are
equal in energy, and our mean-field theory cannot distinguish
the two.

We can predict the critical temperature and the order of
the phase transition of the system at J = 0 by considering the
self-consistency equation for the mean fields,

φ̃s = 1

2

(
e−βṼ φ̃s̄ − eβṼ φ̃s̄

Ns − 2 + e−βṼ φ̃s̄ + eβṼ φ̃s̄

)
, (A2)

where φ̃s = ∑
ν=1,2 |φν,s|2, s labels the sublattice, s̄ = −s, and

m sums over the two potentially nonzero mean fields, which
we have labeled 1 and 2. For small φ̃s,

φ̃s =
(

Ṽ

NsT

)2

φ̃s + (Ns − 6)Ṽ 4 [(NsT )2 + Ṽ 2]

6N5
s T 6

φ̃3
s + O

(
φ̃5

s

)
.

(A3)

A phase transition occurs when the coefficient of the lin-
ear term, 1 − ( Ṽ

NsT
)2, vanishes and the order of the phase

transition is determined by the sign of the φ̃3
s term. This is

equivalent to the standard Landau theory analysis of phase
transitions with U(1) symmetry associated with the phase
of φ̃s, with the coefficients determined using the mean-field
theory. Thus, the critical temperature is Tc = Ṽ /Ns when the

FIG. 5. Comparison of the phase boundary between the localized
I and delocalized I phases for Ns = 10 between MFT and QMC. The
blue solid (dashed) lines depicts the first- (second-) order transition in
the mean-field theory, and the blue circle corresponds to the tricritical
point.

transition is second order. In Eq. (A3), the coefficient of the
φ̃3

s term on the right-hand side is positive for Ns > 6 and thus
has a first-order transition, and it is negative for Ns < 6 and
thus has a second-order transition.

APPENDIX B: COMPARISON WITH DMRG AND QMC

Mean-field theory predicts the Ns → ∞ quantum critical
points for one real dimension plus one synthetic dimension
(Fig. 4) to a reasonable accuracy when compared against
DMRG [46] (green band). The DMRG calculation could
only distinguish localized from delocalized phases. Thus, the
two phase transitions it could capture would correspond to
the those between the localized I and delocalized I phases
[Fig. 4(a)] and between the localized II and delocalized II
phases [Fig. 4(b)]. In either case, we see weak Ns dependence
compared to the mean-field theory. As mentioned in Sec. IV,
we expect the mean-field critical Ṽ /J to scale as a O(1/Ns) for
transitions from an ordered state to the disordered delocalized
I phase and to scale as O(1) for the localized II to delocalized
II transition. For the former, our expectation agrees with both
the DMRG and the mean-field extrapolation [black dashed
lines in Fig. 4(a)] in the asymptotic limit Ns → ∞. However
for the latter, although a finite critical value is predicted by
both the DMRG and mean-field theory in the large-Ns limit
[Fig. 4(b)], the mean-field extrapolated value [black dashed
lines in Fig. 4(b)] is 1.5–2 times larger than the corresponding
DMRG value. This discrepancy could, perhaps, be attributed
to the fact that the mean field is capturing a first-order transi-
tion between two ordered phases.

Mean-field theory also predicts the finite-Ns quantum
phase transition between the localized I and delocalized I
phases reasonably well for two real dimensions plus one syn-
thetic dimension when compared against QMC [red circle in
Fig. 4(a)]. The transition temperature was determined with
QMC by the jumps in specific heat, Binder ratio, and average
synthetic-site separation [47].

The critical temperature of the mean-field theory is typ-
ically less than but within about 30% of the QMC values
(Fig. 5). This is unusual because one generally expects mean-
field theory to have a higher transition temperature. One
hypothesis is that this model at strong interactions has two
transitions upon lowering temperature, similar to the classical
p-state clock model [52] and the p-state Potts model with
an additional nearest-neighbor spin interaction [53]. The first
would be from a disordered to a quasi-long-range ordered
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phase, and the second would be from this to a fully ordered
phase. It is possible that the transition point obtained using the
QMC is the higher critical point. In Ref. [56] the crossing of
the Binder ratio provided the higher critical temperature of the
p-state clock model. To obtain the lower critical point, very
large system sizes and computing the temperature derivative
of the Binder ratio were necessary. It is therefore plausible

this would be difficult to detect in the QMC in [47]. The
mean-field theory locates the critical temperature where the
D2Ns symmetry is broken, which corresponds to the lower
critical temperature. Interestingly, this would imply a critical
region of temperatures between the ordered and disordered
phases. We leave the investigation of this hypothesis and any
resulting critical region for future studies.
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Spielman, G. Juzeliūnas, and M. Lewenstein, Synthetic gauge
fields in synthetic dimensions, Phys. Rev. Lett. 112, 043001
(2014).

[36] R. Zhang, C. Lv, Y. Yan, and Q. Zhou, Efimov-like states and
quantum funneling effects on synthetic hyperbolic surfaces, Sci.
Bull. 66, 1967 (2021).

[37] S. Yu, X. Piao, and N. Park, Topological hyperbolic lattices,
Phys. Rev. Lett. 125, 053901 (2020).

[38] J. Shen, D. Luo, C. Huang, B. K. Clark, A. X. El-Khadra, B.
Gadway, and P. Draper, Simulating quantum mechanics with a
θ -term and an ’t Hooft anomaly on a synthetic dimension, Phys.
Rev. D 105, 074505 (2022).

[39] Y. Yan, S. L. Zhang, S. Choudhury, and Q. Zhou, Emergent
periodic and quasiperiodic lattices on surfaces of synthetic Hall
tori and synthetic Hall cylinders, Phys. Rev. Lett. 123, 260405
(2019).

[40] S. Barbarino, L. Taddia, D. Rossini, L. Mazza, and R. Fazio,
Magnetic crystals and helical liquids in alkaline-earth fermionic
gases, Nat. Commun. 6, 8134 (2015).

[41] Z. Yan, S. Wan, and Z. Wang, Topological superfluid and Ma-
jorana zero modes in synthetic dimension, Sci. Rep. 5, 15927
(2015).

[42] S. Barbarino, L. Taddia, D. Rossini, L. Mazza, and R.
Fazio, Synthetic gauge fields in synthetic dimensions: Inter-
actions and chiral edge modes, New J. Phys. 18, 035010
(2016).

[43] T.-S. Zeng, C. Wang, and H. Zhai, Charge pumping of interact-
ing fermion atoms in the synthetic dimension, Phys. Rev. Lett.
115, 095302 (2015).

[44] F. A. An, E. J. Meier, J. Ang’ong’a, and B. Gadway, Correlated
dynamics in a synthetic lattice of momentum states, Phys. Rev.
Lett. 120, 040407 (2018).

[45] F. A. An, E. J. Meier, and B. Gadway, Engineering a flux-
dependent mobility edge in disordered zigzag chains, Phys.
Rev. X 8, 031045 (2018).

[46] B. Sundar, M. Thibodeau, Z. Wang, B. Gadway, and K. R. A.
Hazzard, Strings of ultracold molecules in a synthetic dimen-
sion, Phys. Rev. A 99, 013624 (2019).

[47] C. Feng, H. Manetsch, V. G. Rousseau, K. R. A. Hazzard, and
R. Scalettar, Quantum membrane phases in synthetic lattices of
cold molecules or Rydberg atoms, Phys. Rev. A 105, 063320
(2022).

[48] Y. Lu, C. Wang, S. K. Kanungo, F. B. Dunning, and
T. C. Killian, Probing the topological phase transition in the
Su-Schrieffer-Heeger model using Rydberg-atom synthetic di-
mensions, arXiv:2404.18420.

[49] Y. Lu, C. Wang, S. K. Kanungo, S. Yoshida, F. B. Dunning, and
T. C. Killian, Wave-packet dynamics and long-range tunnel-
ing within the Su-Schrieffer-Heeger model using Rydberg-atom
synthetic dimensions, Phys. Rev. A 109, 032801 (2024).

[50] T. Chen, C. Huang, I. Velkovsky, T. Ozawa, H. Price,
J. P. Covey, and B. Gadway, Interaction-driven breakdown
of Aharonov–Bohm caging in flat-band Rydberg lattices,
arXiv:2404.00737.

[51] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, 1994).

[52] G. Ortiz, E. Cobanera, and Z. Nussinov, Dualities and the phase
diagram of the p-clock model, Nucl. Phys. B 854, 780 (2012).

[53] M. Cohen, M. Casebolt, Y. Zhang, K. R. A. Hazzard, and
R. Scalettar, Classical analog of quantum models in synthetic
dimensions, Phys. Rev. A 109, 013303 (2024).

[54] C. Chen, G. Bornet, M. Bintz, G. Emperauger, L. Leclerc,
V. S. Liu, P. Scholl, D. Barredo, J. Hauschild, S. Chatterjee,
M. Schuler, A. M. Läuchli, M. P. Zaletel, T. Lahaye, N. Y.
Yao, and A. Browaeys, Continuous symmetry-breaking in a
two-dimensional Rydberg array, Nature (London) 616, 691
(2023).

[55] D. Suszalski and J. Zakrzewski, Different lattice geome-
tries with a synthetic dimension, Phys. Rev. A 94, 033602
(2016).

[56] L. M. Tuan, T. T. Long, D. X. Nui, P. T. Minh, N. D. Trung
Kien, and D. X. Viet, Binder ratio in the two-dimensional q-
state clock model, Phys. Rev. E 106, 034138 (2022).

063322-9

https://doi.org/10.1103/PhysRevLett.122.023601
https://doi.org/10.1080/00018732.2019.1594094
https://doi.org/10.1038/s41567-020-0942-5
https://doi.org/10.1038/s41377-020-0334-8
https://doi.org/10.1103/PhysRevLett.112.043001
https://doi.org/10.1016/j.scib.2021.06.017
https://doi.org/10.1103/PhysRevLett.125.053901
https://doi.org/10.1103/PhysRevD.105.074505
https://doi.org/10.1103/PhysRevLett.123.260405
https://doi.org/10.1038/ncomms9134
https://doi.org/10.1038/srep15927
https://doi.org/10.1088/1367-2630/18/3/035010
https://doi.org/10.1103/PhysRevLett.115.095302
https://doi.org/10.1103/PhysRevLett.120.040407
https://doi.org/10.1103/PhysRevX.8.031045
https://doi.org/10.1103/PhysRevA.99.013624
https://doi.org/10.1103/PhysRevA.105.063320
https://arxiv.org/abs/2404.18420
https://doi.org/10.1103/PhysRevA.109.032801
https://arxiv.org/abs/2404.00737
https://doi.org/10.1016/j.nuclphysb.2011.09.012
https://doi.org/10.1103/PhysRevA.109.013303
https://doi.org/10.1038/s41586-023-05859-2
https://doi.org/10.1103/PhysRevA.94.033602
https://doi.org/10.1103/PhysRevE.106.034138

