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Controllable generation of vortices with varied charges by dark-soliton
seeds through adiabatic manipulation
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We investigate the transition from a dark soliton to vortices in a Bose-Einstein condensate, achieved through
the adiabatic manipulation of external potentials. Our primary focus is on the fundamental transition process,
where a single dark soliton generates a single vortex with a ±1 topological charge in a symmetric configuration.
We reveal the emergence of this transition near the condition that the transverse characteristic length exceeds
twice the healing length of the condensate, where some higher excited states are always involved in the transition
process. The two topological charges of a fundamental vortex are generated with equal probability, and the final
charge can be effectively manipulated by introducing some weak asymmetric operations. Our results provide an
alternative approach for generating vortices with controllable charges and numbers from dark solitons, and open
an avenue for studying the interactions of vortices based on dark-soliton-permitted systems.
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I. INTRODUCTION

Bose-Einstein condensates provide a good platform for
investigating the dynamics of topological excitations, ben-
efiting from their remarkable capacity to manipulate and
control coherent matter waves [1,2]. Dark solitons stand out
as well-known one-dimensional topological excitations char-
acterized by a density dip with a phase shift across it [3,4].
Vortices, as typical two-dimensional topological excitations,
exhibit a density of zero and possess a quantized phase
charge [5–7]. These vortices can appear as vortex lines or
rings in three dimensions. While the central cross-sectional
profiles of quasi-two-dimensional vortices exhibit similarities
with those of stationary dark solitons in their density and
phase characteristics, this correspondence breaks down when
the dark soliton possesses a nonzero velocity. Additionally,
vortices can vanish via annihilation with vortices exhibiting
opposite charge, whereas dark solitons do not adhere to such
constraints. Meanwhile, the well-established transverse insta-
bility mechanism, known as the snaking instability, has been
employed to describe and explain the generation of a single
vortex or multiple vortex pairs from line (or planar) or ring
dark solitons, both theoretically and experimentally [8–17].
However, the transition process and how to control the gener-
ated single vortex charge have yet to be clearly addressed.

Generation of vortices holds great significance in the in-
vestigation of vortex dynamics, vortex interactions, and even
turbulence phenomena. Based on the phase characteristics of
vortices, phase-imprinting technique has been employed to
create vortices in Bose-Einstein condensates [18–20]. This
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method provides precise control over the topological charge
of each generated vortex, but effectively managing the num-
ber of generated vortices presents challenges due to the
substantial requirement of large-scale phase imprinting for
each individual vortex. With the knowledge that the vor-
tex is the fundamental excitation in quasi-two-dimensional
condensates, various techniques have been explored to gen-
erate one or more vortices, such as rotating the trapping
potential [21–23], moving a laser beam through the con-
densate [24–28], and employing other methods to excite the
condensate [29,30]. Comparing with the phase-imprinting
technique, these methods typically generate one or more vor-
tices with the same charge (either 1 or −1) [21–23], or vortex
dipoles (a pair of vortices with charges of 1 and −1) [24–28],
and even multiple vortices with random charges [25,29,30].
It is obvious that the above methods cannot effectively and
easily control the charge of each vortex generated. As such,
there is a significant demand for an excitation method capable
of generating vortices with both highly controllable charges
and numbers.

In this paper, we investigate the transition from a dark
soliton to a vortex in a Bose-Einstein condensate. By adia-
batically manipulating the external potentials, we observe this
transition occurring near the critical condition where the trans-
verse characteristic length exceeds twice the healing length
of the condensate, wherein a dark soliton generates a vortex
with a topological charge of ±1. Notably, we observe the
involvement of higher excited states in the fundamental tran-
sition process. In symmetric cases, the two charges of a single
fundamental vortex are randomly generated with equal prob-
abilities. By introducing weak asymmetric operations on the
external potentials, we can effectively control the final charge
of the generated vortex. These results significantly deepen our
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understanding of the transition process from dark solitons to
fundamental vortices. Furthermore, the controllable genera-
tion of vortices, including both their numbers and individual
charges, provides an excellent platform for investigating the
vortex interactions.

The remainder of the present paper is organized as follows.
In Sec. II, we formulate the theoretical model for a quasi-
two-dimensional Bose-Einstein condensate confined within
a time-varying harmonic potential, and perform the numeri-
cal simulations to explore the transition from a dark soliton
to vortices through the adiabatic manipulation. In Sec. III,
we focus primarily on the fundamental transition, wherein a
single dark soliton generates a single vortex with an equiprob-
able topological charge of ±1 in a symmetrical configuration.
We observe that this transition occurs when the transverse
characteristic length exceeds twice the healing length of the
condensate, where some higher excited states are always in-
volved in the transition process. In Sec. IV, we introduce
some weak asymmetric operations on the trapping potential
to demonstrate the generation of vortices with controllable
charges and numbers from dark solitons. Finally, in Sec. V,
the main results of the present paper are summarized and
discussed.

II. PHYSICAL MODEL AND ADIABATIC MANIPULATION

We consider a zero-temperature weakly interacting Bose-
Einstein condensate as a platform to investigate the transition
from a dark soliton to a vortex. The condensate is composed
of atoms of mass m and confined by a harmonic potential
m(ω2

x x2 + ω2
y y2 + ω2

z z2)/2, where ωx,y,z denote the confining
frequencies in the respective directions. The atomic interac-
tions are modeled by the contact pseudopotential gδ(r − r′),
where g = 4π h̄2as/m and as is the atomic s-wave scatter-
ing length. In this paper, we assume that the condensate is
strongly confined along the z direction, which renders the con-
densate dynamics as quasi-two-dimensional. The condensate
dynamics can be effectively described by a Gross-Pitaevskii
equation:

ih̄
∂ψ

∂t
=

[
− h̄2

2m
∇2 + m

2

(
ω2

x x2 + ω2
y y2) + g√

2π lz
|ψ |2

]
ψ,

(1)
where ψ (x, y, t ) represents the wave function, which is nor-
malized to the total particle number N . The parameter lz =√

h̄/mωz is the harmonic oscillator length along the z direc-
tion. The energy scale of the condensate is characterized by
the chemical potential μ, which is the eigenvalue associated
with the Hamiltonian in Eq. (1). In this paper, we present the
time, length, and energy in units of 1/ω̃,

√
h̄/mω̃, and h̄ω̃,

respectively, where ω̃ is a chosen characteristic frequency.
Additionally, we quantify the atomic interactions using
the dimensionless parameter mNg/

√
2π h̄2lz, which we set

to 1.
To investigate the transition process from a dark soliton to

a vortex under controlled configurations, we introduce a time-
varying harmonic potential characterized by longitudinal and
transverse confining frequencies, denoted as ωx(t ) and ωy(t ),
respectively. In comparison to previous works [11–17], this
time-varying potential not only allows us to easily identify the

dark-soliton state and vortex state, but also ensures the gen-
eration of a single vortex in the appropriate parameter space.
The experimentally feasible time-dependent variation in con-
fining frequency can be achieved using an optical atomic
trap through gradual modulation of applied beam waists over
time [31].

Initially, we prepare a single dark soliton confined within
a harmonic potential, which can be numerically continued
from its underlying linear limit [32–34] based on the Newton-
conjugate-gradient method [35,36]. Herein, the linear limit,
as an initial guess for iterations, corresponds to its low-
density limit, which can be approximately represented by
the first excited state |10〉, where |nxny〉 represents the lin-
ear quantum harmonic oscillator states in the basis of the
complete set of Hermite polynomials with Gaussian weight.
Subsequently, we proceed with the dynamical evolution of a
dark soliton by fixing the longitudinal confining frequency as
ωx(t ) = ωx0 and gradually decreasing the transverse confining
frequency as ωy(t ) = ωy0 − αt , by employing the integrating-
factor method with a fourth-order Runge-Kutta time-stepping
scheme [35,37,38]. The ramp rate α is set to a small value
to ensure the quasiadiabatic evolution (to avoid inducing ad-
ditional excitations). Once ωy matches ωx, it is no longer
reduced and maintained for a certain duration.

By comparing the quasiadiabatic evolution results with
spontaneous evolution (where α = 0), we identify three qual-
itatively different cases that govern the transition dynamics
between a dark soliton and vortices. These cases include the
spontaneous generation of vortices, adiabatic generation of
vortices, and no vortex generation. It is well known that the
transverse characteristic length ly =

√
h̄/mωy and the healing

length ξ = h̄/
√

2mμ play crucial roles in these transition pro-
cesses [5,6]. With the quasiadiabatic condition maintained, we
select the initial transverse frequency ωy0 and initial chemical
potential μ0 as the parameter space to demonstrate the regions
corresponding to these three cases, referring to Fig. 1.

For the first case, represented by the red region above
the line of ly0 = 2ξ0 depicted in Fig. 1, the initial trans-
verse characteristic length ly0 exceeds twice the initial
healing length 2ξ0, where the dark soliton resides within
the quasi-two-dimensional regime. Within this regime, the
dark soliton can spontaneously generate one or more vortices
through the well-established transverse instability mecha-
nism [11–17], even without any adiabatic manipulations.
When the initial transverse characteristic length ly0 � 2ξ0, the
quasi-two-dimensional dark soliton can generate the chains of
vortex-antivortex pairs.

Within the region below the line of ly0 = 2ξ0 depicted in
Fig. 1, the dark soliton exhibits remarkable stability in both
density and phase without any adiabatic manipulations, even
in the presence of numerical noise. This region, known as the
dark-soliton stability regime, extends beyond the conventional
boundaries of the traditional quasi-one-dimensional regime,
which is typically characterized by the conditions ωy > μ or
ly < ξ [1,3,4]. Of particular interest is the observation that
within the partial regime for dark-soliton stability, indicated
by the green region in Fig. 1, the adiabatic manipulation
induces a transition from a dark soliton to a vortex. This
phenomenon will be investigated as the central focus of the
present paper.
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FIG. 1. The paths of transition from a dark soliton to vortices
under the various initial transverse confining frequency ωy0 and ini-
tial chemical potential of a dark soliton μ0. These transitions occur
within the framework of a quasiadiabatic dynamic evolution process,
wherein a dark soliton is confined within a time-varying harmonic
potential possessing a gradually decreasing transverse confining fre-
quency ωy(t ) = ωy0 − αt with a small ramp rate α = 10−4. The weak
longitudinal confining frequency is fixed as ωx (t ) = ωx0 = 0.05.
These paths include the spontaneous generation of a vortex, adiabatic
generation of a vortex, and no vortex generation, which are depicted
in red, green, and blue, respectively. The parameters ly0, ly f , ξ0, and
ξ f respectively denote the initial and final transverse characteristic
length and the initial and final healing length, corresponding to the
initial and final transverse confining frequency and chemical poten-
tial, respectively. All quantities are dimensionless in corresponding
units.

Lastly, the dark soliton residing within the blue region
depicted in Fig. 1 remains stable, even after undergoing the
adiabatic manipulation. This stability arises from the fact that
the final transverse characteristic length ly f remains smaller
than twice the final healing length 2ξ f , preventing the transi-
tion from a dark soliton to vortices.

III. TRANSITION FROM A DARK SOLITON TO A VORTEX

We primarily focus on the transition process from a dark
soliton to a vortex through the adiabatic path, as demon-
strated in Fig. 2. Specifically, our observations commence
with an initial stationary dark soliton, as depicted in Fig. 2(a).
As the transverse confining frequency ωy decreases, the ini-
tial dark soliton gradually evolves into a single solitonic
vortex [13,14,39–42], as demonstrated in Fig. 2(b) (see Sup-
plemental Material [43]). Finally, as ωy approaches and equals
the longitudinal confining frequency ωx, the solitonic vor-
tex gradually transforms into a standard vortex, as shown in
Fig. 2(c). Note that the generated vortex admits linear stability
and dynamic stability.

Additionally, we note a significant competition in scale
between the transverse characteristic length ly and twice the
healing length 2ξ , as depicted in Fig. 2(d). In the dark-soliton
state, ly is smaller than 2ξ . However, through the adiabatic
manipulation of transverse confining frequency ωy, once ly
exceeds 2ξ , the dark soliton rapidly evolves into a solitonic

FIG. 2. The dynamical evolution process of transition from a
dark soliton to a vortex through the adiabatic path. (a–c) Respective
states of a dark soliton, solitonic vortex, and standard vortex under
different transverse confining frequency ωy. (d) Scale competition
between the transverse characteristic length ly and twice the healing
length 2ξ , respectively. The initial values of the weak longitudinal
confining frequency, strong transverse confining frequency, chemical
potential of a dark soliton, and ramp rate are set to ωx0 = 0.05,
ωy0 = 1, μ0 = 1.5, and α = 10−4, respectively. All quantities are
dimensionless in corresponding units.

vortex state at the transition frequency ωyt . Of course, if ωy

surpasses the critical transition frequency ωyc, the dark soli-
ton can also evolve into a vortex without requiring adiabatic
manipulation. Therefore, the key to facilitating the transition
from a dark soliton to a vortex lies in achieving a condition
where ly exceeds 2ξ through the adiabatic manipulation.

Moreover, we analyze the excitation kinetic energy, which
can be defined as Ek = ∫

h̄2

2m (|∇ψ |2 − |∇ψgn|2)dxdy, where
ψgn represents the ground state with the same particle num-
ber as the initial dark soliton [44]. The ground state can
be numerically obtained by the imaginary-time evolution
method [35,37,45,46]. As demonstrated in Fig. 3(a), we ob-
serve a decrease in the longitudinal excitation kinetic energy
Ekx accompanied by a sudden increase in the transverse ex-
citation kinetic energy Eky as ωy surpasses the transition
frequency ωyt . This indicates the occurrence of the transition
from a dark soliton state to a vortex state.

In addition, we investigate several nonlinear excited states
in relation to the transition process, aiming to provide
profound insights into the transition from a dark soliton
to a vortex. All nonlinear excited states (with the same
particle number as the initial dark-soliton state) can also
be numerically continued from their respective underlying
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FIG. 3. The significant parameters involved in the transition pro-
cess from a dark soliton to a vortex through the adiabatic path.
(a) Excitation kinetic energy of a dark soliton (or vortex) during the
transition process, considering both the transverse and longitudinal
directions. (b) Eigenvalues of a dark soliton (or vortex) and several
nonlinear states during the transition process. (c) Component con-
tent that characterizes these nonlinear states in relation to the dark
soliton (or vortex) during the transition process. The initial values of
various parameters are the same as those in Fig. 2. All quantities are
dimensionless in corresponding units.

linear limit [32–34] based on the Newton-conjugate-gradient
method [35,36]. As depicted in Fig. 3(b), the instantaneous
eigenvalues of a dark soliton (or a vortex) closely align with
the eigenvalues of the nonlinear |10〉 state during the transition
process. This observation suggests that the transition process
can be regarded as a quasiadiabatic process. Additionally, the
differences between the eigenvalues of the nonlinear |10〉 state
(or the dark-soliton state) and high nonlinear excited states
reduce as ωy decreases. This reduction allows for possible
transitions between these different nonlinear excited states.

It is established that a single vortex with a topological
charge of κ = ±1 can also be numerically continued from its
underlying linear limit (|10〉 ± i|01〉)/

√
2 [33]. We calculate

the component content of these nonlinear excited states dur-
ing the transition process, which can be expressed as |c|2 =
| ∫ ψ∗

nsψdxdy|2, where ψ∗
ns represents the complex conjugate

of nonlinear excited states (with the same particle number
as the initial dark-soliton state). As depicted in Fig. 3(c), it
becomes evident that the dark soliton evolves into a vortex
through a transition from a nonlinear |10〉 state to a super-
position state of nonlinear |10〉 and |01〉 states. Notably, the
emergence of the nonlinear |12〉 state is prominent during the
transition process (the nonlinear |11〉 and |02〉 states do not ap-
pear throughout the entire transitional process). Considering

FIG. 4. The evolution process of topological charge during the
transition from a dark soliton to a vortex through the adiabatic path.
The initial values of various parameters are the same as those in
Fig. 2. All quantities are dimensionless in corresponding units.

the parity symmetry of the system, we think that the nonlinear
|12〉 state plays a crucial role in the occurrence of transition.

Furthermore, this superposition state of nonlinear |10〉 and
|01〉 states manifests in two possible forms, which makes
the vortex generated through the adiabatic path admit an
equiprobable topological charge κ (either +1 or −1) in the
symmetric configuration, as depicted in Fig. 4. This result
is also corroborated by the numerical results obtained from
applying random noise to the initial dark soliton. Note that,
when ωy surpasses ωyc, the phase singularity appears (while
the total angular momentum remains zero) and rapidly evolves
into a vortex state at the transition frequency ωyt (where
the total angular momentum becomes nonzero). More impor-
tantly, the equiprobable charge in the symmetric configuration
enables us to expect that one can control the charge of the
generated vortex by introducing some weak asymmetric oper-
ations through the adiabatic manipulation starting from a dark
soliton.

Additionally, we note that previous work [13,14] re-
ported that a stationary solitonic vortex exists in a confine-
ment regime characterized by 6 � Lt/ξ � 10, where Lt/ξ =
max[

∫ √
2|ψ |2dy] represents the transverse confinement of

the healing length. In our paper, we identify the transi-
tion condition corresponding to transverse confinement to be
approximately Lt/ξ ≈ 7, which aligns with the previously
discussed existence regime. In comparison to previous re-
search [11–17], our investigation primarily focuses on the
fundamental transition process from a dark soliton to a vortex,
which uncovers that the vortex generated through an adiabatic
path admits an equiprobable charge κ (either +1 or −1) in the
symmetric configuration. This observation suggests that we
can effectively control the final charge of the generated vortex
by introducing some weak asymmetric operations.

IV. CONTROLLABLE GENERATION OF VORTICES

For the generation of a single vortex, we can introduce
some weak asymmetric operations on the trapping potential
or initial state to control its topological charge κ . For ex-
ample, we introduce a weak transverse bias in the harmonic
potential to demonstrate our expectations. The time-varying
asymmetric harmonic potential in the transverse direction can
be expressed as V (y, t ) = {m[(1 − δy )ωy (t )]2y2/2 y < 0

m[(1 + δy )ωy (t )]2y2/2 y � 0, where δy

represents the asymmetric degree of introduced bias. In the
case where δy > 0 (or δy < 0), the effective force exerted
on the condensate by the potential in the positive half axis
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TABLE I. The controllable generation of a single vortex from
a dark soliton through adiabatic manipulation by introducing some
weak asymmetric operations. The initial velocity and background
density of a dark soliton are set to |v| = 0.05 and ng = 1. The initial
transverse confining frequency and asymmetric degree are set to
ωy0 = 0.55 and |δy| = 0.05. The ramp rate and longitudinal wall
boundary are set to α = 5 × 10−4 and Lx = 60. All quantities are
dimensionless in corresponding units.

is greater (or smaller) than that in the negative half axis.
We suggest that the experimentally feasible weak transverse
bias can be achieved by the application of a weak transverse
magnetic field. In addition, considering that the phase shift of
a stationary dark soliton can admit values of ±π (also making
an equiprobable charge of either +1 or −1 for the generated
vortex even introducing some weak asymmetric operations),
we need to imprint a nonzero velocity (even at minimal veloc-
ity) on the dark soliton to ensure an ascertainable background
current direction. Then, the transverse bias indeed influences
this background current, which leads to the determination of
generated vortex charge. To ensure the motion direction of the
dark soliton free from the effects of nonuniform background
along the longitudinal direction, we propose applying a fixed
hard-wall potential [33], V (x) = tanh(|x| − Lx ), as a uniform
trap with an impenetrable wall, where ±Lx corresponds to the
wall boundaries.

Specially, we prepare a moving dark soliton, which can
be represented as ψ = ψDSψg (where ψDS and ψg denote the
dark-soliton and ground state, respectively). The dark soliton
can be expressed as ψDS = iv +

√
ng − v2 tanh(√ng − v2x)

(which is translationally invariant in the y direction), where
v and ng correspond to the soliton velocity and background
density, and the ground state ψg can be numerically ob-
tained by the imaginary-time evolution method [35,37,45,46].
The numerical simulation results are shown in Table I. Note
that, although these initial dark-soliton states are approximate
solutions, they do not affect the controllable generation pro-
cesses and results, which indicates that this approach is robust
enough to be realized in experiments.

In previous experiments, the controllable generation of
a single vortex can be achieved by imprinting the vortex
phase profile through adiabatically changing the strength and
direction of an external magnetic field [20], controlling the
atomic phase during the interconversion between different
components [18], or transferring the angular momentum be-
tween the field and atoms during internal-state transition [19].

FIG. 5. The controllable generation of multiple vortices from
multiple dark solitons through adiabatic manipulation by introduc-
ing some weak asymmetric operations. The initial velocities and
background density of dark solitons are set to v1 = −v2 = 0.05 and
ng = 1. The initial transverse confining frequency and the asymmet-
ric degree are set to ωy0 = 0.55 and |δy1| = |δy2| = 0.05. The ramp
rate and longitudinal wall boundary are set to α = 5 × 10−4 and
Lx = 60. All quantities are dimensionless in corresponding units.

Alternatively, a single vortex can also be generated by
rotating the condensate in a controlled direction about the trap
axis [21–23], or by moving a pair of laser beams along spe-
cific trajectories through the condensate [26,27]. Compared
to these methods for generating a single vortex, our approach
appears to be simpler and reduces undesired excitation.

Furthermore, based on the controllable single vortex
generation, we can systematically achieve the controllable
generation of multiple vortices, each with varied topolog-
ical charges, from multiple dark solitons. For the purpose
of illustration, let us consider the two vortices’ generation
as an example. First, we propose a time-varying asymmet-
ric harmonic potential in the transverse direction V (y, t ) =

{
m[(1 − δy1 )ωy (t )]2y2/2 x < 0 & y < 0
m[(1 + δy1 )ωy (t )]2y2/2 x < 0 & y � 0
m[(1 − δy2 )ωy (t )]2y2/2 x � 0 & y < 0
m[(1 + δy2 )ωy (t )]2y2/2 x � 0 & y � 0

with a fixed hard-wall poten-

tial V (x) = tanh(|x| − Lx ) along the longitudinal direction.
Then, we prepare two moving dark solitons, which can be
represented as ψTDS = ψDS1ψDS2ψg. The jth dark soliton can
be expressed as ψDS j = iv j + √ng − v2

j tanh[√ng − v2
j (x −

x0 j )], where x0 j corresponds to the initial location of the
soliton. Note that the two dark solitons are independent and
do not interact with each other (not being considered as bound
states [34]). By appropriately selecting the asymmetric degree
of the introduced biases δy1 and δy2, we can generate all
the different cases of two vortices in a controllable manner,
as illustrated in Fig. 5. This result presents a controllable
approach for generating multiple vortices with varied topo-
logical charges from multiple dark solitons.

In comparison to existing methods such as the rotating
trapping potential [21–23] for generating multiple vortices
with identical charges, or moving a laser beam through the
condensate [24–28] or employing other methods to excite the
condensate [29,30] for generating multiple vortices with dif-
ferent charges, our approach provides enhanced control over
the topological charges of each individual vortex. Therefore,
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FIG. 6. The transition frequency ωyt between the states of a dark
soliton and a vortex for various ramp rates α. The initial values of
various parameters are the same as those in Fig. 2. All quantities are
dimensionless in corresponding units.

our approach also establishes a robust research platform for
investigating the interactions among multiple vortices.

V. CONCLUSION AND DISCUSSION

In summary, we investigate the transition from a dark
soliton to a vortex in a Bose-Einstein condensate. By adi-
abatically manipulating the external potentials, we observe
this transition occurring near the critical condition where
the transverse characteristic length exceeds twice the healing
length of the condensate, wherein a dark soliton generates a
vortex with a topological charge of ±1. Notably, we observe
the involvement of higher excited states in the fundamental
transition process. In symmetric cases, the two charges of a

single fundamental vortex are randomly generated with equal
probabilities. By introducing weak asymmetric operations on
the external potentials, we can effectively control the final
charge of the generated vortex. These results significantly
deepen our understanding of the transition process from dark
solitons to fundamental vortices.

We also examine the influence of the ramp rate α on the
transition from a dark soliton to a vortex, as depicted in
Fig. 6. The results indicate that the actual adiabatic operation
time decreases significantly as the ramp rate increases, which
could be helpful for the experimental realization of our re-
sults. In real experiments, dark solitons are usually generated
by phase-imprinting technique [3,4,47]. The phase-imprinting
process always brings some other weak waves along with
dark solitons. We investigate the nonlinear time evolution
numerically of the whole process, from the initial state, to the
phase imprinting, and up to the vortex generation and beyond.
Our numerical simulation results indicate that these addi-
tional weak waves and noises do not affect our controllable
generated vortex essentially. The robustness of our adiabatic
manipulation also holds for multivortices cases. The gener-
ated multivortices are stable and they can interact with each
other. The controllable generation of vortices, including both
their numbers and individual charges, provides an excellent
platform for investigating vortex interactions.
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