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Mutual dipolar drag in a bilayer Fermi gas
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We consider two-dimensional spin-polarized dipolar Fermi gases confined in a double-layer system and
calculate the momentum transfer between the layers as a function of temperature to investigate the transport

properties of the system. We use the Hubbard approximation to describe the correlation effects and the screening
between the dipoles within a single layer. The effective interlayer interaction between the dipoles across the
layers is obtained by the random-phase approximation. We calculate the interaction strength and the layer
separation distance dependence of the drag rate, and we show that there is a critical distance below which the

system is unstable. In addition, we calculate the typical behavior of the collective modes related to the density

fluctuations.
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I. INTRODUCTION

In the last two decades, transport properties of two-
dimensional (2D) electron and hole systems have attracted a
great deal of interest as a result of the unique nature of the
temperature dependence of resistivity, which shows insulating
(metallic) behavior at low (high) densities [1]. In this context,
the interlayer resistivity has been measured for many systems
such as 2D electron systems in AlGaAs/GaAs double quan-
tum wells [2-5] and electron-hole bilayer structures [6]. The
characteristics of the interlayer resistivity are determined by
the Coulomb scattering so the drag measurement is regarded
as an efficient probe to study the properties of the intra- and
interlayer electron-electron interactions in low-density bilayer
systems [7-10].

On the other hand, in another area of physics, studies on
ultracold atoms have provided a huge amount of informa-
tion about the unique properties of ultracold systems, which
include atomic species with magnetic dipole moments [e.g.,
chromium (Cr) atoms [11-17], erbium (Er) atoms [18-21],
and dysprosium (Dy) atoms [21-24]) and polar molecules
with electric-dipole moments [25-34]. Crucially, ultracold
gases of fermionic atoms and molecules with strong dipolar
interactions have been realized experimentally [22,35-37].
Understanding the distinct nature of these polar atoms and
molecules is very important because they exhibit novel phases
and previously unexplored regimes [38—42].

In our previous studies [43,44], three of us implemented
a variant of the Coulomb drag phenomenon, namely, “mu-
tual dipolar drag,” to a model in which a contactless heat
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transfer occurs through dipolar coupling in the linear (with-
out an external field) and nonlinear (with an external field)
regimes. We investigated the applicability and efficiency of
this sympathetic cooling method for the cooling of ultracold
dipolar gases. We concluded that, even for the most magnetic
dipolar atomic gases, the typical optical lattice length scale is
too large a separation between the layers for significant drag-
like effects to be observed. Thus, our results indicated that
ultracold molecules with three orders of magnitude stronger
dipolar interaction were the only possibility for observing
such effects. While there has been significant progress in
creating ultracold dipolar molecules, these systems are still
much more fragile compared with ultracold atomic systems.
So far, no experiment has even measured transport properties,
let alone interlayer drag in ultracold molecular gas.

However, a remarkable recent experiment observed sym-
pathetic cooling without contact in a Dy gas. [45] This
experiment overcame the limited strength of atomic dipolar
interaction between the layers not by enhancing the dipole
strength but by making the layers closer together. The 50 nm
separation between the two layers was obtained using a dual
polarization and frequency scheme. A ten-fold decrease in
the separation of the layers enhances the interlayer excita-
tion by three orders of magnitude, leading to the observation
of contactless drag-like effects. This experiment creates new
impetus to probe the interlayer physics of double-layer sys-
tems, complementing the physics observed in bilayer electron
systems.

Momentum transfer between dipolar gasses has previously
been investigated by Matveeva, Recati, and Stringari [46].
Their work establishes that typical experimental lengths and
timescales of dipolar gases are suitable for the detection of
the dipolar coupling between the two layers, particularly for
dipolar molecules. As the focus of Ref. [46] is on the cou-
pling of the center-of-mass motion between the two layers,
interactions are treated within the Hartree approximation, and
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any dissipative effects resulting from particle-hole excitations
in each layer are ignored. However, as we have investigated in
the case of thermal coupling between the layers these particle-
hole excitations are the dominant mechanism for equilibration
between the layers and give a local mechanism for momen-
tum transfer independent of the size of the clouds. While the
coupled oscillations of the center of mass of the clouds are
dependent on the geometry of the clouds, the damping of these
oscillations is controlled by the rate of momentum transfer
between the layers by forming particle-hole excitations.

In this paper, we focus on the transport properties of 2D
dipolar Fermi gases in analogy with a similar effect observed
in electronic systems. We consider two parallel layers of 2D
spin-polarized dipolar Fermi gases separated by a distance d,
in which there is no interlayer tunneling. The mutual dipolar
drag (related to the momentum transfer) is calculated as a
function of temperature between the layers of the system in
which the particles interact only with the long-range inter-
actions. In our investigation of the interaction strength and
the layer-separation distance dependence of the drag rate, we
find an instability in the system that is analogous to the one
described in Ref. [47]. We use the Hubbard approximation to
define the correlation effects between dipoles within a single
layer. For the effective interlayer interactions, we adopt the
random-phase approximation (RPA). In addition, the transport
characteristics of the 2D dipolar Fermi gases indicate a typical
behavior of the collective modes related to the charge-density
fluctuations.

In the literature, studies show that there is both energy
and momentum exchange in bilayer Fermi systems as a result
of the Coulomb drag [10]. In contrast with the bilayer elec-
tronic systems, dipolar interaction is the dominant long-range
interaction in ultracold systems. Our previous work [43,44]
indicated that heat transfer depending on the mutual dipolar
drag can be used as an efficient cooling method for ultracold
gases. According to our mechanism, the layer-separation dis-
tance should be kept constant around the magnitude of the
dipolar length scale of the system. Specifically, the required
interlayer distance is consistent with the typical feature size
of the potential in current experiments for ultracold polar
molecules, so this mechanism can be set up without much
difficulty. We have shown that the equilibration time constants
between the layers for different polar molecules are of the
order of tens of milliseconds, which are smaller than typical
trap lifetimes. Based on our findings in this study, we believe
that it would be of interest to develop the corresponding model
using dynamic optical lattices and investigate the transport
properties of ultracold systems.

The rest of the present paper is organized as follows: In the
next section, we introduce our model in detail and outline our
approach. In Sec. III, we present the results of our calculations
in various parameter regimes. Section IV contains the discus-
sion and conclusion of our work. Appendix A gives details
of the derivation of the dipolar drag rate and Appendix B
presents details of the collective-mode dispersions.

II. THE MODEL AND METHOD

In this study, we consider a two-dimensional spin-polarized
dipolar Fermi gas, confined in two parallel layers separated
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FIG. 1. Schematic view of the system. We consider two dipolar
Fermi gas layers with equal densities at thermal equilibrium. Dipoles
are oriented perpendicular to the layers but antiparallel in two layers.
The separation distance is d.

by a distance d, as shown in Fig. 1. The system is in thermal
equilibrium and there is no tunneling between the layers. The
dipoles are polarized perpendicular to the planes, but the rel-
ative direction of this polarization is antiparallel in two layers
(see Fig. 1) [47]. The bare intralayer (within a single layer)
V11 and interlayer (across the layers) Vi, are given by

Cyy 1
Vii(r) = Vao(r) = —2 —, (1)
7'[ I
and
C r2 — 242
Via(r) = —4 )

e (2 4+ d2y°*

where the indices 1 and 2 denote different layers and r
indicates the in-plane distance between dipoles. Cy, is the
dipole-dipole coupling constant, which is Cyq = uou? for
magnetic dipole moments u, and Cyzy = P?/eo for electric
dipole moments p. Here, pg is the vacuum permeability, € is
the permittivity of free space. The interlayer interaction Vi is
repulsive for small » but attractive for large r. Attractive inter-
action may lead to pairing but it is either absent or extremely
weak in the antiparallel configuration we choose [48-50].
The Hamiltonian of the system is described by

hZ
H= -2 Z (Vi + V3) + Ui(r1) + Ua(ra0)

1
+ 5 D Vi (Fi = Fijl) + Va7 = 7oy )]

iJ

+ Y Via(lFa — Fij)s 3)
iJ

where m is the mass of the particles, U; and U, are the box
potentials with a certain width that confine the particles in the
direction perpendicular to the layers [51], and the sums are
carried out over the particles in each respective layer. We as-
sume negligible widths for simplicity because the finite-width
effects will only soften the interaction potentials without mak-
ing qualitative changes in the results reported here.

We define the following characteristic length scales: (i)
ag = Cddm/(4nh2), which is a measure of the strength of
the dipole-dipole interaction. (ii) The inner dynamics of
the system are determined through the Fermi energy (Er =
}‘izkfF /2m) by the average distance, k;l, between two fermions
within a layer (or the density of a layer n). Here, kr = +/4mn
is the Fermi wave number for a spin-polarized system, and n
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is the 2D density of a single layer. (iii) The distance d between
the layers indicates the corresponding geometry of the model.

A. Effective interactions

We use the Hubbard approximation to obtain an effective
intralayer interaction in Fourier space without any cutoff pa-
rameter. We assume the dipoles have charge e which are
at z = £Lgp/2, where Ly, is the physical size of the dipole.
Then, the bare intralayer interaction is given by

2
e
Vi(g) = @[1 — exp(—¢gLaip)]

Cad
= [1 — exp(—qLaip)]
Ldzipq ”
Cua Cu
— S ML o 4
Lo > q + O(Lgip) “4)
C
=Vo— =2q. )

2

Here, i indicates one of the layers and V), is the cutoff param-
eter related to the width of the layers [52-54]. Note that V
diverges as Lgip — 0.

The only place where V;; occurs in this work is in the
screening of the intralayer interaction as Veg ;; = Vii(g)[1 —
G(q)], where G(q) is the intralayer local field factor. We use
the Hubbard approximation of the local field factor [55,56],
G(q) ~ Vi((¢* + k3)'/*)/Vii(q), which gives

C
Vi(g) = =@+ —q]. (©)

In the above, we took the Laurent expansion form of Vj;(q)
in powers of Lg;p. This effective interaction V”(H )(q) contains
the intralayer correlation effects to a certain extent and it has
been widely used in electronic systems [56]. It also renders the
interlayer interactions free from the parameter L. It is pos-
sible to go beyond the Hubbard approximation by including
higher-order correlation effects [57].

The interlayer interactions are treated within the random-
phase approximation (RPA) hence the Fourier transform is
given by

C,
Via(g) = —%qexr)(—qd)- 7

As the separation d between the layers should not be too close
to avoid tunneling this should be a reasonable approximation.

If the finite width effects of the layers need to be consid-
ered, one has to integrate out the confinement wave function
in the z direction before taking the two-dimensional Fourier
transform of the intra- and interlayer interactions given in
Egs. (1) and (2), respectively. This procedure will bring out
form factors Fj;(q,L) to modify the interactions given in
Egs. (6) and (7) where L is the well width. Such modifica-
tions have been taken into account in the case of harmonic
confinement [54,58]. It would be interesting to consider the
dimensionality effects on the drag rate by tuning the har-
monic confinement in different directions to produce cigar
and pancake shaped Fermi vapors. In our case, finite width
effects should only make qualitative changes. The Coulomb

drag rate in double quantum well systems has been shown to
be qualitatively similar for different layer widths. [59].

B. Mutual dipolar drag

In a double-layer system, when an external disturbance is
applied to one of the layers, a particle current flows through
the “active” layer with a current density. As a result of the
interlayer interaction across the layers, an induced disturbance
appears in the “passive” layer. This is the mutual dipolar drag
effect and it can be quantified by the drag rate 7, ! The drag
rate can be described as the net average rate of momentum
transferred to each particle in the passive layer, per unit drift
momentum per particle in the active layer [8]

o (0py/0t)
D —P_l )

()

where the overbar indicates an ensemble average and p; is the
momentum per particle in the corresponding layer. To investi-
gate the transport properties of the system, we derive the drag
rate between the layers, given by Rojo [9] when the interlayer
interaction is treated perturbatively [6]. In Appendix A, the
corresponding derivation is presented, according to this cal-
culation the momentum transfer is given by

—1 hz /md 3 |W |2
s
b 8minykgT w2 Jo a4 1"

o0
X / do
0
Here, the dynamically screened effective interaction is in-
dicated by Wi, = Via/e(q, 0, T), where e(q, w,T) is the

temperature-dependent total screening (dielectric) function
obtained from the random-phase approximation (RPA) [8] as

e(q. 0, T) = [1 =V P(@)x(q, 0, T)]
x [1 =V (@)x (g, o, T)]
— V(@ Px(q, , T)x(q. 0, T),  (10)

Imy;(q, @)Imy(q, ®)
sinh® (hw/2ksT)

€))

where x(q, w, T) is the temperature-dependent noninteract-
ing density-density dynamical response function of a single
layer. In this study, we focus on a symmetric system in which
the densities of the layers are equal n; = n,.

III. RESULTS

In our presentations below, we use the following dimen-
sionless quantities: Q = gq/kr, Q@ = hw/Ep, D = dkp, t =
ksT/Ep, i = 1t/Ep. X = (mh*/m)x, and ) = aokp.

The intralayer interaction for the Hubbard approximation
is

m
Vi@ =V, = <W>2k[\/Q2 +1-01, (1)
and the interlayer interaction is given by

Via(Q) = —(%)mzexp (—DQ). (12)
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In terms of these parameters, the dimensionless drag rate is
obtained as

Imy (Q, )1

1 1 * 3 ood 7 2[
T, = — d QW
o =) 00 /0 Wizl S’ (220)

13)

~—1 hrl;'
where 7" = 3>

and Wi, = (wh?/m)Vi2/e(Q, Q),

A. Analytic calculations

We analytically investigate the drag rate dependence on A
and D in the limit of zero temperature (7" — 0) while the ef-
fective intralayer interaction is obtained by using the Hubbard
approximation. For small values of the temperature, we use
the small 2 expansion of x (because the integral is cut off by
the sinh? term for © > t), which for the spin-polarized case
is

Imy (0, @) ~ " m (14)
m s o = —, a
X dnhiqky  8mh* Q
m
Rex (0, Q) ~ ———. 14b
x(Q, 2) Py (14b)

Also, in this case we can use the static limit of &,
~ 2 ~
e(0. =0~ (1+1V{7(Q) = 2V3Q). (19

where the dimensionless intralayer and interlayer interac-
tions are V,{(0) = (ZE)V{(Q) = V(Q* + 1)!/* - Q and

mi
Vi2(0) = (;—'T)Vu(Q) = Qexp (—0D), respectively. Hence-
forth, for convenience we drop the superscript (H) in Vl(fl ),
Putting all these into the expression for the scaled drag
gives

. t'hEp 1 [ Q2
DT kT2 T wd ), sinh? (22/21)
22V3(0)

y / 400 § _ ~. (16)
0 [(1+AV11(Q))* — A2V ()]

Note that the second Q integral is independent of the temper-
ature ¢. Using the relation

QLS )
/O sinh? (¢) dr = 251 ¢ (s) for Re[s] > 1 (17)

in the first 2 integral in Eq. (16) gives

8r / TN
3 v —_—
0 sinh? (x)

477243

o0 92
/ dQ ————— =
0 sinh” (§2/2¢)

=8°¢(2) =

(18)

Thus, Eq. (16) becomes

I'p= 4?”12 /Oon 0? exp (—20D)
0

1
T A/ 1— 07 — 2202 exp(—20D)]

To simplify this expression, we introduce a new variable y =
DQ so that

- 4 )2 [ 3
D= 3ph A dy y” exp (=2y)
y 1
2 2°
[(1+ 5(/5* + D2 —y})" — &:y%exp (—2y)]

19)

Since this expression is temperature independent, it implies
that 7=' = ['p(kgT)?/(REF) grows quadratically with tem-
perature for small 7.

For the weak-coupling limit (A/D « 1), the denominator
can be replaced by one (no screening), in which case

2 2

FD%

o 5 TA
dyy” exp (=2y) = (20)
0

2D%

On the other hand, for the strong-coupling limit (A/D > 1),
we can rewrite the integral as

- g [
D

_ 4r dyy* exp (=2y)
Jo [+ DT —y) e
2D
Note that in terms of physical length scales, /D = ay/d.

For large A, the integral in Eq. (21) approaches a constant
and therefore I'p oc A=2. For sufficiently large A, as D (the
scaled interlayer distance) is decreased, at a critical value
D.(})) the denominator of the integrand in Eq. (21) vanishes
at some value of y, causing the integral to diverge. This
corresponds to the development of a density wave instability
in the coupled system, which is analogous to the instability
described in Ref. [47] for bilayers of antiparallel dipoles as
shown in Fig. 5 in that reference. At large A, D.(A — 00) &~
1.077. For D < D,, the system is no longer homogeneous, and
therefore our model is not expected to describe the drag rate
accurately.

The long-range and anisotropic character of the dipolar
interaction results in some fundamental instabilities toward
pattern formation. Recently, roton instability in bosonic dipo-
lar gases has been found to cause supersolid states, which are
stabilized by quantum fluctuations [60-62]. The instability
arising in our calculation has two fundamental differences
from the roton instability. It requires two separated layers,
similar to the two-component gas experiments, and it would
be stabilized by the Pauli pressure due to the fermionic
statistics of the system. Thus, the mechanism is closer to a
spin-wave instability rather than a roton instability.

When D is fixed, the low temperature scaled drag rate
[ initially increases when A is increased from zero because
the effect of screening is small, and therefore increasing A
increases the coupling between the layers, and hence the
momentum transfer rate. When A & D, the screening of the
interlayer interaction starts to dominate, and further increasing
A decreases the interlayer coupling and hence the momentum
transfer rate.

B. Numerical calculations

The dimensionless drag rate between the layers is numeri-
cally calculated as a function of temperature t = kg7 /Ef for
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FIG. 2. The dimensionless drag rate ;' is plotted as a function
of temperature t = kT /Er for different values of the interaction
strength A = 0.5, 1.0, 2.0, 4.0, 8.0, and 16.0 when the layer sep-
aration distance is kept constant at D = dkr = 1. In each graph,
the momentum transfer is calculated by using the dynamical (red
solid line) and static screening (blue dashed line) separately. Here,
the effective intralayer interaction is obtained by using the Hubbard
approximation.

weak (/D « 1) and strong (A/D > 1) coupling limits of the
system by using dynamic and static screening separately.

We obtain the drag rate as a function of temper-
ature for different values of interaction strength A =
0.5,1,2,4,8, and 16 as shown in Fig. 2. We use the
Hubbard approximation to obtain the intralayer interactions
in the system. As we increase the interaction strength A, the
amount of transferred momentum increases as expected (see
Fig. 2). In this figure, the dimensionless distance is constant
at D = dkr = 1. While this value of D is less than D.(A —
00) ~ 1.08, for all these values of A used, D > D.()\) (see
Fig. 1 A in Ref. [47]), indicating that the system is in the
homogenous liquid regime. In addition, as a result of plasmon
enhancement, the difference between the drag rates obtained
from the dynamical (shown by the red solid line in Fig. 2) and
static (indicated by the blue dashed line in Fig. 2) screening
also increases as the value of the dipolar coupling increases.

To understand the layer separation distance dependence,
we also obtained the dimensionless drag rate as a function
of temperature when the dimensionless distance between the
layers is kept constant at D = dkr = 2, as shown in Fig. 3.
The momentum transfer rates are calculated for both dynamic
and static screening cases. In all of these plots, the system is in
a homogenous liquid state (D = 2 > D,). Comparing Figs. 2
and 3 one sees, as expected, that the drag rate decreases as
the distance between the layers increases. Figures 2 and 3
also show that, as A increases, the peak in the drag rate as
a function of temperature is pushed to a higher temperature,
and the magnitude of drag at this peak increases with A.

-3
10
4= . T 0.009
ST Tl
3r e ——— B // =
- 0.006 ; o 8
T T —— ; - =
- / -
2 - b e
;
, 0.003 / ,/ 8
g 1T 1
= (a) A= aokr =1 /// (b) A= agkp =2
’l;a 0 1 1 1 0 - 1 1
& 0 0.5 1 15 0 1 2 3
0.020 T T 0.04 T T T
,///— ..... - /// T
0.015 7 0.03 7
: , X
./ /‘/
K _— /
0.010 / -4 002 / =
/ / "
, / re
/ ; e
0005,/ 4 001 /1 - g
1/ /
,/// (c) A =agkr =4 ) (d) A= agkr = 8
0 / 1 1 0 1 1 1 Il
0 1 2 3 0 1 2 3 4 5
t = (kpT)/Er

FIG. 3. The dimensionless drag rate is obtained as a function of
temperature for various coupling strengths (A = 1, 2, 4, 8). In all of
the plots, the static and dynamic screening for the system are con-
sidered separately (indicated by blue-dashed lines and green-solid
lines, respectively). Here, the dimensionless layer separation distance
is constant at D = dkp = 2.

The phase-space argument [2] for the bilayer fermionic
systems indicates that there is a quadratic temperature de-
pendence (7, "o T?) at very low temperatures. We present
the temperature dependence of the drag rate scaled by 72 for
various coupling limits, as shown in Fig. 4. In this figure,
at weak-coupling limits (i.e., A = 0.5, 1, 2, 4), the drag rate
increases quadratically with the interaction strength A as con-
sistent with Eq. (20). However, when the coupling strength is
further increased, the low-temperature drag rate decreases, as
shown in Fig. 4 (see A = 4, 8, and 16).

The upturn and peak in the scaled drag rates in Fig. 4 is due
to the presence of acoustic plasmon modes, which enhance
the effective interlayer interaction when they are thermally
excited. For weak coupling, the plasmons have lower energy
and therefore can be excited at lower temperatures. As A
increases, the plasmon energies increase which results in a
higher temperature in the upturn and peak of the drag rate.
After the peak, Landau damping reduces the effect of the
plasmon enhancement, causing a decrease in the scaled drag
rate.

C. Collective modes

In addition, we investigate the collective behavior of the
system at zero temperature to better understand their effects
on mutual dipolar drag. In our calculations, we use the real
part of the polarization function Rex (Q, 2, T = 0) [8] at zero
temperature because at this limit the imaginary part vanishes,
Imy (Q, 2, T = 0) = 0, outside the particle-hole continuum.

The dispersion for the collective modes is given by the
zeros of (g, w) which in the case of the equal bilayers is given
by

[1 = Vii(@x(q, ®)1* — Via(@)x (g, ®))* =0, (22)
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0.03

D=dk=2

(p' hEp)/(ksT)?

0 0.5 1 15 2 2.5 3
kgT/Ep

FIG. 4. Temperature dependence of the drag rate scaled by T2
for different values of the interaction strengths while the layer
separation distance is constant at D = dkr = 2. The solid (blue),
dotted (black), dashed (red), dashed-dotted (pink), solid with square
(yellow), and starred-solid (green) lines are obtained using the dy-
namical screening for A = 0.5, 1, 2, 4, 8, and 16, respectively. Here,
the Hubbard approximation is adopted for the effective intralayer
interactions, VI(IH ). Note that the T — 0 scaled drag rate increases
as A increases until A ~ D, and then it decreases as A is further
increased, for reasons discussed in the text.

and it yields the solutions

1
Vii £ Via

Solving the above equation for 2 at 7 =0 gives the
collective-mode dispersions (see Appendix B)

OV +1) 4v7
Q = = 2 —~~ . 24
oA NiZ +2Kt+1 (24)

where V. = A(V;; & V},). This relation between Q and Q
indicates that there are two separate collective modes above
the particle-hole continuum which is degenerate at small Q
and starts to be distinguished from each other as Q increases.

We also verify these results numerically and obtain the
collective modes of the system at zero temperature as shown
in Fig. 5. We show that for small values of g, the modes
are well defined and linear. As we increase the g values, the
collective modes split and then they disappear as a result
of Landau damping when they merge with the particle-hole
continuum.

x£(Q, Q) = (23)

IV. DISCUSSION AND CONCLUSION

We investigate the transport properties of a bilayer 2D
dipolar system of polarized fermions by calculating the drag
rate 7, "as a function of temperature. To describe the cor-
relation effects and screening within a single layer, we use
the Hubbard approximation for the effective intralayer inter-
action. The random-phase approximation (RPA) is adopted

1.5 T T ~
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1r b 2=
02 ,/z’ 7
0.5 Toq b == 8
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0 Il Il 0 1 Il
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4 T T 1 T T
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&, ==
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7; 0 I L I
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0 100 !OA . 0.8 : 1.2 20 . OJ‘ I02 : 0.3

Q
\
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’ = 1 e
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_== (c)A=4 .= () A=4
0 1 1 1 0 = 1 1 1 1
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10 . _-
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51 11k ////’/’ -
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FIG. 5. The dimensionless frequency 2 at zero temperature is
plotted as a function of g/kr when the layer separation distance is
kept constant at dkr = 2. The plasmon dispersions are shown for
four different values of the interaction strength (a) A = 1, (b) A = 2,
(c) . =4, and (d) A = 8. In each graph, the solid line represents
the upper bound of the particle-hole continuum. In the area under
this line, the collective modes enter the particle-hole continuum and
Landau damping starts. The collective modes related to the charge-
density oscillations in the layers of the system are demonstrated by
the dashed lines in each figure. The zoomed-in view of the collective
modes is demonstrated in the (a'), (b'), (¢'), and (d") graphs for the
corresponding values of the interaction strength A.

to obtain effective interlayer interactions in the system. We
assume that there is no tunneling between the layers.

For sufficiently large A, there is a critical scaled separation
distance D.()) below which the system becomes unstable
against the simultaneous formation of density waves in both
layers. This instability is caused by an enhancement in the
effective interlayer interactions. At a given A, when the separa-
tion between the layers D > D.(A), the drag rate increases as
D~ as the separation is decreased. However, as D approaches
D,, the enhanced effective interlayer interaction causes the
drag rate to increase faster than D~*. This can be seen by
comparing the panels with the same A in Figs. 2 and 3, where
D =1 and D = 2, respectively. For A = 1 and 2 and D, < 1
and therefore the drag rate increases by approximately a factor
of 2* = 16 when D is decreased from 2 to 1. On the other hand
for L = 4 and 8, when D, is close to 1, the drag rate increases
by more than a factor of 16 when D decreases from 2 to 1. This
suggests that the distance dependence of drag can be utilized
experimentally to determine if a bilayer system is close to a
density wave instability.

In addition, the collective behavior of the system is stud-
ied at zero temperature where the imaginary part of the
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polarization function is equal to zero, Imy (Q, 2, T=0)=0,
outside the particle-hole continuum. The modes are well de-
fined and linear for small ¢g. Our analytic and numerical
calculations show that the collective modes split for increasing
q values up to a point and then they disappear as a result
of Landau damping when they merge with the particle-hole
continuum.

We believe that this model is applicable to studying the
momentum transfer between the ultracold gases confined in
parallel layers. For studies on ultracold gases, the crucial
point of this transport method will be the adjustment of the
layer separation distance. Our calculations show that for weak
coupling limit A/D = ayp/d < 1, instability will not occur in
the system. In addition, for an effective momentum transfer,
the layers must be positioned a few a( apart from each other
because the drag rate decays rapidly with increasing layer
separation distance. For magnetic atomic species, ay are of
the order of tens of nanometers; for example, the calculated
values of ag for Cr, Er, and Dy are 2.4, 10.5, and 20.8 nm,
respectively. The ay for these species are much smaller than
the typical trapping features in ultracold atom experiments.
However, the recent experiment by Lu ef al. [45] demon-
strated a 50 nm interlayer separation by a superresolution
technique.

While the experiment of Ref. [45] provides an impetus
for us to consider the bilayer geometry, direct comparison of
the experiment with our results is impossible due to funda-
mental differences. The experiment features bosonic atoms in

J

dP, dq

D= [ s dawar f

dk
Q2n)

the BEC state, which has a completely different elementary
excitation spectrum from the Fermi liquid considered here.
Furthermore, the experiment has a prominent trap in the plane
of the layers, thus most of the bilayer coupling is through the
center of mass modes of the condensates. We hope that this
work stimulates more interest in experimentally obtaining bi-
layer Fermi systems. We believe the superresolution trapping
technique applied to a fermionic ultracold dipolar gas would
be able to probe the physics described in this paper. Another
possibility would be the use of ultracold dipolar molecules
for which ay of the order of 107® m are easily obtained
experimentally.
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APPENDIX A: DERIVATION OF DRAG RATE

Following Rojo [9] we calculate the rate of change in
momentum of the dipoles in the second layer as a result of
the scattering from dipoles in the first layer as

dk;

W 3(€k1 + €k, — €k+q — 6kz—q)

(AL)

< [fia (1= firra) i (1= fio—q) = frora(1 = fi) fio—g (1 = £i)]-

Equation (A1) utilizes the Born approximation. The § function enforces energy conservation during the scattering, the
(hq)|U(q)|* gives the Born approximation momentum transfer rate, and the various forms of the fi, function arise from the
probabilities of transitions from occupied states to empty ones. Here, fi, is the distribution function in layer 1 (the active layer),
which is assumed to be drifted from the equilibrium distribution £° by a small velocity vy; i.e., fi, = f]g_m .

h

To simplify the above expression, we make use of the following relations.
(i) Detailed balance condition for fermion systems:

QFF = fl?] (1 - fl?Hrq)fl?z(l - fl?z*q) = fl‘(l)lJrq(l - fl?l)fl?z*q(l - fl?z) (Az)
(ii) Linearization of fi, and f,+q With respect to v:
fio =12 m ~f0_3—f'?hk-v =f°—Lf0(1—f°)hk-v (A3)
k kfmTl k 8ek 1=k kBT k k b

We can rewrite the last term in Eq. (A1) by substituting in the linearized expressions for fi, ignoring the nonlinear v; terms
and using the detailed balance condition, Eq. (A2), to give

1
fio (1 = fiei+q) 1?7(1 - f;?z_q) — fiarq(1 = fic) I?Z_q(l - f;?z) =T li(q-vi) Qrr

1
= A RNV (N
The rate of the momentum change becomes
dP, Vi dq ) ) dk, dky, 0 0 0
@ =3 e VO | G | G RDRO R ) @9
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At this point, we use the following relations:
5(6k1 + €k, — €K4+q — ekZ*‘I)

o0
= h/ dw 8(ha) — € + eklm)(S(ha) + €k, — Gqu),

o0

(A6)
0 0 %) — fOlex + )]
F@0ll = S e+ Rl = S (AT
1
np(holns(—he) = = T Goy2r). Y
We also introduce the polarization function x°(q, )
dk
W (flg - fl?ﬁ-q) S(Ew — €t 6k1+‘1)
1 dkl fl?] - fl?1+q
= —Im
7 2n)? (hw — €k, + €x1+q — in)
= Imx?(q, w). (A9)

Using equations (A6)—(A9) into Eq. (AS5) and performing
some variable changes yields

sz vlhz / 3 2
—_— = d U
Qi 8n2k,T g9 Ul

/ Imy%(g, )Imxd(q, ®)
x | dw — .
sinh? (hiw/2kgT)

(A10)

Finally, introducing the momentum per particle in the second
layer, p» = P>/ny and writing the momentum per particle in
the first layer as p; = mjv;, we obtain the rate of momentum
transfer between the layers as

h2
—1 3 2
=———— | d U
p SmlnngTnZ/ q9q U@l

/ Imx?(q, a))Ing(q, w)
x | dow — .
sinh” (iw/2kgT)

(Al1)

APPENDIX B: COLLECTIVE-MODE DISPERSIONS

To find the collective-mode dispersions at T = 0, we solve

1

Q,Q) = ———,
X Vit £Vi2

(B1)

using the dimensionless quantities ¥, V1, and V},. We look for
collective modes above the particle hole continuum, so that

2700, Q) —1+é[ ai—l—\/az—l], (B2a)

1/

Thus, the collective modes are given by

1
atl —1-— a2—1=Q|:l+f}. (B3)
Vel \/ Vi £ Vio)
Let us define the right-hand side of Eq. (B3) as

p. Q(l + Vi> = Q(Vifr 1). (B4)

(B2b)

+ Vi
where V. = A(V}; % V}»). Squaring both sides of Eq. (B3) and
defining
/2,
n= Z - + Q - 1’ (BS)
gives

92
—2\n’ = =P, (B6)

After some manipulations, we obtain

/ 4
QL=P.0 1+ﬁ B7)

Substituting the expression for Py in Eq. (B4) into this gives
the collective mode dispersions

_QUeHD [, 4V

Q —. (B8)
Vi 2Vy +1
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