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Realizing limit cycles in dissipative bosonic systems
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We propose a general mechanism for generating limit cycle (LC) oscillations by coupling a linear bosonic
mode to a dissipative nonlinear bosonic mode. By analyzing the stability matrix, we show that LCs arise due
to a supercritical Hopf bifurcation. We find that the existence of LCs is independent of the sign of the effective
nonlinear interaction. The bosonic model can be realized in three-level systems interacting with a quantized
light mode as realized in atom-cavity systems. Using such a platform, we experimentally observe LCs in an
atom-cavity system with attractive optical pump lattice, thereby confirming our theoretical predictions for the
minimal model and interactions needed to generate LCs for a class of driven-dissipative systems.
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I. INTRODUCTION

A central focus of quantum optics is the understanding of
few-level systems coupled to a single photonic mode [1]. A
quintessential example is the Dicke model [2,3], in which a
large number of two-level systems are coupled to the same
light mode, giving rise to exciting physical phenomena such
as super- and subradiance and the Dicke phase transition.
Furthermore, as was pointed out more recently, if this model
is extended to incorporate multilevel systems and dissipa-
tion, the resulting many-body dynamics can give rise to limit
cycles (LCs) [4–10] and continuous-time crystals (CTCs)
[11–18]. LCs are closed phase-space trajectories, inherently
robust against noise or perturbations in the initial state. They
emerge via continuous-time translation symmetry breaking,
manifesting in an oscillatory motion despite the absence of an
explicit time dependence in their equations of motion. A LC
phase in a many-body system with an unbiased distribution
of the time phase of its oscillatory motion is a CTC and has
been recently demonstrated experimentally in a continuously
driven atom-cavity system [16].

In this work, we put forth a model, giving rise to LC oscil-
lations, that can either be understood in terms of a collection
of two-level systems coupled to a nonlinear photonic mode or
a collection of three-level systems coupled to a linear photonic
mode. The transition between the representations with three-
and two-level systems arises by adiabatically eliminating one
of the levels in the three-level systems and thereby generat-
ing a nonlinearity in the photonic mode. The LC behavior
is striking since additional quantum modes beyond the two-
level approximation increase the complexity of a quantum
system, and thus are expected to support ergodicity in generic
systems [19]. To obtain a concrete implementation of LC
dynamics, we map our generic model onto an atom-cavity
system and show that the current understanding, i.e., that the

emergence of LC phases in atom-cavity systems necessar-
ily relies on the use of a repulsive light-shift potential, is
incomplete [16,20–22]. In this paper, we elucidate that the
fundamental mechanism is, in fact, a Kerr-like nonlinearity
for the photons, which is induced by a third atomic level, typ-
ically neglected in standard Dicke-like models of atom-cavity
systems. This nonlinearity can arise irrespective of the sign of
the light-shift potential or pump-atom detuning, such that an
LC phase may also emerge for negative coupling parameters,
which we experimentally demonstrate in this work.

We expect our results to apply to a wide class of systems,
wherein the interactions are mediated by a bosonic mode,
such as in cavity-magnon systems [23] and superconducting
circuits [24,25], provided that they satisfy the form of the
coupling between the modes in our effective bosonic model
as schematically depicted in Figs. 1(a) and 1(b). In particu-
lar, the Kerr-like nonlinearity needed for the limit cycle to
emerge could originate from either a density- or intensity-
dependent coupling of a degree of freedom and the dissipative
mode. Some examples include a Kerr medium coupled to
a cavity field [26] and photon-phonon coupling in cavity-
optomechanical systems [23,27].

The paper is organized as follows. In Sec. II, we discuss the
minimal model and use bifurcation theory to explore the insta-
bilities in the system. In Sec. III, we discuss the atom-cavity
implementation and present the experimental results showing
the emergence of limit cycles in an atom-cavity system with
attractive light-shift pump potential. Finally, we conclude in
Sec. IV.

II. THEORY

A. General model

We consider a general model describing three bosonic
modes (a, b, and c) with the a mode being dissipative
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FIG. 1. (a) A bosonic mode (teal) b̂ interacts with a dissipative
bosonic mode (red) â with a nonlinearity proportional to χ and
damping κ . The width of the arrows denotes the strength of the
interactions. (b) Approximate three-level model for (c) a BEC (teal)
coupled to a single light mode including single-photon coupling with
strength λ and Kerr nonlinearity with strength χ . In (c), the BEC is
transversely pumped by a standing wave potential formed by two
laser beams and placed inside a high-finesse cavity. The rate of
emitted light from the cavity is κ . (d) Exemplary dynamics of the
Dicke model and the Dicke model including a Kerr-like nonlinearity
for varying coupling strength λ. While the Dicke model reaches a
steady state after entering the superradiant phase, the nonlinear Dicke
model enters the limit cycle phase for increasing λ. (e) Dynamics
of the light field in phase space starting from a fixed point (gray
diamond) and relaxing towards the limit cycle (blue line).

as its occupation decays at a rate of κ . The three-mode
Hamiltonian is

Ĥ = ωpâ†â + ω10b̂†b̂ + ω20ĉ†ĉ + λ(â† + â)(b̂† + b̂)

+ χ â†â(ĉ† + ĉ). (1)

The natural frequencies of the three modes are ωp, ω10, and
ω20. The b mode interacts with the a mode via an amplitude-
dependent coupling with strength λ. On the other hand, a
density- or intensity-dependent interaction characterized by χ

couples the a and c modes.
Applying mean-field theory by setting 〈â〉 = α, 〈b̂〉 =

β, 〈ĉ〉 = γ , and 〈ÂB̂〉 ≈ 〈Â〉〈B̂〉, we obtain the following
set of equations of motion (EOM) for the three-mode
system:

dα

dt
= −i[ωp − iκ + χ (γ + γ ∗)]α − iλ(β + β∗),

dβ

dt
= −iω10β − iλ(α + α∗),

dγ

dt
= −iω20γ − iχα∗α. (2)

We can adiabatically eliminate the c mode for ω20 �
ω10, ωp, such that we approximate dγ /dt ≈ 0 in the last line

FIG. 2. Comparison of the mean-field dynamics according to the
two-mode model with Kerr-like nonlinearity and the three-mode
model for (a) ω20 = 4κ and (b) ω20 = 8κ . The coupling strength
is fixed to λ = 1.09λSR. The remaining parameters are κ = ωp =
χ/2 = ω10/2.

of Eq. (2). This yields an expression for γ given by

γ = − χ

ω20
|α|2. (3)

Using this in the equation for the dissipative mode in the first
line of Eq. (2), we obtain an effective two-mode EOM,

dα

dt
= −i

[
ωp − 2

χ2

ω20
|α|2 − iκ

]
α − iλ(β + β∗),

dβ

dt
= −iω10β − iλ(α + α∗). (4)

Quantizing the remaining modes, an effective Hamiltonian
corresponding to Eq. (4) reads

Ĥ = ωpâ†â + ω10b̂†b̂ + λ(â† + â)(b̂† + b̂) − χ2

ω20
â†ââ†â.

(5)

Thus, we show that the eliminated mode leads to a Kerr-like
nonlinearity for the dissipative boson, which for cavity-QED
systems corresponds to the cavity photons.

In Fig. 2, we compare the mean-field dynamics for the
three-mode model and the two-mode model with the Kerr-like
nonlinearity obtained by numerically solving Eqs. (2) and (4),
respectively. Here, we fixed the coupling strength to λ = λSR,
with λSR as the critical point signaling the instability of the
trivial fixed point α = β = γ = 0. For larger ω20, exempli-
fied in Fig. 2(b), the quantitative agreement between the two
models improves since the adiabatic elimination of the c mode
hinges on the assumption that ω20 � ω10, ωp. Nevertheless,
we find qualitative agreement for the type of response (i.e., an
LC phase) for ω20 = 4κ , a parameter choice motivated by the
experiment that will be discussed later.

B. Bifurcation theory

To understand the nature of different critical transitions
in the system as shown in Fig. 1(d), we employ a sta-
bility matrix analysis for fixed points of the semiclassical
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EOM given by Eq. (4). The EOM for the three-mode model
prior to the adiabatic elimination, given by Eq. (2), can be
recast into ∂t X = F(X), with X = {α, α∗, β, β∗, γ , γ ∗}. Nu-
merically solving for the equilibrium or fixed points X0 =
{α0, α

∗
0 , β0, β

∗
0 , γ0, γ

∗
0 }, such that F(X0) = 0, and linearizing

the EOM around those, we obtain a linearized set of EOM

given by

∂tδX = J0δX, (6)

where δX = (X − X0) and J0 = ∂F(X)
∂X |X0 is the Jacobian sta-

bility matrix. In the case of the three-mode model, the
Jacobian matrix is

J0 = ∂F(X)

∂X

∣∣∣∣
X0

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−i[ωp + χ (γ0 + γ ∗
0 )] − κ 0 −iλ −iλ −iχα0 −iχα0

0 i[ωp + χ (γ0 + γ ∗
0 )] − κ iλ iλ iχα∗

0 iχα∗
0

−iλ −iλ −iω10 0 0 0
iλ iλ 0 iω10 0 0

−iχα∗
0 −iχα0 0 0 −iω20 0

iχα∗
0 iχα0 0 0 0 iω20

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (7)

For the two-mode model with Kerr-like nonlinearity de-
scribed by Eq. (4), applying a similar linearization leads to
the following Jacobian stability matrix:

J0 =

⎛
⎜⎜⎜⎜⎝

ωp − iκ − 4|α0|2χ2

ω20
− 2α2

0χ2

ω20
λ λ

2(α∗
0 )2χ2

ω20

4|α0|2χ2

ω20
− iκ − ωp −λ −λ

λ λ ω10 0
−λ −λ 0 ω10

⎞
⎟⎟⎟⎟⎠,

(8)

where X0 = {α0, α
∗
0 , β0, β

∗
0 }.

The solutions of Eq. (6) can be written as a superposition of
exp(ωit ), with ωi being the eigenvalues (EVs) of the Jacobian
matrix (8). The fixed points are only stable if the real part of
all the EVs is negative, Re(ωi ) < 0 ∀ i [28]. Focusing on the
two-mode model with Kerr-like nonlinearity described by the
stability matrix in Eq. (8), we present the real and imaginary
parts of the EVs of J0 using the appropriate fixed points
in Figs. 3(a) and 3(b), respectively. Exemplary dynamics of

FIG. 3. Spectrum and dynamics for the two-mode model with a
Kerr-like nonlinearity. (a), (b) Real and imaginary parts of the eigen-
values obtained from numerically diagonalizing the stability matrix.
The shaded background indicates the different phases: normal phase
[yellow (1)], superradiant phase [pink (2)], and limit cycle phase
[light blue (3)]. (c)–(e) The corresponding light-field dynamics in
each shaded background.

the occupation |α|2, which in the atom-cavity platform corre-
sponds to the photon number in the cavity, for various phases
are shown in Figs. 3(c)–3(e), which we obtain by solving the
mean-field EOM of Eq. (12). The parameters are κ = ωp =
χ/2 = ω10/2 = ω20/4. We choose ωp = κ since this corre-
sponds to the weakest light-matter coupling needed to enter
the SR phase λSR for fixed κ , which can be inferred by setting
∂λSR/∂ωp = 0 and solving for ωp. In Figs. 3(c)–3(e), we use
the NP as the initial state and linearly increase the light-matter
coupling strength to its final value within ≈150 T10, where
T10 = 2π/ω10. To rule out transient behavior, we only present
the dynamics after 600 T10.

In Fig. 3(a), for λ < λSR, we use the fixed point α = β =
γ = 0 corresponding to the so-called normal phase (NP) and
find that as expected, all Re(ωi ) are negative, thereby con-
firming its stability. The dynamics of the NP is depicted in
Fig. 3(c), confirming a steady-state value of |α|2 = 0. Above
the critical point λSR, the NP fixed point acquires an EV with
a positive real part (see Appendix A), which suggests an insta-
bility of this fixed point manifesting itself as a phase transition
from the NP to a superradiant (SR) phase in the context of
the Dicke model. This transition is a supercritical pitchfork
bifurcation, meaning that the real and imaginary parts of the
two relevant EVs are zero at λSR. In the SR region highlighted
by the pink area in Figs. 3(a) and 3(b), we obtain two new
fixed points corresponding to the pair of symmetry-broken
states in the SR phase. Expanding around the SR fixed points,
indeed, we find that they are stable in the SR region as their
Re(ωi ) are all negative. The time evolution in the SR phase
depicted in Fig. 3(d) shows a constant photon occupation.

Our model exhibits a second critical point λLC at which a
supercritical Hopf bifurcation occurs, which signals an insta-
bility towards a formation of a LC. The LC region in Figs. 3(a)
and 3(b) is depicted in light blue. In contrast to the pitchfork
bifurcation, the relevant EVs cross the real axis, while their
imaginary parts are nonzero. An exemplary LC dynamics
is shown in Fig. 3(e). The photon number oscillates at a
frequency given by the imaginary part of the corresponding
EVs. For a Hopf bifurcation, the oscillation amplitude of the
LCs increases as

√
λ − λLC [29] and we show that the LCs

in this paper follow this scaling behavior in Appendix B. In
Fig. 1(e), we present the photon dynamics in the phase space
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spanned by the real and imaginary parts of the photon field. It
demonstrates how the system approaches the stable LC orbit
starting from an SR phase marked by the gray diamond. The
red curves represent transient oscillations and the blue lines
correspond to the final LC orbit. In Appendix B, we show the
trajectories of different initial states converging to the same
LC orbit, which is a characteristic feature of a limit cycle
attractor.

Before we discuss the experimental results, we briefly
mention further features of the LCs found in the smaller is-
lands in the phase diagram as shown in Appendix B. Here,
an LC phase oscillates between the two fixed points while
accumulating a phase in the photon field at integer steps of
π . This suggests the presence of a particle current similar
to the self-oscillating pumping reported in Refs. [30,31]. We
note that this type of LC is not due to a Hopf bifurcation
as the scaling of the LC oscillations amplitude is approxi-
mately constant with λ, and therefore inconsistent with the
Hopf bifurcation scaling

√
λ − λLC. Exemplary dynamics of

the photon number and the phase winding are presented in
Appendix B.

III. ATOM-CAVITY IMPLEMENTATION

A. Mapping from the atom-cavity system

In the following, we focus on a specific implementation
using an atom-cavity setup [32,33] as sketched in Fig. 1(c).
In the context of LCs and CTCs found in the atom-cavity
platform [16], an important implication of our theory is the
possibility to observe LCs even for attractive pump field po-
tentials as demonstrated in Fig. 3, which is consistent with
the predictions in Ref. [34]. We now show that this is indeed
the case for an atom-cavity system operating in the recoil-
resolved or good cavity limit κ ∼ ω01 [35,36]. The details of
the derivation for mapping the atom-cavity Hamiltonian onto
the effective model given by Eq. (12) can be found in Ap-
pendix C. In what follows, we will simply sketch the crucial
steps. We start from a two-dimensional many-body Hamil-
tonian [37,38], neglecting both the trapping potential and
contact interactions between the atoms. A study of the influ-
ence of inhomogeneous trapping and short-range interactions
on a dissipative time crystal in an atom-cavity system reveals
the persistence of the time crystalline phase [39]. Next, we ex-
pand the atomic field operator in the basis of three-momentum
excitations of the BEC. The first state in the three-level model
|0〉 is represented by the zero-momentum mode |px, py〉 =
|0, 0〉 with an energy E0 = 0. The second level |1〉 is given by
the coherent superposition of | ± h̄k,±h̄k〉 momentum modes
with an energy E1 = 2h̄ωrec. The third level |2〉 corresponds to
the coherent superposition of the |0,±2h̄k〉 momentum modes
along the cavity axis with an energy E2 = 4h̄ωrec. This expan-
sion then leads to the effective three-level model in Fig. 1(b).
Similar models have been recently studied in [40–46]. Af-
ter using an SU(3) representation via the Schwinger boson
mapping, we apply the HP approximation [47] to finally
obtain Eq. (2).

Now that we have shown that Eq. (2) can be obtained
from the atom-cavity model, one can simply follow the
adiabatic elimination discussed in Sec. II to get Eq. (4).

Alternatively, we can first derive a nonlinear Dicke model,
which can then be approximated as the two-mode model
with Kerr-like nonlinearity in the thermodynamic limit, by
first adiabatically eliminating the third-level in the few-mode
atom-cavity description in Appendix C prior to employing the
Schwinger-boson mapping. In doing so, we only need SU(2)
spin operators as in the standard Dicke model, leading to a
nonlinear Dicke Hamiltonian,

Ĥ = ĤDicke + ĤKerr, (9)

where the Dicke Hamiltonian is

ĤDicke

h̄
= ωpâ†â + ω10

N∑
�=1

σ z
� + 2λ√

N

N∑
�=1

(â + â†)σ x
� , (10)

with σ
μ

� as the individual SU(2) spin operators. The bosonic
operators â and â† annihilate and create a photon in the quan-
tized light mode, respectively. The Kerr-like Hamiltonian is

ĤKerr/h̄ = − χ2

ω20
â†ââ†â. (11)

We emphasize that while we consider a third level to be the
origin of the Kerr nonlinearity, other physical processes gener-
ating this nonlinearity will result in the same phenomena; see,
for example, Refs. [23,26,27]. Introducing jμ = 1√

N
〈∑� σ

μ

� 〉,
with μ ∈ x, y, z, the EOM for the spin-boson model are
given by

dα

dt
= −i

[
ωp − 2

χ2

ω20
|α|2 − iκ

]
α − 2iλ jx,

d jx
dt

= −ω10 jy,

d jy
dt

= ω10 jx − 2λ(α + α∗) jz,

d jz
dt

= 2λ(α + α∗) jy, (12)

where ωp is the photon frequency, and ωnm is the level splitting
between the atomic states |n〉 and |m〉; see Fig. 1(b). The light-
matter interaction proportional to λ couples the atomic modes
with the two lowest energies |0〉 and |1〉 as in the standard
dipole approximation. Here, we also consider a two-photon
coupling between the first and third atomic levels |0〉 and
|2〉, which we adiabatically eliminate to obtain the Kerr-like
nonlinearity for the photonic field. The strength of this non-
linearity is controlled by χ . We included the decay strength κ

in the photonic mode equation of motion, which captures the
rate at which photons are emitted from the cavity. We apply
a Holstein-Primakoff (HP) transformation and include only
terms up to linear order in the bosonic operator [41,48] and
precisely obtain the EOM in Eq. (4)

B. Experimental results

We experimentally demonstrate the emergence of a LC
phase for an attractive light-shift pump potential in the
atom-cavity platform, schematically shown in Fig. 1(b). We
emphasize that this is in contrast to the repulsive light-shift
pump potential used in the theoretical prediction [12,22,49]
and experimental realization [16] of LCs in the atom-cavity
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FIG. 4. Experimental data for a red-detuned CTC or LC. (a) Pump strength protocol (top) and the intracavity photon number |α|2 (bottom)
for varying the effective cavity field frequency δeff and linearly ramped pump strength ε in units of the recoil energy Erec. The blue dashed
box depicts the area of the parameter space further analyzed in (b). (b) Phase diagram for varying δeff and final pump strength ε f . For each
plaquette, we linearly ramp the pump strength to ε f while keeping δeff constant. We categorize the normal phase (NP), superradiant (SR)
phase, chaotic phase (CH), and the limit cycle (LC) phase. The color represents the dominant oscillation frequency in the LC region. (c)–(e)
Exemplary dynamics and the resulting power spectrum α̃(ω) of the SR, LC, and chaotic phase marked by crosses in (b). t0 is the time at which
the pump strength is fully ramped up and is kept constant.

system. That is, here we provide an experimental observation
of a LC or CTC for an attractive light-shift pump potential,
which underpins the mechanism put forth by our generic
model given by Eq. (12). That is, the transition from an SR to
an LC phase can be understood as a Hopf bifurcation induced
by the Kerr nonlinearity χ that gives access to a third level
|2〉 beyond the usual two-level approximation that maps the
atom-cavity system onto an open Dicke model.

In our experiment, we place a BEC consisting of N ≈ 4 ×
104 87Rb atoms inside a high-finesse cavity that is pumped
transversely by a retroreflected laser beam, which produces a
standing wave potential for the atoms. The pump wavelength
that is used is 803.63 nm, which is red-detuned to the relevant
atomic transition at 794.98 nm. The resulting two-photon cou-
pling strength is χ/2π ≈ −6 kHz. The recoil energy Erec/h̄ =
2π × 3.55 kHz is comparable to the cavity decay rate of
κ = 2π × 3.6 kHz. Thus, the dynamics of the light field and
the atoms evolve on the same timescale and influence each
other on equal footing. To identify the approximate regime
of LCs, we record the photon number |α|2 over 5 ms after
the pump strength is slowly ramped up from zero to its final
value at a rate of 0.6 Erec

ms . We show the corresponding results
for different effective pump-cavity detuning δeff ∼ −ωp in
Fig. 4(a). In addition to the standard NP-SR phase transition
[32,33], we observe oscillatory behavior for certain values of
small |δeff | after entering the SR phase, which is indicative of
a LC phase.

We focus on the region enclosed by the dashed blue box
in Fig. 4(a). For these combinations of ε f and δeff , we now
ramp up the pump strength with the same rate as before
to its desired final value, which is then kept constant; see
Appendix D for details of the construction of the phase di-
agram. The resulting phase diagram is shown in Fig. 4(b).
Comparing the overall shape of the experimental LC regime in
Fig. 4(b) and the theoretical results presented in Appendix B,
we find qualitative agreement. However, we point out that the
approximations applied in our theory lead to a larger area with
stable LCs than in the experiment. We further note that in the
experiment, the lifetime of the LCs is limited by atom loss
induced by three-body collisions, which essentially reduces
the light-matter coupling λ and nonlinearity χ , and by the

inherent short-range interactions, which has been proposed to
make the LC metastable [50]. The atom loss effectively drags
the system to the bottom-left region of the phase diagram
[Fig. 4(b)], which brings it back to the NP. In Figs. 4(c)–4(e),
we present three exemplary traces of the time evolution of
the photon number and their corresponding power spectra,
characterizing the chaotic (CH), LC, and SR phases marked
in Fig. 4(b). Approaching the LC phase boundary from the SR
phase, in the intracavity photon number versus time, shown in
Fig. 4(c), we observe a constant population level of the cavity
mode together with noise, with a power spectrum showing
a broad peak around the LC frequency, which we interpret
as a precursor of the LC phase (see Appendix D for de-
tails). Increasing the pump strength, and thus the light-matter
coupling, we observe LC dynamics with a single dominant
frequency peak in the power spectrum. Increasing the pump
strength even further leads to aperiodic dynamics, as seen
directly in the time evolution of the photon number, which
exhibits a largely broadened power spectrum.

IV. CONCLUSIONS

In conclusion, we have proposed a generic three-mode
model and a nonlinear two-mode model that feature different
types of LCs in a wide range of parameters. We motivate
this model as the mean-field approximation of an extended
Dicke model, but emphasize that it emerges generically in
a broad class of systems. The predominant type of LC in
the model arises from a supercritical Hopf bifurcation. The
Hamiltonian of this model can be implemented by systems
that can be approximated as coupled bosonic modes using
a HP transformation. We show that the existence of LCs is
independent of the sign of the Kerr nonlinearity introduced
by a two-photon process, which is relevant for the formation
of LCs in atom-cavity systems. More specifically, it is the
presence of a third mode and its coupling with the density of a
dissipative bosonic mode that leads to an effective Kerr-like
coupling, which introduces the nonlinearity needed for the
emergence of LCs. Using an atom-cavity platform, we experi-
mentally observe the emergence of stable LCs for attractive or
red-detuned pump fields. We map out the phase diagram and
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find good qualitative agreement with the theoretical results.
Our work puts forth a different mechanism for creating LCs
and studying nonlinear dynamics in highly controllable quan-
tum systems. We emphasize that our bosonic model given by
Eqs. (12) and (4) is not limited to atom-cavity systems and can
be used in a wider class of systems involving boson-mediated
interactions and three-level systems, such as cavity-magnon
models [23], circuit QED [24,25], or Rydberg platforms [8,9].

ACKNOWLEDGMENTS

This work was funded by the UP System Balik PhD
Program (Grant No. OVPAA-BPhD-2021-04), the Quan-
tERA II Programme that has received funding from the
European Union’s Horizon 2020 research and innovation
programme under Grant Agreement No. 101017733, the
Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) “SFB-925” Project No. 170620586, and the Clus-
ter of Excellence “Advanced Imaging of Matter” (EXC 2056),
Project No. 390715994. J.S. acknowledges support from the
German Academic Scholarship Foundation. H.K. acknowl-
edges funding by the state of North Rhine-Westphalia through
the EIN Quantum NRW program. J.G.C. thanks Ryo Hanai for
valuable insights and discussions.

APPENDIX A: SPECTRUM USING X0 = 0

We present in Fig. 5 the spectrum of the Jacobian using
the NP fixed point X0 = 0 for different λ. For λ > λSR, the
system acquires an EV with Re(ωi ) > 0, as seen in one of the
blue curves in Fig. 5(a). Hence, the NP fixed point becomes
unstable.

APPENDIX B: LIMIT CYCLE DYNAMICS

1. Amplitude scaling of the LC transition

We show the characteristic scaling of the LC oscillations
amplitude as we cross the SR-LC phase transition. For LC
stemming from Hopf bifurcations, the amplitude of the LC
scales with μ = λ − λLC as μ1/2 for λ > λLC [29]. We present
the scaling as a function of μ in Fig. 6. The scaling agrees well
with the theoretical prediction. We attribute deviations from
the expected μ1/2 behavior to asymmetry in the LC dynamics
per cycle. We further note that while we are very close to
the phase transition, numerically its not feasible to zoom in

further for even smaller μ as the systems takes too long to
approach the corresponding stable LC phase. This could also
further lead to deviations from the expected scaling.

2. Different initial states

We present the dynamics of the transient behavior of the
light field during the transition from a random initial state
towards the stable LC orbit. We find that independent of the
initial state, the steady-state dynamics is the same LC orbit,
which is the defining behavior of LC dynamics. We demon-
strate this for three different initial states in Fig. 7.

3. Phase diagram for blue- and red-detuned pump frequencies

Solving the corresponding equations of motion (EOM)
allows us to construct the phase diagram in Fig. 8(b) for differ-
ent combinations of ωp and λ. The vertical axis is displayed as
−ωp/κ since this is related to the effective detuning between
the pump and cavity fields, which is chosen to be negative
in atom-cavity experiments. Unless indicated otherwise, we
fix the two-photon coupling strength to χ/κ ≈ 4, which is
a typical value in atom-cavity experiments, as we will show
later. In Fig. 1(d), we only highlight the regimes with stable
LCs, although we note that the system also hosts a transition
between a normal (NP) and a superradiant (SR) phase at
a critical light-matter interaction λSR =

√
(κ2 + ω2) ω10/4ω.

We also find chaotic phases marked by irregular dynamics of
the photon occupation. We classify a periodic dynamics as
a limit cycle if the steady-state amplitude of the oscillations
satisfies max(|α|2)/mean(|α|2) > 0.02 and the long-time
standard deviation of the oscillation peaks is σ|α|2 < 0.025.
These LC phases are equivalent to the CTCs observed in
Ref. [16].

The atomic levels can be dressed by the pump field, leading
to energy shifts � = sign(χ )εωrec/4 = sign(χ )λ2/8ωrecχ ,
where ε is the intensity of the pump field and ωrec is the as-
sociated recoil frequency. Neglecting the pump laser dressing
in the atom-cavity system means that the frequency splitting
between the |0〉 and |1〉 is simply given by the recoil fre-
quency, i.e., ω01 = 2ωrec. A more accurate theory includes
such dressing [41,42], which then adjusts the frequency of |1〉
depending on the sign of the frequency shift per single atom
U0, as depicted in Fig. 8(a).

FIG. 5. (a) Real and (b) imaginary parts of the eigenvalues of the stability matrix for the boson-mediated three-level system with the fixed
point X0 = 0. The fixed point X0 = 0 becomes unstable for λ > λSR.
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FIG. 6. Scaling of the LC oscillations amplitude on μ = λ − λLC.

In Fig. 8(b) we find two distinct regimes, wherein LCs can
emerge. For small ωp and λ, we find a large area in the phase
diagram hosting LCs. In contrast, for large ωp and λ, we find
smaller disconnected islands of LCs. We note the energy shift
due to the pump dressing � simply moves the LC regions
without changing their overall shape in the phase diagram.
Therefore, our results suggest that the emergence of the LC
phase in atom-cavity systems [12,16,22] does not hinge on
the repulsive nature of the pump, � > 0. Instead, the effective
Kerr-like nonlinearity χ that couples the lowest-energy mode
to a new third mode is the crucial ingredient for the existence
of the LCs or CTCs.

4. Phase-winding limit cycles

For the type of LC found in the small islands shown in
Fig. 8, we present the photon number dynamics and the corre-
sponding unwrapped phase in Fig. 9. We find that in contrast
to the LCs discussed in the main text, these LCs pick up a
phase of π during each cycle.

APPENDIX C: MAPPING FROM THE ATOM-CAVITY
HAMILTONIAN

We start from the many-body Hamiltonian describ-
ing a transversely pumped BEC inside a high-finesse

FIG. 7. Dynamics in the phase space of the photon mode α for
different initial states (gray diamonds) and their approach towards
the limit cycle (blue line).

(a) (b)

FIG. 8. (a) Three-level model coupled to a single light mode
including single-photon coupling with strength λ and two-photon
coupling with strength χ . (b) Phase diagram of the three-level model
in (a) and Fig. 1(c) for varying interaction strengths λ and photon
frequencies ωp. Areas enclosed by lines denote a stable limit cycle
regime. Black denotes results for the system in (a) without the level
dressing of the transverse pump field, while blue and red corre-
spond to blue- and red-detuned pump frequencies relative to ω01,
respectively.

cavity [16,37],

Ĥ/h̄ = −δCâ†â +
∫

dydz�†(y, z)

[
− h̄

2m
∇2

+ sign(U0)ωrecεp cos2(ky)

]
�(y, z)

+ �†[U0â†â cos2(kz) − √
ωrec|U0|εp cos(ky)

× cos(kz)(â† + â)]�(y, z), (C1)

where the pump (cavity) axis is along the y(z) direction, εp

is the pump strength, U0 is the maximum light shift per atom,
ωrec is the recoil frequency, and δC is the detuning between the
pump and cavity frequencies. We expand our field operator as

� = ψ0c0 + ψ1c1 + ψ2c2, (C2)

with

ψ0 = 1, (C3)

ψ1 = 2 cos(ky) cos(kz), (C4)

ψ2 =
√

2 cos(2kz). (C5)

With this, we obtain the effective Hamiltonian

H/h̄ = −δeff â
†â + ωrecεp/2 + (ω10 + �)c†

1c1 + ω20c†
2c2

+ U0

2
â†â

[
1
2 c†

1c1 + (c†
2c0 + c†

0c2)/
√

2
]

+ λ√
N

(â† + â)[(c†
0c1 + c†

1c0) + (c†
1c2 + c†

2c1)
√

2],

(C6)

where λ/
√

N = −ωrec|U0|εp/2, δeff = δC − U0N/2 = δC −
U/2, � = sign(χ )εωrec/4, ω10 = ωrec, and ω20 = 2ωrec. In
the following, we assume that the the lowest mode is highly
occupied. This means we neglect the term U0

4 a†ac†
1c1 and

λ√
N

(a† + a)(c†
1c2 + c†

2c1)
√

2 as these scale as 1/N compared
to the other terms and we are interested in the limit N � 1. We
further drop constant energy shifts of the Hamiltonian. Thus,
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(a) (b) (c)

FIG. 9. (a) Light-field dynamics of the photon number, (b) corresponding unwrapped phase of α, and (c) phase-space dynamics. The
parameters are ωp/κ = 1.9 and λ/λSR = 1.02.

the simplified atom-cavity Hamiltonian is

H/h̄ = −δeff â
†â + (ω10 + �)c†

1c1 + ω20c†
2c2

+
√

2U0

4
â†â(c†

2c0 + c†
0c2) + λ√

N
(â† + â)

× (c†
0c1 + c†

1c0). (C7)

Next, we map the three atomic modes to SU(3) spins using
the Schwinger-boson mapping [41] and obtain

H/h̄ = −δeff â
†â + (ω10 + �)Ĵ01

z + ω20Ĵ02
z

+
√

2U0

4
â†âĴ02

x + λ√
N

(â† + â)Ĵ01
x . (C8)

Finally, we use the Holstein-Primakoff representation given
by [47]

Ĵ01
z = b̂†b̂ − N/2, Ĵ01

+ = b̂†
√

N − (b̂†b̂ + ĉ†ĉ),

Ĵ01
− =

√
N − (b̂†b̂ + ĉ†ĉ) b̂,

Ĵ02
z = ĉ†ĉ − N/2, Ĵ02

+ = ĉ†
√

N − (b̂†b̂ + ĉ†ĉ),

Ĵ02
− =

√
N − (b̂†b̂ + ĉ†ĉ) ĉ, (C9)

and, by retaining terms only up to the lowest order in N , with
ωp = −δeff and χ = √

2/4U0N , we obtain Eq. (1).

APPENDIX D: CONSTRUCTION OF THE EXPERIMENTAL
PHASE DIAGRAM

To construct the phase diagram from the experimental
data, we consider the following three quantities to distinguish
between the various phases. We consider the average pho-
ton number |α|2, the standard derivation of the fluctuating
photon number divided by the mean photon number, σ|α|2 =
σ|α|2/|α|2, and the so-called crystalline fraction ξ [16,51],
which is defined via the amplitude of a Gaussian fit around
the LC peak in the Fourier transform of the dynamics of the
photon number.

We classify trajectories with less then 2 × 103 photons
detected on average to be in the normal phase. To further dis-
tinguish between the SR phase, limit cycle phase, and chaotic
phase, we use the following criteria. If the average photon

number is larger then |α|2 > 2 × 103 and ξ � 1/e × max(ξ ),
then the system is classified to be in the SR phase. If the
average photon number is larger then |α|2 > 2 × 103 and
σ|α|2 > 0.55, it is in the chaotic or aperiodic phase. Trajec-
tories not falling into one of the previous cases are identified
as LC phases.
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