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Observation of collapse and revival of atomic four-wave mixing in Bose gases

Wei-Tao Wu ,1,2 Zhi-Xin Duan ,1,2 and Sheng-Jun Yang 1,2,3,*

1Shenzhen Institute for Quantum Science and Engineering, School of Science, Southern University of Science and Technology,
Shenzhen 518055, China

2Guangdong Provincial Key Laboratory of Quantum Science and Engineering, Southern University of Science and Technology,
Shenzhen 518055, China

3International Quantum Academy, Shenzhen 518048, China

(Received 19 November 2023; revised 7 May 2024; accepted 28 May 2024; published 11 June 2024)

Atomic four-wave mixing (FWM) is an important nonlinear process in ultracold physics. Despite numerous
works on atomic FWM, the phase coherence effect has not been extensively studied. Here, by preparing multiple
spin-momentum modes with ultracold 87Rb atoms in a crossed dipole trap and applying an external magnetic field
to regulate the atomic motions and interactions, we extensively investigate how the coherence fluctuation affects
the atomic FWM process. We observe that the atomic motion and spin-exchange collision involve a periodic
collapse and revival of the yield fraction of the atomic FWM. The oscillation period is mainly determined by
the spin-exchange rate and thus the atomic scattering cross section. Our work demonstrates that atomic FWM
can be used to probe the coherence and the atomic interactions, which should benefit various areas related to
multicomponent atomic interactions and spin dynamics in the future.
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I. INTRODUCTION

The study of multicomponent ultracold atoms, includ-
ing various degrees of freedom and different isotopes or
elements, is an active research frontier, allowing us to ex-
plore many novel phenomena and applications in precision
measurement [1–3], quantum simulation [4–7], and quan-
tum information processing [8,9]. Interatomic interactions
among these atoms play critical roles in all these applications.
Well known is the binary atomic spinor collisions [10–16]
in generating sub-Poissonian quantum correlations, namely,
spin squeezing and entanglement [17,18], which surpass the
standard quantum limit [19,20]. Furthermore, atom frag-
mentations with additional separable momenta enrich more
research areas such as synthetic topological phases [5,6],
nonequilibrium quantum dynamics [4,15], artificially created
gauge symmetries and superfluidity [21–23], and gravity tests
[24,25]. Recently, mass-imbalanced atomic mixtures and cold
molecules realized with either bosons or fermions [26,27]
have provided a far more fascinating platform for simula-
tions involving strong-coupling phenomena and many-body
dynamics [28–30].

In these multicomponent ultracold atoms, there usually
exist strong many-body interactions. Coherence among these
components will provide the interaction enhancement, lead-
ing to various nonlinear effects and unexpected modifications
to the state evolution. In particular, nonlinear atomic four-
wave mixing (FWM) has been observed since the early
stages of ultracold physics [12,31–37]. Whether the nonlin-
ear FWM effect exists or not should be taken care of for
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the aforementioned research areas. Usually, atomic FWM
can be divided into two categories, namely, spontaneous and
stimulated atomic FWMs. Similar to the optical parametric
down-conversion, spontaneous atomic FWM produces corre-
lated pairs of scattered atoms via binary collisions. Output
correlation modes have been observed in both spin states
[12,31] and momentum states [32,33]. The stimulated atomic
FWM [34–37] generates an initially empty output mode in the
presence of one seed mode and two pump modes of the atoms.
Parametric amplification of specific modes can be achieved by
optical lattice modifications of the atomic dispersion [38–42].
In addition to the requirement of energy and momentum con-
servation, it is believed that phase coherence among the atoms
is essential in nonlinear matter-wave mixing.

Here, similar to the collinear atomic FWM scheme [36],
we prepare multiple spin-momentum modes of a 87Rb
Bose-Einstein condensate (BEC) and investigate the phase
coherence influence on the FWM output mode in detail. We
hold the atoms in a crossed optical dipole trap for a con-
trollable duration and observe a periodic collapse and revival
of the FWM output. We find that this is due to the trapped
atomic motion and spin-exchange collision involving loss and
recovery of the coherence. Our work demonstrates that the
two-body interaction properties can be retrieved by measuring
the atomic FWM output mode. It may be useful particularly
for those interactions that cannot be measured directly.

II. EXPERIMENT

Our experimental setup is illustrated in Fig. 1(a). About
2 × 105 ultracold 87Rb atoms with the initial state of |F = 1,

mF = −1〉 are trapped in a 1064-nm crossed optical dipole
trap (ODT). The size of the atom cloud is about 28 µm and
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FIG. 1. (a) Scheme of the experimental setup and (b) momentum distribution images after the Kapitza-Dirac (KD) diffraction of various
initial atomic states. (a) The BEC atoms are prepared in a 1064-nm crossed optical dipole trap (ODT), the bias and gradient coils generate the
uniform and gradient magnetic fields at around the atoms separately, and the rf coils can transfer the atoms between the states |F = 1, mF =
−1〉 (|↑〉) and |1, 0〉 (|↓〉). One 771-nm laser beam propagates along the x axis and then is reflected to form a lattice for the KD diffraction of
the momentum modes |±2kL〉, where kL is the lattice wave vector. Polarization of the forward- and backward-propagating beams can be rotated
to either parallel (lin‖lin) or orthogonal (lin⊥lin) by the quarter-waveplate (QWP), forming the spin-independent lattice or the spin-dependent
lattice. The inset is a conceptual diagram of interactions involved in our system. The yellow and green circles represent the spin-momentum
modes of the atoms. The black arrow between the zero-momentum spin states represents the spin-exchange collision. The gray arrows between
the momentum modes represent the KD diffraction. The cured arrows represent the atomic FWM. (b) By applying the proper rf pulse, the
atoms are initially prepared in the states of |↑〉, |↓〉, and evenly balanced (0.5|↑〉 and 0.5|↓〉) from top to bottom. The momentum distribution
images on the left and right sides correspond to the spin-independent and spin-dependent KD diffractions, respectively.

the atomic temperature is about 30 nK. The ODT is formed
by an elliptical Gaussian laser beam that propagates hori-
zontally (the xy plane). The laser beam is focused through
the atoms in the ê− (:=êx − êy) direction and then refocused
in the ê+ (:=êx + êy) direction. The trapping frequencies
{ω−, ω+, ωz} of the three-dimensional (3D) dipole trap are
{22.7, 31.4, 126.8} Hz. A pair of bias coils along the x axis
generate a constant magnetic field B0 ∼ 10.35 G to split
the atomic ground states. A resonant radio-frequency (rf)
pulse of frequency 7.24 MHz is used to rotate the atomic
states between |F = 1, mF = −1〉 and |F = 1, mF = 0〉. Fur-
ther transfer to the state |F = 1, mF = +1〉 is effectively
suppressed due to a large quadratic Zeeman shift. We de-
fine the two states |F = 1, mF = −1〉 and |F = 1, mF = 0〉
as the spin-up (|↑〉) and spin-down (|↓〉) states, forming a
pseudospin-1/2 system.

A one-dimensional optical lattice, with wavelength λL =
771 nm, propagates through the atoms in the x direction. The
beam waist is about 150 µm. Rotating the quarter waveplate,
the forward- and backward-propagating beams can be tuned to
be either linearly polarized or orthogonally polarized. The two
different polarization settings are spin independent and spin
dependent, respectively [43,44]. The spin-independent lattice
(lin‖lin) means that the states |↑〉 and |↓〉 experience the same
periodic potential. The spin-dependent lattice (lin⊥lin) means
that only the state |↑〉 experiences the periodic potential.
Known as Kapitza-Dirac (KD) diffraction [45,46], a pulse of
the lattice scatters atoms with momentum transfer at even
multiples of the photon momentum. In the experiment, we
apply the lattice pulse (the KD pulse) on the atoms to produce
recoiling atoms in momentum modes |±2kL〉 (kL = 2π/λL).

Six spin-momentum modes of the atoms are obtained as
shown in the inset of Fig. 1(a). We label them |α, lkL〉, where
α = {↑,↓} and l = {−2, 0,+2}. Both of the |↑〉 and |↓〉
atoms are diffracted for the spin-independent lattice (lin‖lin),
while only the |↑〉 atoms are diffracted for the spin-dependent
lattice (lin⊥lin).

Note that the spin-up state |↑〉 is magnetic sensitive and
the spin-down state |↓〉 is magnetic insensitive; a gradient
magnetic field can spatially separate them according to the
Stern-Gerlach effect. We use the time-of-flight absorption
imaging method to measure the atomic spin-momentum dis-
tribution. A pair of anti-Helmholtz coils, named the gradient
coils as shown in Fig. 1(a), are used to generate the gradient
field BSG [:=B′(xêx + yêy − 2zêz )] around the atoms. Here B′
is the gradient of the magnetic field. Immediately after the KD
pulse, the ODT is switched off and a large gradient field BSG is
applied. After a freely expanding duration of 25 ms, the atoms
with different spin and momentum states are well separated.
We then optically pump all the atoms into the atomic cyclic
state |F = 2〉 for absorption detection.

Figure 1(b) shows the absorption imaging after applying
the spin-independent and spin-dependent KD diffractions on
the atoms. From top to bottom, the atoms are initial pre-
pared in the pure spin-up state (|↑〉), the pure spin-down
state (|↓〉) and the half spin-up and half spin-down state
(0.5|↑〉 & 0.5|↓〉). The pulse width of the KD diffraction
τKD is set at 25 µs. The lattice potential Vlatt is 4.5Er , where
Er is the recoil energy. When atoms are purely in the spin-
up state, about 40% of the atoms are diffracted into the
first momentum mode |±2kL〉 for both the spin-independent
and spin-dependent lattices. When atoms are purely in the
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spin-down state, the KD diffraction is identical for the spin-
independent lattice and absent for the spin-dependent lattice.
However, when both spin states exist, the spin-down nonzero-
momentum modes |↓,±2kL〉 appear as shown in the bottom
right image of Fig. 1(b). If only considering the KD diffraction
with the spin-dependent lattice, no atoms would exist in the
modes |↓,±2kL〉. The generation of the modes |↓,±2kL〉 is
due to the atomic FWM.

By using the spin-dependent KD diffraction, we perform
a detailed study of the atomic FWM process and show how
the phase coherence affects the yield fraction of the FWM.
The inset of Fig. 1(a) presents a conceptual diagram of ma-
jor interactions involved in our system. Initially, there exist
four atomic modes |↑, 0kL〉, |↑,±2kL〉, and |↓, 0kL〉, where
|↑,±2kL〉 are the seed modes and |↑, 0kL〉 and |↓, 0kL〉 are
the pump modes. The output modes are |↓,±2kL〉. Because of
the symmetry of the KD diffraction, there are two exactly the
same FWM processes for the modes |↓,+2kL〉 and |↓,−2kL〉.
The curved arrows represent the atomic FWM process. We
also plot the KD diffraction of the spin-up state with the
gray arrows and the spin-exchange collision between the zero-
momentum modes with the black arrow.

III. BASIC THEORY

Utilizing the slowly varying envelope approximation
[47,48], the order parameter for the multicomponent Bose
gases described by the Gross-Pitaevskii equation is a su-
perposition

∑
j � j , where � j (:=ψ jei(k j r−Ejt/h̄)) is the jth-

component matter wave; h̄k j and Ej (:=h̄2k2
j /2M) are the

corresponding central momentum and kinetic energy, respec-
tively; and ψ j is the slowly varying amplitude, whose modulus
is proportional to the atomic number Nj . Equations for ψ j can
be written as

ih̄∂tψ j =
(

− ih̄2k j

M
∇ − h̄2

2M
∇2 + Uj

)
ψ j

+
∑
lm

gsδkl −kmδEl −Emψlψ
∗
mψ j

+
∑

lmn ( �= j)

gsδkl −km+kn−k j δEl −Em+En−Ej ψlψ
∗
mψn, (1)

where M is the atomic mass, Uj is the external field po-
tential for the component j, and gs = 4π h̄2as/MV , with as

the s-wave scattering lengths and V the quantization volume.
In addition, δkl −km , δkl −km+kn−k j , and δEl −Em , δEl −Em+En−Ej are
the Kronecker delta functions that satisfy the momentum and
energy conservation. Nonzero interactions obey these phase-
matching constraints and depend on the wave-packet overlap
and coherence. The second term on the right-hand side is the
self- and cross-phase modulations and the third term involves
nonlinear wave mixing.

In our system, we denote the slowly varying envelope for
each component by ψα,β , where the spin α ∈ {↑,↓} and the
momentum β ∈ {−2, 0,+2} in units of kL. Here N is the total
atomic number. The spin-destruction interaction is ignored
since it is much weaker than the spin-exchange interaction
and the nonlinear wave mixing. Under the constraint of spin
conservation, evolution of the FWM output modes can be

written as

ih̄∂tψ↓,±2 =
(

−±i2h̄2kL

M
∇ − h̄2

2M
∇2 + UODT

)
ψ↓,±2

+ gs

⎛
⎝2

∑
β

|ψ↓,β + ψ↑,β |2 − |ψ↓,±2|2
⎞
⎠ψ↓,±2

+ 2gs(ψ↑,0ψ
∗
↓,0 + ψ↓,0ψ

∗
↑,0)ψ↑,±2

+ 2gsψ↓,∓2ψ
∗
↑,∓2ψ↑,±2, (2)

where UODT is the dipole trap potential. The first two terms
on the right-hand side modify the atomic spatial distribution
and the coherence phase. The last two terms are the atomic
FWM. Since the separation speed of these components is
proportional to their relative central momentum and the atoms
are initially populated in the states |↑, 0kL〉, |↑,±2kL〉, and
|↓, 0kL〉, we eliminate the FWM process among the states
|↑,±2kL〉 and |↓,±2kL〉. For a small time increment δt ,
the growth |δψ↓,±2| � 2gs|(ψ↑,0ψ

∗
↓,0 + ψ↓,0ψ

∗
↑,0)ψ↑,±2|δt/h̄.

The fraction of each component fα,β is
∫ |ψα,β |2dV/N , where

N is the total atomic number and
∑

all fα,β = 1. We decom-
pose ψα,β as

√
nα,βeiθα,β , where the density nα,β and the phase

θα,β are functions of space and time. Upon squaring the equa-
tion and integrating over all space, we obtain

δ f↓,±2 = 16g2
s

N h̄2

∫
dV n↓,0n↑,0n↑,±2 cos2(δθ0)δt2, (3)

where δθ0 = θ↓,0 − θ↑,0. Thus, variation and fluctuation of the
atomic density and phase coherence of the spin mixture will
influence the FWM output. Assuming the three components
are initially overlapped with the same size, the separation
time of the wave packets is about RTF/vR � 2.3 ms, where
the Thomas-Fermi radius RTF � 14 µm and the recoil velocity
vR = 5.98 mm/s in our system. The FWM process is finished
within this separation time. In this work we make the ini-
tial wave packets of the three components overlap and focus
on study how their phase coherence influences the atomic
FWM. Recalling Eq. (2), modification of the phase coher-
ence comes from the external field and atomic interactions.
Before applying the spin-dependent KD pulse, we hold the
zero-momentum spin states in an optical dipole trap UODT for
a period of time. As experimentally demonstrated below, evo-
lution of the two-component Bose gases induces local phase
disturbances and thus modifies the FWM output fraction.

IV. COLLAPSE AND REVIVAL OF THE ATOMIC
FWM OUTPUT

By initially holding two-component spinor atoms in a
dipole trap UODT, we demonstrate observation of a periodic
collapse and revival of the atomic FWM output. We first
use the π/2 rf pulse to prepare the BEC atoms equally dis-
tributed in the spin-up and spin-down states. The two spinor
components are held in the dipole trap for a time duration
of th. Then the spin-dependent KD pulse is on to produce
recoiling spin-up atoms in momentum modes |±2kL〉. Sub-
sequently, the atomic FWM occurs. During these processes,
no gradient magnetic field exists. Only a bias magnetic field
B0 is applied in the x direction. We measure the yield fraction
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FIG. 2. Observation of the FWM output collapse and revival.
(a) Oscillation of the yield fraction f↓,2 after a holding time th of
the spin modes in the dipole trap. It is measured under different bias
fields B0 for comparison. (b) Oscillation period Tos (black squares)
and amplitude attenuation γdecay (red circles) of the fraction f↓,2 in
(a). The data are fitted with growth and decay functions. The blue
dotted line is to guide the eye for the case B0 = 4.5 G.

f↓,2 = f↓,+2 + f↓,−2 when setting B0 to various values rang-
ing from 0 to 12 G during the holding time th. As shown in
Fig. 2(a), f↓,2 oscillates as a function of the time th. When
B0 = 0 G, the value of f↓,2 is larger than the other cases due
to the state degeneracy. We calculate the fraction oscillation
period Tos and the amplitude attenuation γdecay in Fig. 2(b).
The Tos is the oscillation period in the beginning of th. It
decreases with the increase of B0. As discussed below, half of
it equals the inverse of the spin-exchange rate ηex. The γdecay

is defined as the ratio of the summed oscillation amplitude
between the last and first half seconds of the holding time th,
i.e.,

∑5 s
th=4.5 s | f↓,2 − f ↓,2|/

∑0.5 s
th=0 s | f↓,2 − f ↓,2|, where f ↓,2

is the data average. The oscillation amplitude stays basically
the same when B0 = 4.5 G and decays at weak and strong
magnetic fields.

In order to explain the observed phenomena, we discuss the
behavior of the trapped atoms. The potential UODT is treated
as a 3D harmonic trap, i.e., 1

4 Mω2
−(x − y)2 + 1

4 Mω2
+(x +

y)2 + 1
2 Mω2

z z2. Since ωz is large enough compared with ω±,

( , ) ( , ) ( , ) = ( , )) ( , )

− + = ( − + )

~2/( − )

(b)
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(d)
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FIG. 3. (a) Conceptual diagram of atomic motion and spin-
exchange collisions where v, r, and δφ are the atomic velocity,
position, and phase shift, respectively. (b) Detail measurement of the
output fraction f↓,2 when B0 = 0 G and th < 0.5 s. The red line is the
atomic velocity vx corresponding to the example of atomic motion in
(a). (c) Variation of f↓,2 by applying one rf π pulse at th = 0.975 s
when B0 = 10.5 G. (d) Example of the data fitting of Fig. 2(a) by
using Eq. (4). Here B0 = 4.5 G and 2 s � th � 3 s. (e) Oscillation
period Tos versus the holding time th when B0 = 4.5 G. The linear
fitting is to guide the eye.

we can simplify it as a two-dimensional horizontally planar
trap. The harmonic motion for individual atom can be gen-
erally written as r+ sin(ω+t + φ+)(êx + êy) + r− sin(ω−t +
φ−)(êx − êy), where r± and φ± are determined by the atom’s
initial position and velocity. Since the FWM process deals
with momentum modes on the x axis, we are concerned with
atomic motion in this direction. We plot the oscillating posi-
tion x in Fig. 3(a) when setting r+ = r− and φ+ = φ− = 0. It
roughly has a fast oscillation frequency (ω+ + ω−)/2 and a
slow oscillation frequency (ω+ − ω−)/2. The atomic velocity
and position change periodically and closely return to the
atom’s original state at a period of 2/(ω+ − ω−). The atomic
motion induces local phase disturbances between the two spin
states, thus influencing collective phase-matching conditions
of the FWM process. In addition to the individual atomic mo-
tion, there also exist all kinds of atomic interactions. Among
these interactions, the spin-exchange collision is the main
factor that we need to discuss. Contributions of the other
decoherence and dissipation factors such as spin destruction
and inelastic scatterings are weak. The spin-exchange colli-
sion retains the original momentum state of the atom while
flipping its inner spin state. As shown in Fig. 3(a), we illus-
trate the process by which one spin-up atom undergoes two
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spin-exchange collisions at times t1 and t1 + t2. During the
collision, an extra phase φex is created between the colliding
atoms. The phase φex is determined by the atomic wave vector
kv and the scattering cross section σse, i.e., approximately
− arctan(kvσse ). Its value is small and can be ignored in our
experiment. Before and after the collision interaction, there is
phase accumulation due to the energy difference δE between
the two states. For an ensemble of atoms, the collisions occur
with equal probability at any time if the atomic density is
constant. This results in local phase disturbances. In addition,
noise of the magnetic field B0 also cause phase decoherence.
After two collisions, the final phase shift δφ = δE (t1 − t2 +
t3) at time T = t1 + t2 + t3. The δφ equals zero when t2 =
t1 + t3, and the total time T = 2/ηex on average. We treat
the spin-exchange collision as a mirror, so the process can be
likened to a π/2-π -π -π/2 interferometer [bottom right graph
in Fig. 3(a)]. Considering both the atomic motion and the spin
exchange, phase coherence is perfectly restored and the atom
returns to its original state if the two characteristic times are
equal, i.e., 2/ηex = 2/(ω+ − ω−) � 0.23 s. The value is close
to the oscillation period Tos at around B0 = 4.5 G, as shown
in Fig. 2(b). When ηex is away from ω+ − ω−, the coherence
cannot be restored and the attenuation γdecay becomes fast. It is
worth noting that there exists a disturbance on the initial out-
put oscillation of f↓,2, as shown in Fig. 2(a). This disturbance
should be attributed to atomic motion. It becomes smooth af-
ter several spin-exchange collisions as the accumulated phase
difference of the atomic motion is averaged out. For a strong
magnetic field and long holding time, spin-exchange-induced
phase disturbances will play a major role.

To check the influence of atomic motion and spin ex-
change, we further carry out two measurements in Figs. 3(b)
and 3(c). In Fig. 3(b) we set the magnetic field B0 = 0 G
and measure the first 0.5-s output fraction f↓,2 in more detail.
Here, for comparison, we also plot the atomic velocity vx as
a red line corresponding to the example of atomic motion in
Fig. 3(a). Since B0 = 0 G, the two spin states are degenerate,
i.e., δE = 0. Disturbance of f↓,2 is mainly determined by vari-
ation of atomic velocity. The positions of the local minimum
and maximum value of f↓,2 are roughly consistent with the
change of atomic velocity. Meanwhile, it can be seen that
the value of f↓,2 has a slowly varying decay and recovery
process with time. The f↓,2 gradually decreases as more and
more atoms experience spin-exchange collisions that modify
their velocities. It then increases as more and more atoms
return to their original state after two collisions. For a strong
magnetic field B0, there exist a large phase shift δEt and
thus significant coherence fluctuations due to spin-exchange
collisions. In Fig. 3(c) we set the magnetic field B0 = 10.5
G and apply a rf π pulse to flip the atomic spin states at a
minimum position th = 0.975 s. The rf π pulse is at the time
T/2, as shown in the bottom right graph of Fig. 3(a). It will
stop the phase shift δφ from returning to zero. As evidenced
by experimental data in Fig. 3(c), f↓,2 continues to drop and
then reverses at a later time. However, it is lower compared
with the original maximum value.

From the above analysis and measurement, we can con-
clude that the collapse and revival oscillations mainly come
from the atomic spin exchange. For simplicity, we only con-
sider phase shift and disturbance induced by spin-exchange

collisions. The fraction f↓,2 is the integral over the conden-
sates, thus depending on the proportion of atoms involved
in the spin-exchange collision. We get its evolution over the
holding time th,

f↓,2 = A
(

(1 − η) + η
|(thmodTos) − Tos/2|

Tos/2

)
, (4)

where A is the maximum output fraction and η is the de-
structive ratio of the FWM. We use this equation to fit the
data in Fig. 2(a). Each fitting selects the experimental data
within a 1-s time segment, as shown in Fig. 3(d), for exam-
ple, where B0 = 4.5 G and 2 s � th � 3 s. The destructive
ratio η is related to the degree of collective phase deco-
herence and therefore increases with B0. Here we focus on
the oscillation period Tos. The period Tos is mainly deter-
mined by the spin-exchange collision, i.e., Tos = 2/ηex. The
fitting results of Tos are shown in Fig. 2(b) for different
B0 and in Fig. 3(e) for different th. The Tos decreases with
the magnetic field B [Fig. 2(b)], as the collision rate ηex

is proportional to the atomic cross section σse. Considering
the atomic density ρ ∼ 1.25 × 1013 cm−3 and the averaged
velocity vrms ∼ 1.69 mm/s, we obtain σse = √

2ηex/ρvrms =
2
√

2/ρTosvrms = 5.75 × 10−12 cm2 when B0 = 4.5 G. The
corresponding atomic scattering length is about 90.4a0, where
a0 is the Bohr radius. It is in agreement with other measure-
ments by looking at the temporal evolution of the atomic
density profiles [49,50]. The period Tos increases for long
holding time, as shown in Fig. 3(e). It is easy to understand
because the atomic loss leads to a smaller atomic density and
a lower collision rate.

V. THE FWM OUTPUT FOR DIFFERENT INITIAL
ATOMIC DISTRIBUTIONS

In Sec. IV we demonstrated that the phase coherence plays
an important role in the yield fraction f↓,2. However, as the
KD diffraction and the FWM process are involved in succes-
sion after the holding time th, we need to figure out the specific
influence of the coherence on each of them. Here the bias
magnetic field B0 is set at 10.5 G. We change the initial distri-
butions of the states |↑, 0kL〉 and |↓, 0kL〉 by variation of the rf
pulse. The yield fractions f↓,2 for different initial distributions
f i
↓,0 are shown in Fig. 4(a). We compare three cases of the

holding time th = {0, 0.14, 2.7} s. The time th = 0.14 s cor-
responds to around the first minimum of the measured f↓,2 in
Fig. 2(a). Times th = 0 and 2.7 s correspond to the initial stage
and the stable stages separately. The gray curve in Fig. 4(a) is a
theoretical function of C f i

↓,0(1 − f i
↓,0)2, where the coefficient

C is based on the maximum value measured in the case of
th = 0 s. There are some discrepancies between the theory
and experiment, since the function only simply considers the
initial atomic proportion and ignores their modification during
the FWM process.

In order to determine the respective effects of the KD
diffraction and the FWM, we calculate the efficiency of the
KD diffraction �KD of the three cases in Fig. 4(b). Here �KD

is equal to ( f↓,2 + f↑,2)/(1 − f i
↓,0). The presence of atoms

in the state |↓〉 reduces the effective lattice potential for the
state |↑〉 [51] and thus decreases the efficiency �KD for large
f i
↓,0. For the case of th = 0.14 s, the efficiency �KD � 0.4
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= 0 s

= 0.14 s

,

Θ
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(b)

FIG. 4. Yield fraction f↓,2 versus the initial distribution f i
↓,0 of

(a) the state |↓, 0kL〉 and (b) the corresponding KD diffraction ef-
ficiency �KD. Three cases of the holding time th = {0, 0.14, 2.7} s
are shown for comparison. The theoretical curve in (a) is normalized
to the maximum when th = 0 ms and the line in (b) corresponds to
�KD = 0.4.

when f i
↓,0 < 0.1. It gradually decreases from 0.4 as f i

↓,0 in-
creases. As the spin-exchange rate ηex is proportional to the
atomic density, more atoms in the state |↑, 0〉 will experience
one spin-exchange collision for larger f i

↓,0. According to the
Tos � 0.2 s measured in Fig. 2(b), half of the spin-up atoms
will be scattered at around f i

↓,0 = 0.35. Consistently, as shown
by the red circles in Fig. 4(b), �KD drops to a minimum
when f i

↓,0 � 0.3. As f i
↓,0 further increases, most of the spin-up

atoms experience one collision and phase coherence over all
the spin-up atoms is restored. When increasing f i

↓,0 close to
one or for long holding time, i.e., th = 2.7 s, all spin-up atoms
have been through enough collisions. The phase difference
over all the spin-up atoms will be averaged out. As confirmed
in Fig. 4(b), �KD is the same for the two cases of th = 0 and
2.7 s. Considering only variation of the value of the efficiency
�KD is not enough to lead to the yield attenuation of f↓,2.

So we conclude that the observed collapse and revival of f↓,2

in Sec. IV is truly determined by the atomic FWM process
instead of the KD diffraction. Our phenomenological model
and analysis should be reasonable.

VI. CONCLUSION

In this work, by holding two-component atoms in an opti-
cal dipole trap and successively applying the KD diffraction
to induce the atomic FWM, a periodic collapse and revival of
the FWM output has been observed. We pointed out that it
is due to local phase disturbances influenced by the atomic
motion and spin-exchange collision during the dipole trap.
A simple physical picture based on the individual atomic
behavior was presented to explain these phenomena. By mea-
suring the yield fraction, we obtained the two-body interaction
parameters including the spin-exchange rate and the atomic
scattering length. Future work may include isolating the ef-
fects of atomic motion and spin exchange, for example, by
using the flat-topped beam trap, to achieve more accurate
measurements. Comprehensive theoretical and experimental
studies of these phenomena involving many-body interactions
and various dissipations are worthwhile both for a deeper
understanding and for potential measurement applications.
During evolution of the two-component Bose gases, if ex-
ternal fields or other atoms or molecules are introduced to
interact with one of the components, we may be able to detect
these interactions according to the atomic FWM output. It
is attractive to provide a zero-background measurement be-
cause the output atoms can be isolated and detected by the
time-of-flight method. In conclusion, we have demonstrated
that the atomic FWM is quite sensitive to phase coherence
and can be used as a probe of ultracold atomic interaction
and dynamical evolution, which may benefit various areas of
research involving multicomponent matter waves.
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