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Spin-charge separation in the quantum boomerang effect
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We study the localization dynamics of a SU(2) fermionic wave packet launched in a (pseudo)random potential.
We show that, in the limit of strong intercomponent repulsions, the total wave packet exhibits a boomeranglike
dynamics, returning to near its initial position as expected for noninteracting particles, while separately each
spin-component does not. This spin-charge separation effect occurs both in the infinite repulsive limit and at
finite interactions. At infinite interactions, the system is integrable and thermalization cannot occur: the two
spin-components push each other during the dynamics and their centers of mass stop further from each other
than their initial positions. At finite interactions, integrability is broken, the two spin-components oscillate and
mix, with their center-of-mass positions converging very slowly to the center of mass of the whole system. This
is a signature that the final localized state is a fully spin-mixed thermalized state.
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I. INTRODUCTION

In disordered quantum systems it has been shown that a
wave packet launched with some initial velocity may return to
its initial position and stop there. This phenomenon, known
as the quantum boomerang effect (QBE) [1–3], occurs in
the Anderson localization (AL) limit when interactions are
completely negligible and disorder completely freezes the
dynamics of the wave packet [4,5]. The QBE is found not
only in real space, but also in momentum space. In this latter
case, the (pseudo)disorder in momentum space is introduced
by kicking periodically the wave packet. Indeed, the first
experimental evidence of the QBE was obtained in a quan-
tum kicked-rotor experiment [3]. These measurements have
confirmed the theoretical predictions [1,2] and elucidated the
crucial role of the time-reversal symmetry in determining
the presence or absence of the QBE. In fact, the occurrence
of the QBE requires not only that the system be in the AL
regime but also that some symmetries of the Hamiltonian and
of the initial state of the wave packet be fulfilled [6–8]. When
localization takes place in momentum space, as in the case
of the kicked rotor, it is the time-reversal symmetry that is
crucial for the wave packet to come back to its initial position.
On the other hand, for systems that localize in real space, like
the Anderson model, it is the space-time reversal symmetry
that regulates the dynamics of the quantum boomerang [6,8].
When this symmetry is broken, the wave packet—after having
been launched—stops somewhere but not necessarily in its
initial position.

Like Anderson localization, the QBE is a phenomenon
that is expected for noninteracting systems, both bosonic and

fermionic. It has been shown that weak interactions between
particles partially destroy the QBE: the center of mass of the
wave packet makes a U-turn, but without coming back to its
initial position [9]. This also happens for a one-dimensional
(1D) strongly interacting Bose gas, which can be mapped
to a weakly interacting Fermi gas [10]: interactions partially
destroy interference effects and thus the QBE. However, in the
limit where the interactions are infinitely repulsive, namely, in
the Tonks-Girardeau regime, the QBE holds since the system
can be mapped onto free fermions [10].

In this paper, we investigate the quantum boomerang dy-
namics of a strongly repulsive two-component Fermi gas (see
Fig. 1). The underlying idea is to explore a system where
different spin configurations are available and study if the
QBE, or its failure, can bring information about the thermal-
ization of the system and, possibly, whether its final state is
many-body localized [11–13].

A two-component Fermi gas with strong, repulsive in-
tercomponent contact interactions can be mapped onto an
effective spin-chain Hamiltonian where the spins exchange
when particles of different spin-components collide [14].
The dynamics of such a system starting from an initially
spin-demixed configuration have been studied in the ab-
sence of disorder [15–17], highlighting that the short-time
superdiffusive dynamics of the magnetization interface for
two spin-components happens in a similar way in spin chains
[18–21]. It has also been shown that such a system relaxes
towards the microcanonical ensemble during a time interval
that increases with the number of particles, integrability be-
ing broken by the presence of an external potential at finite
interactions [17].
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The presence of the disorder localizes the whole wave
packet as well as the two spin-components. The size of the
wave packet for each spin-component is initially half of the
total size, but very rapidly the two spin-components mix so
that their size quickly reaches that of the total wave packet.
Simultaneously, the center of mass of the whole system does
a U-turn and stops at its initial position, as if the system
were noninteracting. Instead, the center of mass of each spin-
component does not return to its initial position but, in the
presence of finite interactions, converges towards the position
of the center of mass of the whole system, with a damped
oscillating dynamics much slower than that of the whole den-
sity. This separation of timescales is due to the fact that the
spin dynamics is governed by the inverse of the interaction
strength, which is very large in our model. We therefore ob-
serve a charge-spin separation in the QBE.

Moreover, at finite interactions, where spin mixing occurs,
we find that the final localized spin densities are those ex-
pected in the microcanonical ensemble, whereas, in the limit
of infinite interaction strength, where the centers of mass
of two spin-components stop further apart from their initial
positions, the final localized state is very different from that
expected in the microcanonical ensemble because integrabil-
ity prevents thermalization.

The manuscript is organized as follows. The physical
model is introduced in Sec. II, where we remind how the sys-
tem can be mapped onto a spin-chain model and the dynamics
can be exactly solved in the strong-interacting limit. Then,
the boomerang experiment is described in Sec. III, where we
detail a proposal for an experimental protocol and analyze
the results, discussing the role of the interactions and of the
symmetries. The thermalization issue is discussed in Sec. IV.
Concluding remarks are given in Sec. V.

II. THE MODEL

We consider a SU(2) fermionic mixture with N↑(N↓) =
N/2 fermions in the spin-up (spin-down) component. Each
fermion is subject to an external potential V (x) and interacts
with fermions of the other spin component via a repulsive con-
tact potential of strength g. Thus, the many-body Hamiltonian
reads

H = H0 +
N↑∑
i=1

N∑
j=N↑+1

gδ(xi − x j ), (1)

with

H0 =
N∑

i=1

[
− h̄2

2m

∂2

∂x2
i

+ V (xi )

]
. (2)

Close to the fermionized regime, where interactions are so
large that they play the role of a Pauli principle between
fermions belonging to different spin components, the many-
body wave function can be written as [22]

�(X ) =
∑
P∈SN

aPθP(X )�A(X ), (3)

where the summation is performed over all P permutations
of N elements, SN . The vector X = (x1,σ1 , . . . , xN,σN ) includes

particle coordinates xi and spin indices σi, �A(X ; t ) is the
zero-temperature solution for spinless fermions obeying the
noninteracting Hamiltonian H0, and θP(X ) is the generalized
Heaviside function, which is equal to 1 in the coordinate
sector xP(1),σP(1) < · · · < xP(N ),σP(N ) and 0 otherwise. The co-
efficients aP are determined by minimizing the energy [22]:

E = E∞ + 1

g

(
∂E

∂g−1

)
1/g→0

= E∞ − C
g
, (4)

where E∞ in the energy in the fully fermionized regime and
C = −(∂E/∂g−1)1/g→0 is Tan’s contact up to a dimensional
constant. This is equivalent to solving the eigenvalue problem
of the effective Hamiltonian

Heff = H|1/g�1 = E∞1̂ + HS (5)

obtained by expanding H on the {φn} snippet basis, namely,
the basis of all particle sectors obtained by global permu-
tations modulo the permutations of identical fermions with
the same spin [23]. Furthermore, it has been shown that HS

is equivalent to a spin-chain Hamiltonian in position particle
space [14],

HS =
N−1∑
j=1

(−Jj 1̂ + JjP̂j, j+1), (6)

where P̂j, j′ = (	σ ( j) 	σ ( j′ ) + 1)/2 is the permutation operator
and 	σ ( j) = (σ ( j)

x , σ
( j)
y , σ

( j)
z ) are the Pauli matrices. The hop-

ping terms Ji in Eq. (6) can be written as

Ji = N!

g

∫ ∞

−∞
dX δ(xi − xi+1)θid(X )

∣∣∣∣∂�A

∂xi

∣∣∣∣
2

. (7)

A. The dynamics close to the fermionized regime

In an out-of-equilibrium situation, when the free-fermion
part of the wave function �A is time dependent, the Jj terms
(7) change in time. Therefore, to obtain �(X, t̄ + dt ) start-
ing from �(X, t̄ ), we proceed as follows [24]. We start by
finding Ji(t̄ ) to determine the spin-chain Hamiltonian at a
time t̄ . By diagonalizing HS (t̄ ) we obtain the eigenvectors
a( j)

P (t̄ ) and their corresponding eigenvalues E j (t̄ ). Expanding
the coefficients aP of Eq. (3) in this basis gives the identity
aP(t̄ ) = ∑

j α j (t̄ )a( j)
P (t̄ ) and makes it possible to compute the

coefficients at a time t̄ + dt as

aP(t̄ + dt ) =
∑

j

α j (t̄ )e−iE j (t̄ )dt/h̄a( j)
P (t̄ ). (8)

Once the evolved coefficients (8) are known, the many-body
wave function at a time t̄ + dt can be written as

�(X ; t̄ + dt ) =
∑
P∈SN

aP(t̄ + dt )θP(X )�A(X ; t̄ + dt ). (9)

For this approach to work, the time steps need to fulfill the
condition dt � h̄/|Jj (t̄ + dt ) − Jj (t̄ )| for any t̄ and any j.
Once the many-body wave function is calculated, we can
compute the spin densities at each time:

ρ↑,↓(x, t ) =
∑

i

δ↑,↓
σi

∑
P∈Sn

|[aP(t )]i|2ρ i(x, t ), (10)
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where δ↑
σi

(δ↓
σi

) is the Kronecker delta for spin σi and ↑ (↓) and

ρ i(x, t ) =
∫

x1<···<xi−1<x<xi+1···<xN

dXδ(x − xi )|�A(X, t )|2

is the density in the sector x1 < · · · < xi−1 < x < xi+1 · · · <

xN , while the total density is ρ(x, t ) = ∑N
i=1 ρi(x, t ) =

ρ↑(x, t ) + ρ↓(x, t ).

B. The dynamics in the presence of disorder

We now focus our attention on the case of a wave packet
of fermions initially prepared at equilibrium in a harmonic
trap of frequency ω, which is then released with an imprinted
initial momentum h̄k0 on each fermion and propagates in the
pseudorandom potential

Vdis(x) = W sin(
√

5π (x + icL/2)3/(aho/10)3) (11)

where W is the potential amplitude, aho = √
h̄/(mω) is the

typical harmonic potential length scale, L is the size of the
system, and ic is an integer index that counts the pseudodisor-
der configurations. It has already been shown that the potential
(11), defined on a lattice, induces both Anderson localiza-
tion [25] and the boomerang effect [2] as a truly random
potential. We choose the potential (11), rather than a truly
random one, because of its relevance to cold-atom experi-
ments, in which pseudorandom potentials can be realized with
appropriate laser configurations [26]. We would like to stress,
however, that we have verified that the results described in
this paper are still valid if the pseudorandom potential (11)
is replaced with a random potential of adequate strength [2].
The potential (11) has zero average Vdis(x) = 0 and is δ-
correlated, Vdis(x)Vdis(x′) = γ δ(x − x′). The values obtained
from Eq. (11) by keeping x fixed and varying ic have a uniform
probability distribution function (PDF). Here and in the rest of
this paper, we use the symbol (· · · ) to denote the average over
a sequence of pseudodisorder configurations [we consider
different ic values in Eq. (11)].

The disorder strength γ determines the mean-free path 


and the mean-free time τ for a noninteracting system. Indeed,
we remind that for a wave packet with the momentum h̄k0 in
the Born approximation, one has [1]


 = h̄4k2
0

2m2γ
and τ = h̄3k0

2mγ
. (12)

Here and in the following, we have fixed γ = 0.86 ×
103h̄2ω2aho and k0 = 50/aho, which imply that 
 = 1.45aho

and τ = 0.029ω−1. We remark that, in order to use such
expressions for the case of N noninteracting fermions,
(h̄k0)2/(2m) has to be much larger than the energy of the
highest occupied orbital [10], namely, the Fermi energy of the
system.

The presence of disorder significantly influences the time
evolution of the hopping terms Ji. In an experiment in which
the wave packet is first prepared separately in a determinis-
tic initial condition and then left to evolve in a disordered
potential, the Ji’s at time t = 0 are determined by the initial
state and their PDFs are Dirac δ’s [as shown in Fig. 2(a)].
Because the fermions move in a (pseudo)random potential,
the hopping terms become stochastic variables, with disorder

FIG. 1. Schematic representation of the system studied in this
work: a spatially spin-demixed initial state is realized with an initial
nonvanishing momentum in a disorder potential.

entering via the time evolution of �A. As a consequence, at
each time t , the statistical properties of the Ji terms must
be described with a PDF P(Ji ). The time evolution of the
corresponding marginal PDFs is depicted in Fig. 2, which
shows that initially the PDFs broaden and drift towards higher
values of Ji, eventually reaching stable asymptotic forms at
longer times. These qualitative features are evinced by the
time evolution of the average values of the Ji’s and of their
rescaled standard deviations

σJi

J̄i
=

√
J̄2

i − J̄i
2

J̄i
, (13)

as shown in Fig. 3.
We can estimate the dependence of the mean-free path


 j and of the mean-free time τ j on J̄i and σJi for the spin
dynamics by using the expression for the localization length
for a lattice system with random off-diagonal disorder, derived

(a)

(d)

(b)

(c)

FIG. 2. Evolution of PDFs of the Ji terms for the case of an initial
deterministic wave packet of 2 + 2 fermions, initially prepared in a
harmonic trap of frequency ω, launched with an initial momentum
h̄k0 in the presence of a pseudorandom potential (11). The different
panels correspond to the following times: (a) 0, (b) 0.002, (c) 0.4,
and (d) 4, in units of 1/ω. Note that in panel (a), corresponding to
the initial state, the PDFs of J1 and J3 are the same.
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(a)

(b)

FIG. 3. Average hopping terms Ji, for the case g = 100h̄ωaho,
(a) and relative standard deviation (13) of the hopping terms Ji (b),
as functions of time, for the same experimental protocol as for Fig. 2
and described in Sec. III.

in the Born approximation [2]. This would give


 j ∝ J̄i
2

σ 2
Ji

, and τ j ∝ J̄i

σ 2
Ji

. (14)

Equations (14) predict that 
 j does not depend on the strength
of the interactions g, whereas τ j increases with it (τ j ∝ g),
which is in agreement with the results presented in the next
section.

Finally, let us discuss the stochastic properties of the
Ji(t )’s. They are ultimately shaped by the random poten-
tial Vdis(x), but, unfortunately, the determinantal form of �A

makes it highly nontrivial to establish a link between the
randomness of the potential Vdis(x) and the stochastic features
of the Ji terms. As shown by Eq. (7), the magnitude of the Ji’s
is proportional to the sharpness of the cusps, namely, the slope
of the wave function �A(X ) when two particles approach each
other. Therefore, we expect that their average values should
strongly depend on the specific features of the experimental
protocol.

In the present case, we consider a wave packet launched
with an initial momentum in a disordered landscape. Our
numerical analysis has shown that the marginal PDFs of the
Ji terms tend to asymptotic forms characterized by a skewed
shape and fat tails.

III. THE BOOMERANG DYNAMICS

We propose in this section an experimental protocol to
observe QBE. We consider an initially spatial phase-separated

SU(2) fermionic mixture with N↑ = N↓ where the up spins are
on the left (L) and the down spins are on the right (R), both
trapped in the harmonic potential Vho = mω2x2

i /2. At t = 0
we release the fermions in the disorder potential Vdis(xi ) by
kicking them towards the right with an initial momentum h̄k0

and switching off the harmonic potential.
We study the dynamics of the center-of-mass x̄ and the

width w of the total disordered-averaged density profile,

x̄ =
∫

ρ̄(x)xdx/N, (15)

w =
(∫

ρ̄(x)(x − x̄)2dx/N

)1/2

, (16)

and we do the same for each spin component,

x̄↑,↓ =
∫

ρ̄↑,↓(x)xdx/N↑,↓, (17)

w↑,↓ =
(∫

ρ̄↑,↓(x)(x − x̄↑,↓)2dx/N↑,↓

)1/2

. (18)

Note that to simulate such an experimental protocol in the
procedure detailed in Sec. II, the time discretization needs to
verify dt < τ .

A. Spin-charge separation in the boomerang dynamics

We observe (see Fig. 4) that, in the fermionized regime
(g → ∞), the two components never mix, and they localize
independently, repelling each other. Indeed, in this case the
hopping terms Ji vanish and

ρ∞
↑ (x, t ) = ρL(x, t ) =

N↑∑
i=1

ρ i(x, t ) (19)

and

ρ∞
↓ (x, t ) = ρR(x, t ) =

N∑
i=N↑+1

ρ i(x, t ). (20)

Moreover, the width of each component is half of the width
of the total density, and we observe that the final position of
the center of mass of each spin-component is x̄∞

↑,↓(t → ∞) �
±w/2.

The dynamical behavior is considerably different when
interactions are large but finite: in this case the two spin-
components undergo mixing during the dynamics, as happens
in the absence of the disorder [17] (see Fig. 4). Each spin-
component is localized by the disordered hoppings, reaching a
final width that is the same of the two components [Fig. 4(a)].
Initially, each component moves away over a distance 
max,
and then it comes back towards the initial position of the
center of mass of the whole system, performing damped oscil-
lations, around this position. These oscillations are governed
by the frequency spectrum of the spin-chain Hamiltonian (6),
which yields the lowest nonzero frequency ω� = (J1 + J2 −√

J2
1 + J2

2 )/h̄, where we have used that at long times J1 = J3.
As shown in Fig. 4(b), the turning point 
max is roughly
the same for the cases g/(h̄ωaho) = 100 and 200, and the
time evolution scales with g, namely, x̄↑,↓(2t )2g � x̄↑,↓(t )g,
as predicted by Eqs. (14). The localization dynamics of each
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(a)

(b)

FIG. 4. Disorder-averaged widths w (a) and center-of-mass po-
sitions (b) x̄ of the whole system (black solid lines) and of
each spin component (red thick and blue thin lines) as func-
tions of time (in logscale), for different values of the interaction
strengths: g/(h̄ωaho) = 100 (continuous lines), g/(h̄ωaho) = 200
(dashed lines), and g → ∞ (dot-dashed lines). Here we used the fol-
lowing parameters: k0aho = 50, γ = 0.86 × 103 h̄2ω2aho, and N = 4
and we averaged over 512 configurations.

spin-component occurs on a much longer timescale with re-
spect to that of the total density. In particular, we observe that
at long times one has

x̄↑,↓ = 1
2 (x̄∞

↑ + x̄∞
↓ ) ± 1

2 (x̄∞
↑ − x̄∞

↓ )F (t ), (21)

with F (t ) being a function that depends on the average of
spin weights only, |aP(t )i|2δ↑,↓

σi
. Indeed, the timescales of

the density dynamics and of the spin dynamics being very
different (the first being determined by the disorder strength
γ and the second by the hoppings Ji that are proportional
to ρ3/g [27,28]), the average over configurations splits into
two independent parts as if the two dynamical processes were
uncorrelated (see the Appendix).

The center of mass of the total density, depicted in
Fig. 4(b), exhibits the boomerang dynamics: the whole wave
packet moves away over a distance of ∼
 and then comes back
to its initial position, while at the same time the wave packet
localizes. However, each spin-component individually does
not come back to its initial position, but its center-of-mass
position at long times coincides with the center of mass of
the whole system.

Note that the behavior of the total density does not depend
on the value of the interaction strength in the regime we are
analyzing (1/g � 1), so that the black curves in Fig. 4 concern
the three cases analyzed [g/(h̄ωaho) = 100, 200,∞], indeed
both the cases of g = 100 and g = 200 make it clear that
increasing the interaction slows down the spin dynamics but
does not alter the behavior of the center of mass of the whole
system. We thus observe a spin-charge separation with respect
to the boomerang dynamics, for both finite and infinite values
of the interaction strength. This result is in agreement with
the prediction of spin-charge separation in the localization
dynamics for a disordered chain of spin-1/2 fermions [12].

B. Role of the interactions and symmetries

A straightforward interpretation of our results is the follow-
ing one. In the strongly interacting mixture, the whole density
is described by the spinless-fermions solution. Thus, the
whole density follows the boomerang dynamics as expected
for noninteracting fermions or Tonks-Girardeau bosons [10].
The effect of the interactions manifests itself in the inter-spin-
component dynamics, but in a very different way depending
on whether the interactions are infinite or finite. When the
interactions are infinite, each spin-component is just a sys-
tem of noninteracting particles that is not free to propagate
everywhere because of the presence of the other component. It
localizes at the same time as the whole system, but largely far
away from the position of the center of mass of the whole sys-
tem and also largely far away from their initial position. The
center of mass of each component does not do the boomerang
dynamics: each component moves away but does not come
back because it is pushed by the other component.

Instead, when the interaction is large but finite, the situation
is completely different. The landscape of the disorder felt by
the spins completely changes. Particles with different spin
hop with a spatially random probability, which fluctuates as a
function of time and is inversely proportional to the interaction
strength. The center of mass of each component reaches a final
position that is different from the initial one, as already found
for other interacting systems [10], and coincides with that of
the whole system.

From the point of view of each component, there is an
initial time when the dynamics at finite interactions coincides
with that at infinite interactions, but then the trajectories sep-
arate, one going back while the other does not. This is very
different from what happens with a single-component system
[10] where the center of mass for the gas of finite interactions
slightly deviates from that with infinite interactions.

As a final remark, we would like to highlight the role
of symmetries for the QBE. As pointed out in Refs. [6,8],
the QBE takes place in real space if the ensemble of the
disordered Hamiltonians {H} is invariant under the action of
RT and if the initial state is an eigenstate of RT , where
R is the spatial reversal operator and T is the time-reversal
operator. For the system we have considered in this work,
both conditions are fulfilled. However, each spin-component
is not an eigenstate of RT . Under the action of RT the
spin-up component on the left is transformed on the spin-
down component on the right, and vice versa. Thus, each
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FIG. 5. Distance R(t ) from the spin part of the time-dependent
average spin density ρ̄↑(t ) to the microcanonical one ρ↑,MC as func-
tion of time t .

spin-component separately does not fulfill the condition for
the QBE, but the two spin-components system does.

IV. THE THERMALIZATION ISSUE

Given that the system we are studying is characterized by
interactions and disorder, it is natural to ask whether the final
localized state is many-body localized or if the eigenstate
thermalization hypothesis (ETH) holds. In the latter case, the
expectation values of local operators will ultimately evolve in
time to their values predicted by the microcanonical ensemble
[17,29]. Such a target state, for our system, coincides with a
state described by the diagonal ensemble where the spin densi-
ties ρ↑,MC(x) and ρ↓,MC(x) are equally distributed. Of course,
this cannot happen at infinite interactions: in this limit the
system is integrable and the different spins, which are initially
spatially phase separated, never mix, making it impossible to
achieve a uniform nonmagnetized state. But at large finite
interactions, even if slowly, the spin mixing takes place and
continues even after the total density has localized. The long-
time position of the center of mass of each spin-component
coincides with the position of the center of mass of the whole
localized cloud. This is in accordance with what one would
expect with the aforesaid fully mixed state where ρ↑,MC(x) =
ρ↓,MC(x). Furthermore, since we have verified that the particle
densities ρ i(x, t ) and the amplitudes |[aP(t )]i|2 entering the
spin densities [cf. Eq. (10)] possess different relaxation times,
in order to investigate the thermalization of the spin dynamics
we have evaluated the distance

R(t ) =
∑

i

⎛
⎝∑

P∈SN

|[aP(t )]i|2 −
∑
P∈SN

∣∣[aP]MC
i

∣∣2

⎞
⎠, (22)

where [aP]MC
i are the coefficients obtained from the diagonal

ensemble, analogously to what has been done in Ref. [17] (see
Fig. 5). With R(t ) collapsing to 0 very rapidly, it is clear that,
for what concerns the spin density distributions, our system
is consistent with the ETH. Thermalization was also reported
for spin chains subject to off-diagonal disorder [30]. Our case
displays some differences with the above, as the effective
disorder felt by the spins is time dependent, as it originates

from the dynamics of the orbital part. It is also interesting to
mention that the disorder felt by the particles is diagonal, but
it turns off-diagonal as felt by the spins because it is mediated
by the interaction among particles.

In conclusion, we would like to emphasize that the center-
of-mass evolution of the spin components, namely, whether
the boomerang dynamics occurs for the spin components, is
an experimentally accessible tool to probe the lack of ther-
malization and the compatibility with the ETH.

V. CONCLUDING REMARKS

In this work we have studied the dynamics of a two-
component fermionic wave packet launched in a 1D pseu-
dorandom potential. We have considered the case of initially
spatially phase-separated fermions characterized by strong,
repulsive interspecies contact interactions. In such a strongly
interacting limit, the charge and the spins dynamics decouple.
The total density coincides with the total density of a nonin-
teracting spinless Fermi gas, while the spin components obey
an effective nonhomogeneous Heisenberg spin-chain Hamil-
tonian, whose hopping terms, which depend on the density
evolution, become random during the dynamics and fluctuate
in time. As a result, we find that the total density performs
a boomerang dynamics as predicted for noninteracting parti-
cles, while the densities of each spin-component, considered
separately, do not. Their centers of mass initially move away
and then they come back, not to their respective initial po-
sition, but towards the initial position of the whole system.
They reach this position, making damped oscillations, whose
frequency is determined by averages of the effective hopping
energy. The two spin-components mixed together reach a final
spin-density distribution that is compatible with that of the
diagonal (microcanonical) ensemble. This is a signature that
interactions, in our system, do not induce many-body local-
ization, at least for the parameters that we have chosen for our
study. This result is reminiscent of previous studies [29] that
have shown that for a Heisenberg spin chain with off-diagonal
quenched disorder, many-body localization does not occur.
Finally, let us underline that the system we have studied in
this work opens up the possibility to realize, with an ultracold
atom experiment, a quantum simulator of a Heisenberg spin
chain with off-diagonal disorder. However, our system differs
from that analyzed in Refs. [31–34] as the spatial part is
subject to a diagonal disorder and the spin components feel
an off-diagonal time-dependent disorder. This could bring un-
expected novel phases and deserves further studies for larger
systems, correlated disorder, and finite temperature.
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APPENDIX: TWO-SPIN DYNAMICS

Let us consider the case of two fermions. In this case, the
spin part of the many-body wave function can be written on
the snippet basis as a1(t )| ↑↓〉 + a2(t )| ↓↑〉, with a1(t = 0) =
1 and a2(t = 0) = 0. There exists only a hopping term J and
the ai’s obey the differential coupled equations

ih̄ȧ1,2 = −Ja1,2 + Ja2,1. (A1)

Taking into account that a2
1 + a2

2 = 1, then we get

a2
1 = 1

2

{
1 + cos

[
2

∫ t

0
J (t ′)dt ′

]}
,

a2
2 = 1

2

{
1 − cos

[
2

∫ t

0
J (t ′)dt ′

]}
. (A2)

The center of mass of each component can be written as

x̄↑ = a2
1x1 + a2

2x2,
(A3)

x̄↓ = a2
2x1 + a2

1x2,

where x1 and x2 are the centers of mass of the density distri-
butions ρ1 and ρ2. We observe that

x̄↑ � a2
1x̄1 + a2

2x̄2,

x̄↓ � a2
2x̄1 + a2

1x̄2. (A4)

Since in the two-particle case x̄1 = x̄∞
↑ and x̄2 = x̄∞

↓ , we
obtain

x̄↑,↓ = 1

2
(x̄∞

↑ + x̄∞
↓ ) ± 1

2
(x̄∞

↑ − x̄∞
↓ )cos

(
2

∫ t

0
J (t ′)dt ′

)
.

(A5)

The J’s distribution not being Gaussian, the disorder average
of the cosine function cannot be written in simple terms,
and we need to compute it numerically. Indeed, even if J̄
determines the spin oscillation frequency, we have verified
that the variance σ j does not allow one to deduce a correct
damping time. The comparison between the center-of-mass
exact evolution and the approximated one given in Eq. (A5) is
shown in Fig. 6.
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