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Beliaev damping of gapped excitations in a two-component Bose-Einstein condensate
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We investigate the Beliaev damping of gapped excitations in a homogenous two-component Bose-Einstein
condensate with Rabi coupling and find different damping behavior of gapped excitations in two quantum phases.
In the paramagnetic phase, due to constraints imposed by the Z2 symmetry and energy-momentum conservation,
the only damping channel available, that of decaying into one phonon and one new gapped mode, cannot occur
unless the group velocity of the gapped modes surpasses the sound speed. Conversely, in the ferromagnetic
phase, three distinct decay channels exist. Once the momentum of the excitations falls below a critical threshold,
only one of these channels, that of decaying into two gapless modes, is activated, and the damping rate remains
finite even at zero momentum.
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I. INTRODUCTION

The elementary excitations, or quasiparticles, play a crucial
role in understanding the low-energy physical properties of
quantum many-body systems. When considering the residual
interactions between quasiparticles, it results in the finite life-
time of excitations, which alters the fundamental properties
of quantum systems, such as transport and thermalization.
One well-known damping mechanism is the Beliaev-Landau
damping. In the Beliaev damping, one quasiparticle decays
into two new quasiparticles [1,2], while in the Landau damp-
ing, a quasiparticle absorbs thermal quasiparticles [3]. At
zero temperature, the Beliaev damping is the only damping
mechanism for the excitations and has been demonstrated
in a wide variety of systems, including the Bose superfluids
[4–14], Fermi superfluids [15], Bose-Fermi mixtures [16,17],
and nonequilibrium polariton BECs [18].

Previous studies on spinor BECs mainly focus on the
damping of gapless modes (phonons) [11,12], with little atten-
tion paid to gapped excitations. In contrast to discrete spectra
of gapped excitations in trapped superfluids, the energy spec-
tra of gapped excitations in uniform spinor BECs [19–22] is
continuous. The Beliaev damping of the former is prohibited
due to the difficulty in satisfying the energy conservation
condition for discrete spectra, whereas the damping of the
latter is generally feasible. The gapped excitations, includ-
ing rotons in superfluid helium [23,24], optical phonons in
crystals [25], and magnons in spin systems [26], have been
extensively studied for their decay. Given the additional con-
straints on the damping channels, the decay of the gapped
excitations is significantly different from that of the gapless
modes [20].

In this paper, we investigate the Beliaev damping of
gapped excitations in a uniform Rabi-coupled two-component
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Bose-Einstein condensate (BEC) that exhibits a U(1) × Z2

symmetry. The condensate’s ground state can manifest as an
unpolarized paramagnetic phase, wherein the densities of both
components (n1 and n2) are equal, or as a partially polar-
ized ferromagnetic phase, with unequal component densities
[19,27]. The system exhibits two branches of excitations:
gapless and gapped modes [19,28]. Interactions among ex-
citations of the same or different branches give rise to a
greater diversity of damping channels in spinor BECs com-
pared to their single-component counterparts. Nevertheless,
when we narrow our focus to low-momentum excitations, this
diversity is significantly diminished. As shown in previous
research [12], gapless modes with low momentum possess
such minimal energy that they decay into just two phonons,
maintaining the familiar q5 scaling with momenta. Although
low-momentum gapped excitations, owing to their higher
energy, might intuitively suggest the presence of multiple
damping channels, our research surprisingly shows that this
is not the case. In this paper, we first derive a general formula
for the damping rate using Fermi’s golden rule. Our analysis
reveals the existence of three potential decay channels for
the gapped modes. Specifically, a gapped quasiparticle can
decay into two gapless quasiparticles or, alternatively, into
a pair of new gapped quasiparticles, or even into a gapless
quasiparticle and a fresh gapped quasiparticle. However, sub-
sequent investigations highlight that the Z2 symmetry, along
with the energy-momentum conservation condition, imposes
significant constraints on these damping channels. In the para-
magnetic phase, the Z2 symmetry prohibits the first two decay
channels, while the third, though permissible, is stringently
governed by the energy-momentum conservation condition.
This latter channel only manifests when the group velocity
of the gapped excitations surpasses the speed of sound. Con-
versely, in the ferromagnetic phase, where Z2 symmetry is
broken, the damping rate of low-momentum gapped excita-
tions is predominantly influenced by the first channel, owing
to the prevailing constraints imposed by energy-momentum
conservation.
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The remainder of this paper is structured as follows. In
Sec. II, we employ the perturbation method to derive the
generalized Beliaev damping rate applicable to two-
component Bose-Einstein condensates. Subsequently, in
Secs. III and IV, we delve into the specific damping rates
of gapped excitations in the paramagnetic and ferromagnetic
phases, respectively. Lastly, Sec.V provides a comprehensive
summary of our findings.

II. GENERAL EXPRESSION FOR THE BELIAEV
DAMPING RATE

We consider a homogenous two-component BEC, in which
the two components interact through pure contact and Rabi
coupling interactions. The relevant Hamiltonian is written in
the form [12]

Ĥ =
∫

d3r
∑
j=1,2

[
h̄2

2m
|∇ψ̂ j (r)|2 + h̄�

2
ψ̂

†
j (r)ψ̂ j̄ (r)

]

+
∫

d3r
∑

i, j=1,2

gi j

2
ψ̂

†
i (r)ψ̂†

j (r)ψ̂ j (r)ψ̂i(r), (1)

where j, j̄ = 1, 2, and j �= j̄. ψ̂1(r) and ψ̂2(r) are the an-
nihilation field operators for the two-component bosonic
atoms. The coupling constants, g11, g22, and g12 denote
the intraspecies and interspecies interactions, respectively.
For simplicity, we assume g11 = g22 = g for the intraspecies
coupling constants. Additionally, we introduce the Rabi fre-
quency � to describe the coherent coupling between the two
components, assuming � > 0 throughout this paper. The sys-
tem has a U(1) × Z2 symmetry, where U(1) corresponds to
the total atom number being conserved, and Z2 corresponds
to the exchange of the two components. The total conden-
sate density is n0. In the case of (g − g12)n0 + h̄� > 0, the
ground state exhibits a paramagnetic phase characterized by
n1 = n2 = n0/2, where n1 and n2 represent the condensate
density of the two components. This phase preserves the Z2

symmetry. On the other hand, when (g − g12)n0 + h̄� < 0,
the ground state is a doubly degenerate ferromagnetic phase
with (n1 − n2)± = ±n0

√
1 − η2, where η = h̄�/(g − g12)n0

[19]. In this phase, the Z2 symmetry is broken [12]. The phase
transition between these two phases has been realized by the
experiment [29].

The atomic field can be expanded in the plane-wave basis
ψ̂ j (r) = 1√

V

∑
eiq·r/h̄â j,q. In the weak-coupling regime, the

lowest moment state (q = 0) is macroscopically occupied,
and â j,0, â†

j,0 ≈ (−1) j+1
√

Nj . Here Nj is the atomic number
of the component, and the total number of atoms is given
by N = N1 + N2. As Nj is much larger than the occupation
of all other single-particle modes, the Hamiltonian can be
rearranged based on the order of the ladder operators (âi,q

and â†
i,q, with q �= 0). By neglecting the smallest fourth-order

term containing only single-particle operators, the Hamilto-
nian can be approximately expressed as Ĥ ≈ Ĥ0 + Ĥ2 + Ĥ3.
The zeroth-order term Ĥ0 is a constant value and can be
dropped. The second-order term Ĥ2 is a Bogoliubov-type

quadratic Hamiltonian, and one obtains

Ĥ2 =
∑
j,q

[
h jâ

†
j,qâ j,q + g

2
n j (â

†
j,qâ†

j,−q + â j,qâ j,−q)

]

+
∑

q

(
h̄�

2
â†

1,qâ2,q − g12
√

n1n2â†
1,qâ†

2,q

− g12
√

n1n2â†
1,qâ2,q + H.c.

)
, (2)

where h j = q2

2m + g
2 (3n j − n j̄ ) + g12

2 (n j̄ − n j ) + h̄�n0
4
√

n1n2
. The

third-order term Ĥ3 describes the scattering process of exci-
tations and is given by

Ĥ3 = 1√
V

∑
j,p,q

(−1) j+1√n j (gâ†
j,pâ†

j,q−pâ j,q

+ g12â†
j,pâ†

j̄,q−pâ j̄,q + H.c.). (3)

By introducing the quasiparticle operators b̂σ,q and b̂†
σ,q which

satisfy the Bogoliubov transformations

âi,q =
∑

σ=α,β

(
uσ

i,1,qb̂σ,q + uσ
i,2,−qb̂†

σ,−q

)
, (4)

the second-order term Ĥ2 can be rewritten in the diagonal form
as Ĥ2 = ∑

σ,q εσ
q b̂†

σ,qb̂σ,q + constant, where α and β denote
the gapless mode and the gapped mode, respectively. The
functions u are the solutions of the Bogoliubov-de Gennes
(BdG) equations [19]

h ju
σ
j,k,q + gn ju

σ
j,k̄,q +

(
h̄�

2
− g12

√
n1n2

)
uσ

j̄,k,q

− g12
√

n1n2uσ
j̄,k̄,q = (−1)k+1εσ

q uσ
j,k,q. (5)

The third-order term Ĥ3 can also be rewritten using the quasi-
particle operators, resulting in the expression

Ĥ3 = 1

2
√

V

∑
σ,σ ′,σ̃

∑
p,q

(
Bσσ ′σ̃

p,q−p,qb̂†
σ,pb̂†

σ ′,q−pb̂σ̃ ,q + H.c.
)
. (6)

We have ignored terms such as b̂b̂b̂ or b̂†b̂†b̂† as they do
not conserve the energy and will not contribute to the decay
process. The first term of Eq. (6) describes the Beliaev decay
process, where one σ̃ mode decays into one σ mode and an-
other σ ′ mode. The scattering matrix element Bσσ ′σ̃

p,p′,q is given
by

Bσσ ′σ̃
p,p′,q =

∑
j,k=1,2

{
(−1) j+1√n j

[
2g
(
uσ

j,k,puσ ′
j,k̄,p′

+ uσ ′
j,k,p′uσ

j,k̄,p + uσ
j,k,puσ ′

j,k,p′
)

+ g j j̄

(
uσ

j̄,k,puσ ′
j̄,k̄,p′ + uσ ′

j̄,k,p′uσ
j̄,k̄,p

)]
+ (−1) j̄+1√n j̄g j j̄

(
uσ

j̄,k,puσ ′
j,k,p′ + uσ ′

j̄,k,p′uσ
j,k,p

+ uσ
j,k,puσ ′

j̄,k̄,p′ + uσ ′
j,k,p′uσ

j̄,k̄,p

)}
uσ̃

j,k,q. (7)
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FIG. 1. Schematic representations of three decay channels for
a gapped mode (solid line) with the momentum q. (a) Channel A
depicts decay into two gapless modes (dashed lines). (b) Channel B
illustrates decay into two new gapped modes. (c) Channel C shows
decay into one gapless mode and one new gapped mode.

According to Fermi’s golden rule, the Beliaev damping rate
of the σ̃ mode at zero temperature can be written as

γ σ̃
q = π

2V

∑
σ,σ ′,p

∣∣Bσσ ′σ̃
p,q−p,q

∣∣2δ(εσ̃
q − εσ

p − εσ ′
q−p

)
= 1

16π2h̄3

∫ ∑
σ,σ ′

∣∣Bσσ ′σ̃
p,q−p,q

∣∣2δ(εσ̃
q − εσ

p − εσ ′
q−p

)
dp, (8)

which coincides with our previous result obtained by the time-
dependent mean-field approach (see Supplemental Material
of Ref. [11]). The Beliaev decay of the gapless mode (α
mode) has been previously examined [12], revealing that the
damping rate γ α

q is proportional to q5 in the paramagnetic
phase [12]. In this paper, we focus on the Beliaev decay of the
gapped excitation (β mode). Referring to Eq. (8), we identify
three distinct decay channels for the gapped mode: channel
A, which involves a decay into two gapless modes [illustrated
in Fig. 1(a)]; channel B, where the decay results in two new
gapped modes [depicted in Fig. 1(b)]; and channel C, which
entails a decay into one gapless mode and one new gapped
mode [shown in Fig. 1(c)]. It should be noted that Bαββ

p,p′,q and

Bβαβ

p′,p,q describe the same decay process.

III. DAMPING IN THE PARAMAGNETIC PHASE

In the paramagnetic phase, n1 = n2 = n0/2, which
preserves the Z2 symmetry. This symmetry significantly
simplifies the expressions for the Bogoliubov spectrums
and amplitudes, which can be derived by solving Eqs. (5).
The energy spectrums of the gapless and gapped modes
are given by εα

q = √
εq[εq + (g + g12)n0] and ε

β
q =√

(εq+h̄�)[εq + h̄�+(g − g12)n0], respectively, where εq =
q2/2m. The gapless mode represents the density wave, while

FIG. 2. Momentum manifolds allowed by the momentum-energy
conservation in the p‖ − p⊥ plane for various momenta q under
g12/g = 1.5 and h̄�/gn0 = 0.6. Here, the p‖ and p⊥ represent the
components parallel and perpendicular to q, respectively. The mo-
mentum is expressed in units of h̄/ξ , where the coherent length ξ =
h̄/

√
mgn0. The manifolds correspond to qξ/h̄ = 1.12 (innermost),

1.15, 1.20, and 1.25 (outermost). Notably, the threshold momentum
qc = 1.08h̄/ξ , below which the manifold disappears.

the gapped mode characterizes the spin wave [19]. The
Bogoliubov amplitudes u can be written as

uα
1,k,q = −uα

2,k,q = 1

2
√

2

⎡⎣√ εq

εα
q

− (−1)k

√
εα

q

εq

⎤⎦, (9)

uβ

1,k,q = uβ

2,k,q = 1

2
√

2

⎛⎝√εq + h̄�

ε
β
q

− (−1)k

√
ε

β
q

εq + h̄�

⎞⎠.

(10)

Substitute the condition uα
j,k,q = −uα

j̄,k,q and uβ

j,k,q = uβ

j̄,k,q

into Eq. (7), then it is straightforward to verify that Bααβ
p,q−p,q =

Bβββ
p,q−p,q = 0. Consequently, only channel C, which involves

the decay into one gapless mode and one new gapped ex-
citation, is activated. Since Bαββ

p,q−p,q = Bβαβ
q−p,p,q, the Beliaev

damping rate given by Eq. (8) can be simplified to

γq = 1

8π2h̄3

∫ ∣∣Bαββ
p,q−p,q

∣∣2δ(εβ
q − εα

p − ε
β
q−p

)
dp. (11)

The momentum-energy conservation condition ε
β
q = εα

p +
ε

β
q−p is not always satisfied for this decay channel. For exam-

ple, as shown in Fig. 2, under the conditions g12/g = 1.5 and
h̄�/gn0 = 0.6, the conservation condition is violated once
the momentum q of the gapped mode falls below 1.08h̄/ξ .
Defining the group velocities of the quasiparticles as cσ

q =
∂εσ

q /∂q, it can be concluded that the energy conservation
condition holds only when cβ

q � cα
0 , where the sound speed

cα
0 = √

(g + g12)n0/2m. The threshold momentum qc is de-
termined by the condition cβ

qc
= cα

0 , and damping becomes
activated when q � qc. This damping process resembles the
Cherenkov effect, in which radiation is emitted by a charged
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particle moving through a material at a speed exceeding the
velocity of the light in the medium.

Now let us consider the situation where q is slightly
larger than qc, that is, 0 < (q − qc)ξ/h̄ 	 1, where the co-
herent length ξ = h̄/

√
mgn0. As shown in Fig. 2, if 0 < (q −

qc)ξ/h̄ 	 1, the permissible momentum pξ/h̄ 	 1. There-
fore, the momentum-energy conservation condition can be
approximately written as |∇qε

β
q | ∗ p cos θ ≈ cα

0 p, where θ is
the angle between q and p. Since |∇qε

β
q | ≈ cβ

qc
= cα

0 , it can be
obtained that cos θ ≈ 1. This implies that when 0 < q − qc 	
1, p and q are nearly in the same direction (see Fig. 2).
Therefore, the δ function can be approximately written as

δ
(
εβ

q − εα
p − ε

β
q−p

) ≈ 1

cα
0 p

δ(cos θ − 1). (12)

The integral range of p in Eq. (11) can be determined by
solving the energy-momentum conservation condition ε

β
q =

εα
p + ε

β
q−p. By addressing the conservation equation under the

assumption that p and q are aligned in the same direction, it
can be derived that the lower integral limit of p is 0, and the
upper integral limit is 2(q − qc).

Moreover, for 0 < q − qc 	 1, the matrix element can be
approximately expressed as

Bαββ
p,q−p,q ≈ Aqc

√
p

2
√√

2mn0(g + g12)
3
2

, (13)

where

Aqc =
[

4g − (g − g12)2n0

q2
c

2m + h̄� + (g − g12)n0

]√
q2

c

2m
. (14)

Notably, we have replaced cos θ with 1 in Eq. (13) to sim-
plify the formula. Utilizing these approximations and through
straightforward calculations, we find that the Beliaev damping
rate of the gapped excitation in the paramagnetic phase can be
written as

γq = A2
qc

(q − qc)3

6π h̄3(g + g12)2n0
�(q − qc), (15)

where �(x) is the step function. When q < qc (vβ
q < cα

0 ),
γq = 0 and the gapped excitations will not decay. And when
q � qc (vβ

q � cα
0 ), at the leading order, γq increases rapidly as

(q − qc)3. The results of the damping rate in the paramagnetic
phase are presented in Fig. 3. With a fixed ratio of g12/g =
1.5, it is evident that even as h̄�/gn0 approaches the ferro-
magnetic transition point, the threshold behavior of γq still
persists. Consequently, Eq. (15) remains valid in the vicinity
of the transition point. Furthermore, if h̄� � |(g12 − g)n0|,
qc ≈ √

(g + g12)mn0/2 = mcα
0 , and the damping rate can be

simplified as

γq ≈ 2g2(q − qc)3

3π h̄3(g + g12)
�(q − qc), (16)

which is independent of the Rabi frequency � (see Fig. 3).

IV. DAMPING IN THE FERROMAGNETIC PHASE

Without loss of generality, we assume the ground state with
n j = n0[1 − (−1) j

√
1 − η2]/2 for the ferromagnetic phase.

FIG. 3. The Beliaev damping rate γq of gapped excitations in
the paramagnetic phase, fixing g12/g = 1.5. We take h̄�/gn0 = 0.51,
0.8, 1.5, 3.0, and 10.0, and the corresponding threshold momenta
qc = 1.066 h̄/ξ , 1.091 h̄/ξ , 1.108 h̄/ξ , 1.115 h̄/ξ , and 1.118 h̄/ξ .
Experimentally, based on the data in Ref. [28], we can set the pa-
rameters gn0/h = 3000 Hz, ξ = 1 μm, and gξ−3/h = 30 Hz.

The corresponding solutions of BdG equations (5) have been
derived by Tommasini et al. [30], and only the main results
are reviewed in this paper. We introduce three new dressed
coupling constants �1n0 = [g(n2

1 + n2
2) + 2g12n1n2], �2n0 =

2(g − g12)n1n2, and �12n0 = (g − g12)
√

n1n2(n2 − n1). Ad-

ditionally, we define two effective kinetic energies: ε1,q = q2

2m

and ε2,q = q2

2m + h̄�n0
2
√

n1n2
. Hence, the Bogoliubov spectrums

can be written as follows [30]:

εσ
q = { 1

2

(
ω2

1,q + ω2
2,q

)± 1
2

[(
ω2

1,q − ω2
2,q

)2

+ 16�2
12ε1,qε2,q

]1/2}1/2
, (17)

where the minus sign and the plus sign correspond to gapless
and gapped modes, respectively, and ω j,q =

√
ε2

j,q + 2� jε j,q .
To simplify the formulas of the Bogoliubov eigenvectors, we
define

sin ϕq = 1√
2

(
1 − ω2

1,q − ω2
2,q

ε
β2
q − εα2

q

)1/2

,

cos ϕq = 1√
2

(
1 + ω2

1,q − ω2
2,q

ε
β2
q − εα2

q

)1/2

,

� j,σ,q = √
ε j,q/εσ

q , sin ϑ = √
n1/n0, and cos ϑ = √

n2/n0. As
a result, the components of the eigenvectors corresponding to
the gapless and gapped modes can be written as follows [30]:

uα
1,k,q = �2

1,α,q − (−1)k

2�1,α,q
sin ϕq sin ϑ

+ �2
2,α,q − (−1)k

2�2,α,q
cos ϕq cos ϑ, (18)

uα
2,k,q = − �2

1,α,q − (−1)k

2�1,α,q
sin ϕq cos ϑ

+ �2
2,α,q − (−1)k

2�2,α,q
cos ϕq sin ϑ, (19)
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FIG. 4. Momentum manifolds allowed by the energy-momentum
conservation in the p‖ − p⊥ plane for various momenta q in the
ferromagnetic phase. We take g12/g = 10.0 and h̄�/gn0 = 7.0. The
manifolds correspond to qξ/h̄ = 0.1 (innermost), 1.5, 2.5, and 3.5
(outermost).

uβ

1,k,q = �2
2,β,q − (−1)k

2�2,β,q
sin ϕq cos ϑ

− �2
1,β,q − (−1)k

2�1,β,q
cos ϕq sin ϑ, (20)

uβ

2,k,q = �2
2,β,q − (−1)k

2�2,β,q
sin ϕq sin ϑ

+ �2
1,β,q − (−1)k

2�1,β,q
cos ϕq cos ϑ. (21)

It can be proved that the matrix elements Bσσ ′β
p,q−p,q of all

three decay processes are nonzero in the ferromagnetic phase.
Nevertheless, due to the constraint of the energy-momentum
conservation, channels B and C are not activated if the mo-
mentum q is below the critical values. We introduce two
threshold momenta qc1 and qc2 which satisfy the conditions
ε

β
qc1 = 2ε

β

qcl/2 and cβ
qc2

= cα
0 , respectively. Channels B and C

become active only when q � qc1 and q � qc2, respectively. It
can be proved that qc1 > qc2. Consequently, for q < qc = qc2,
only channel A, which corresponds to the decay into two
gapless modes, contributes to the damping rate. In such a
situation, the Beliaev damping rate of the gapped excitation
can be simplified to

γq = 1

16π2 h̄3

∫ ∣∣Bααβ
q
2 +p,

q
2 −p,q

∣∣2δ(εβ
q − εα

q
2 +p − εα

q
2 −p

)
dp.

(22)

As shown in Fig. 4, when q approaches 0, the curve satisfy-
ing the energy-momentum conservation smoothly transitions
into a circle with a radius p0. This implies that, for the
gapped modes with low momentum, only the gapless modes
with the momentum close to p = p0 contribute to the de-
cay. For q 	 1, the excitation energies can be approximately

FIG. 5. (a) The Beliaev damping rate for zero momentum γ0 as
the function of �. (b) The parameter ν as the function of �. (c) The
critical momentum qc as the function of �. In all plots, we take
g12/g = 10.0. Experimentally, we can set gn0/h = 3000 Hz, ξ = 1
μm, and gξ−3 = 30 Hz.

written as εα
p ≈ εα

p0
+ cα

p0
(p − p0) + 1

2wα
p0

(p − p0)2 and ε
β
q ≈

ε
β

0 + 1
2w

β

0 q2, where wσ
q = ∂2εα

q /∂q2. Moreover, in this low-
momentum regime, the matrix element can be approximated
to the second order of q and is given by

Bααβ
q
2 +p,

q
2 −p,q ≈ λ1 + (λ2 + λ3 cos2 θ )q2, (23)

where we replace the integration variable p with cos θ using
the energy-momentum conservation condition. The details of
the calculations and the expression of λ j can be found in the
Appendix. By the straightforward calculation for Eq. (22), we
obtain the Beliaev damping rate of the gapped excitations in
the ferromagnetic phase

γq = γ0 + νq2 for q < qc, (24)

where the damping rate for zero momentum γ0 =
λ2

1 p2
0/8π h̄3cα

p0
, and the coefficient of the second-order

term is given by

ν = λ2
1 p0
(
wα

p0
− 6w

β

0

)(
p0w

α
p0

− 2cα
p0

)
192π h̄3cα3

p0

+ 8p2
0λ1(3λ2 + λ3) − λ2

1

96π h̄3cα
p0

.

Equation (24) remains valid for q < qc. In this regime,
channel A is the sole active channel. In contrast to the
paramagnetic phase, where the damping exhibits a thresh-
old behavior, the ferromagnetic phase displays a consistently
nonzero damping rate for gapped excitations. Specifically,
the gapped mode with zero momentum decays at the rate
γ0, producing a pair of gapless modes with momenta p0 and
−p0. The difference between γq and γ0, denoted as γq − γ0,
experiences a rapid increase proportional to q2. The func-
tional dependencies of γ0, ν, and qc with respect to the Rabi
frequency � are clearly depicted in Fig. 5. Notably, as � ap-
proaches 0, the scattering matrix element gradually vanishes,
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leading to a corresponding decrease in the damping rate, with
γq ultimately approaching 0.

At the critical transition point, characterized by (g −
g12)n0 + h̄� = 0, the gap in β mode vanishes, resulting in
a linear spectrum at low momenta. Consequently, our ap-
proximate method for estimating the damping rate becomes
inapplicable at this phase transition point. Notably, at this
phase transition point, the α and β modes of the ferromagnetic
phase degenerate into the β and α modes of the paramagnetic
phase, respectively. As emphasized in Ref. [12], at the critical
point, channel A continues to dominate the damping behavior,
and the damping rate γq is proportional to the momentum q.
Consequently, the β mode of the ferromagnetic phase is not
well-defined at the transition point.

V. SUMMARY

In summary, our investigation focuses on the Beliaev
damping of gapped excitations in a coherently coupled two-
component Bose-Einstein condensate (BEC). Our findings
reveal strikingly different damping behaviors across two
quantum phases. In the paramagnetic phase, the damping
process is constrained by the Z2 symmetry and energy-
momentum conservation, resulting in a threshold behavior
characterized by γq ∝ (q − qc)3. Notably, gapped excitations
decay exclusively into one phonon and one new gapped mode,
a process that becomes active only when the group velocity
of the excitations exceeds the sound speed—an analogy to
the Cherenkov effect observed in electromagnetic fields. By
contrast, in the ferromagnetic phase, gapped modes always
decay into two gapless modes for momenta below a critical
value, exhibiting a damping rate characterized by γq − γ0 ∝
q2. Unlike the threshold behavior of damping gapless modes
in quasi-two-dimensional dipolar BECs [13], our findings in
this paper do not have additional constraints on system dimen-
sion, potentially simplifying experimental implementation.
Our theoretical predictions can be experimentally validated by
measuring the damping rates of the gapped modes or utilizing
Bragg spectroscopy techniques referenced in Refs. [7–9].
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APPENDIX: GENERAL FORMULAS FOR THE
FERROMAGNETIC PHASE

As discussed before, in the ferromagnetic phase, only
channel A contributes to the damping rate for q <

min(qc1, qc2), and the Beliaev damping rate of the gapped

excitations can be simplified to

γq = 1

16π2 h̄3

∫ ∣∣Bααβ
q
2 +p,

q
2 −p,q

∣∣2δ(εβ
q − εα

q
2 +p − εα

q
2 −p

)
dp.

(A1)

For clarity, we define Fα
j,k,q = ∂uα

j,k,q/∂q and Gα
j,k,q =

∂2uα
j,k,q/∂q2. When q 	 1, one can use the following expan-

sions for the functions uσ
j,k,p:

uα
j,k,

q
2 ±p ≈ uα

j,k,p0
+ Fα

j,k,p0

(∣∣∣∣q2 ± p

∣∣∣∣− p0

)
+ 1

2
Gα

j,k,p0

(∣∣∣∣q2 ± p

∣∣∣∣− p0

)2

, (A2)

uβ
j, j,q ≈ 1

2
Gβ

j, j,0q2, (A3)

uβ

j, j̄,q ≈ uβ

j, j̄,0
+ 1

2
Gβ

j, j̄,0
q2. (A4)

The excitation energies can be approximated as εα
p ≈ εα

p0
+

cα
p0

(p − p0) + 1
2wα

p0
(p − p0)2 and ε

β
q ≈ ε

β

0 + 1
2w

β

0 q2, where
wσ

q = ∂2εα
q /∂q2. Consequently, the condition of the energy-

momentum conservation can be approximately expressed as

1

2
w

β

0 q2 ≈ cα
p0

(∣∣∣∣q2 + p

∣∣∣∣− p0

)
+ cα

p0

(∣∣∣∣q2 − p

∣∣∣∣− p0

)
+ 1

2
wα

p0

(∣∣∣∣q2 + p

∣∣∣∣− p0

)2

+ 1

2
wα

p0

(∣∣∣∣q2 − p

∣∣∣∣− p0

)2

. (A5)

With the help of the approximate expression∣∣∣∣q2 ± p

∣∣∣∣ ≈ p + q

2
cos θ + q2 sin2 θ

8p0
,

one can derive the relationship between p and θ that fulfills
the energy-momentum conservation:

p ≈ p̃ = p0 +
(

w
β

0

4cα
p0

− wα
p0

cos2 θ

8cα
p0

− sin2 θ

8p0

)
q2. (A6)

Therefore, this leads to the conclusion that

δ
(
εβ

q − εα
q
2 +p − εα

q
2 −p

) ≈
(

1

2cα
p0

+ q2 cos2 θ
(
p2

0w
α2
p0

− cα2
p0

)
16p2

0cα3
p0

+ q2
(
cα2

p0
− 2p2

0w
α
p0

w
β

0

)
16p2

0cα3
p0

)
δ(p − p̃).

(A7)

Substitute Eqs. (A2), (A3), (A4), and (A6) into Eq. (7), and
then the matrix element can be approximately written as

Bααβ
q
2 +p,

q
2 −p,q ≈ λ1 + (λ2 + λ3 cos2 θ )q2, (A8)

where

λ1 =
∑
j=1,2

(−1) j+12
√

n j
{
guα

j, j̄,p0
uβ

j, j̄,0

(
2uα

j, j,p0
+ uα

j, j̄,p0

)+ g12uα
j̄, j,p0

[(
uα

j, j,p0
+ uα

j, j̄,p0

)
uβ

j̄, j,0
+ uα

j̄, j̄,p0
uβ

j, j̄,0

]}
,
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λ2 =
∑

j,k=1,2

(−1) j+1√n j
{
guα

j,k,p0

(
uα

j,k,p0
+ 2uα

j,k̄,p0

)
Gβ

j,k,0 + g12uα
j̄,k,p0

[
uα

j̄,k̄,p0
Gβ

j,k,0 + (
uα

j,k,p0
+ uα

j,k̄,p0

)
Gβ

j̄,k,0

]}
+ w

β

0

2vα
p0

∑
j=1,2

(−1) j+1√n j
{
2guβ

j, j̄,0

[
uα

j, j̄,p0
Fα

j, j,p0
+ (

uα
j, j,p0

+ uα
j, j̄,p0

)
Fα

j, j̄,p0

]+ g12uβ

j̄, j,0

[
uα

j̄, j,p0
Fα

j, j,p0

+ uα
j̄, j,p0

Fα
j, j̄,p0

+ (
uα

j, j,p0
+ uα

j, j̄,p0

)
Fα

j̄, j,p0

]+ g12uβ

j, j̄,0

[
uα

j̄, j̄,p0
Fα

j̄, j,p0
+ uα

j̄, j,p0
Fα

j̄, j̄,p0

]}
,

λ3 = 1

4

∑
j=1,2

(−1) j+1√n j
{
2guβ

j, j̄,0

[(
uα

j, j,p0
+ uα

j, j̄,p0

)
Gα

j, j̄,p0
+ uα

j, j̄,p0
Gα

j, j,p0
− (

Fα
j, j̄,p0

+ 2Fα
j, j,p0

)
Fα

j, j̄,p0

]
+ g12uβ

j, j̄,0

(
uα

j̄, j,p0
Gα

j̄, j̄,p0
+ uα

j̄, j̄,p0
Gα

j̄, j,p0
− 2Fα

j̄, j,p0
Fα

j̄, j̄,p0

)+ g12uβ

j̄, j,0

[(
uα

j, j,p0
+ uα

j, j̄,p0

)
Gα

j̄, j,p0

+ u j̄, j,p0

(
Gα

j, j,p0
+ Gα

j, j̄,p0

)− 2Fα
j̄, j,p0

(
Fα

j, j,p0
+ Fα

j, j̄,p0

)]}
− wα

p0

4vα
p0

∑
j=1,2

(−1) j+1√n j
{
2guβ

j, j̄,0

[
uα

j, j̄,p0
Fα

j, j,p0
+ (

uα
j, j,p0

+ uα
j, j̄,p0

)
Fα

j, j̄,p0

]+ g12uβ

j, j̄,0

(
Fα

j̄, j,p0
uα

j̄, j̄,p0

+ Fα
j̄, j̄,p0

uα
j̄, j,p0

)+ g12uβ

j̄, j,0

[
uα

j̄, j,p0

(
Fα

j, j,p0
+ Fα

j, j̄,p0

)+ (
uα

j, j,p0
+ uα

j, j̄,p0

)
Fα

j̄, j,p0

]}
.
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