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Spectral function of Fermi polarons at finite temperature from a self-consistent many-body
T -matrix approach in real frequency
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We theoretically examine the finite-temperature spectral function of Fermi polarons in three dimensions by
using a self-consistent many-body T -matrix theory in real frequency. In comparison with the previous results
from a non-self-consistent many-body T -matrix approach, we show that the treatment of self-consistency in
the impurity Green’s function leads to notable changes in almost all the dynamical quantities, including the
vertex function, impurity self-energy, and spectral function. Eventually, it gives rise to quantitatively different
predictions for the measurable radio-frequency spectrum and Raman spectrum at finite temperature. Using the
recent spectroscopic measurements as a benchmark, we find that the self-consistent many-body T -matrix theory
somehow provides a better explanation for the experimental data. The notable difference in the predictions
from the non-self-consistent and self-consistent theories suggests that more accurate theoretical descriptions are
needed in order to fully account for the current spectroscopic observations on Fermi polarons.
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I. INTRODUCTION

The Fermi polaron, an impurity interacting with a nonin-
teracting Fermi sea of fermions, is probably the oldest and
simplest quantum many-body system that plays a significant
role in our understanding of many-particle physics [1,2]. Re-
cent rapid experimental advances in cold-atom research have
brought renewed interest in the Fermi-polaron problem [3–8]
due to the unprecedented tunability in interparticle interac-
tion, purity, and dimensionality [9,10]. As a consequence,
the physics of Fermi polarons can now be experimentally
explored in a quantitative manner with atomic Fermi-Fermi
mixtures or Bose-Fermi mixtures near Feshbach resonances,
in which in the dilute limit minority fermionic or bosonic
atoms act as independent, uncorrelated impurities [4,5].

Spectroscopic measurements, such as radio-frequency (rf)
spectroscopy [4,11–15], Ramsey interferometry [14,16], and,
most recently, Raman spectroscopy [17], provide useful tools
for revealing a number of intriguing features of Fermi po-
larons. To date, polaron energy has been measured with
various spectroscopies with excellent accuracy and has been
well explained by existing theories based on the variational
Chevy ansatz [3,18–22], diagrammatic many-body T -matrix
approximations [23–32], and quantum Monte Carlo simu-
lations [33–35]. The dynamical properties concerning the
measured spectroscopy line shape, however, are less under-
stood. In particular, the spectral function of Fermi polarons,
which is the fundamental quantity that determines rf spec-
troscopy and Raman spectroscopy, is notoriously difficult to
accurately predict.
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Pioneering quantum Monte Carlo simulations of the spec-
tral function were attempted by Goulko and her collaborators
[36]. However, the accuracy needed to be improved. Exact
numerical calculations are available in the heavy-polaron limit
of infinitely large impurity mass [37–39]. However, the ex-
perimental realization of heavy Fermi polarons remains to
be demonstrated. Current knowledge of the polaron spectral
function largely relies on a non-self-consistent many-body
T -matrix theory [25,27–32] or its equivalent form of the vari-
ational Chevy ansatz [20,21], both at zero temperature and
finite temperature. In the non-self-consistent T -matrix theory,
the successive scatterings between the impurity and Fermi sea
are taken into account in the form of ladder diagrams, whose
contributions can be diagrammatically calculated by using the
bare, noninteracting impurity Green’s function [23,29].

The purpose of this work is to calculate the spectral func-
tion of Fermi polarons based on a self-consistent many-body
T -matrix theory, in which the contributions from ladder di-
agrams are self-consistently calculated by using a dressed,
interacting impurity Green’s function. A similar theoretical in-
vestigation was presented earlier by Tajima and his coworkers
[28], in which numerical calculations were carried out with
imaginary-time Green’s functions to avoid numerical insta-
bility. We improve their interesting work by using real-time
Green’s functions. This may remove potential errors due to
the uncontrollable numerical analytic continuation applied to
convert the imaginary frequency to the real frequency, which
is known to be ill defined [36].

We observe that the non-self-consistent and self-consistent
theories lead to quantitatively different predictions for the
spectral function of Fermi polarons. As a result, the predicted
rf spectrum and Raman spectrum also differ quantitatively. In
comparison with the most recent spectroscopic measurements
[15,17], neither prediction can explain the experimental data
in a satisfactory way, although the self-consistent results seem
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to provide slightly better agreement. The discrepancy between
theories and experiments emphasizes the importance of de-
veloping a more accurate theoretical framework for Fermi
polarons.

It should be noted that, in perturbative diagrammatic
theories, the advantage of considering self-consistency in
Feynman diagrams is not taken for granted, particularly in the
strongly interacting regime that we are exploring [40–42]. For
example, for a strong-interacting balanced spin-1/2 Fermi gas
with an equal-spin population, both the non-self-consistent
and self-consistent many-body T -matrix theories have been
used to calculate the spectral function of a unitary Fermi
gas with infinitely large scattering length at the Feshbach
resonance [43–46]. However, debates about the accuracy of
both calculations are unsettled since they lead to entirely dif-
ferent predictions on the existence of pair-fluctuation-induced
pesudogap [47,48]. A possible source for this qualitative dis-
crepancy may arise from the errors in numerical analytic
continuation adopted in the self-consistent T -matrix calcula-
tions [45]. It would be interesting to remove such avoidable
errors in the self-consistent theory by extending our work to
directly calculate the spectral function of the unitary Fermi
gas in the real frequency.

The rest of this paper is organized as follows. In Sec. II, we
outline the model Hamiltonian for Fermi polarons and briefly
summarize the self-consistent many-body T -matrix approach.
We emphasize how to realize the numerical procedure for
self-consistency of the impurity Green’s function with the real
frequency. In Sec. III, we discuss the vertex function, the im-
purity self-energy, and the polaron spectral function and show
the changes in these quantities because of our self-consistent
treatment. We also present the temperature dependence of
the polaron energy and decay rate. In Sec. IV, we calcu-
late the rf spectrum and Raman spectrum. We compare the
theoretical results, predicted by both non-self-consistent and
self-consistent many-body T -matrix theories, with the exper-
imental data. The conclusions and outlook follow in Sec. V.

II. MODEL HAMILTONIAN AND SELF-CONSISTENT
MANY-BODY T -MATRIX APPROACH

As in the experiments [4,14,15,17], we consider a highly
imbalanced spin-1/2 Fermi gas of ultracold atoms with equal
mass m near an s-wave Feshbach resonance, distributed uni-
formly in volume V in three dimensions. In the limit of
vanishing density of minority atoms, we treat them as uncorre-
lated impurities, interacting with a noninteracting Fermi sea of
majority atoms via a contact interaction potential gδ(r − r′).
Here, g is the bare interaction strength that has to be replaced
by the s-wave scattering length a using the standard relation

1

g
= m

4π h̄2a
− 1

V

∑
k

m

h̄2k2
, (1)

so the ultraviolet divergence inherent in the contact potential
can be effectively regularized. The system under considera-
tion is well described by a single-channel model Hamiltonian,

H =
∑

k

εkc†
kck +

∑
k

εkd†
kdk + g

∑
qkk′

c†
kd†

q−kdq−k′ck′ , (2)

where c†
k (ck) and d†

k (dk) are the creation (annihilation) field
operators for fermionic atoms and the impurity, respectively.
For clarity, we have suppressed the volume V in the model
Hamiltonian, so the integration over the momentum

∑
k in

the following should be always understood as (1/V )
∑

k =∫
dk/(2π )3. The first two terms in the Hamiltonian describe

the kinetic, noninteracting part with the dispersion relation
εk = h̄2k2/(2m), and the last term describes the interaction
between the impurity and the Fermi sea. The chemical po-
tentials are not specified in the Hamiltonian, but it should
be understood that the number n of fermions in the Fermi
sea is tuned by a chemical potential μ; i.e., we will mod-
ify the single-particle dispersion relation to ξk = εk − μ =
h̄2k2/(2m) − μ. Moreover, for a single impurity, it is not
necessary to explicitly introduce an impurity chemical poten-
tial [23,29]. Throughout this work, we take the Fermi wave
vector kF = (6π2n)1/3 and the Fermi energy εF = h̄2k2

F /(2m)
as the units of the wave vector k (or q) and of the energy (or
frequency), respectively.

A. Many-body T -matrix theories

We solve the model Hamiltonian by using the many-
body T -matrix theories, which are well-documented in the
literature [23,24,28,29]. Here, we summarize only the key
equations, which are relevant to address the self-consistency
of the impurity Green’s function that we wish to focus on in
this work.

In the many-body T -matrix approximation, one keeps
track on ladder diagrams, which represent the successive for-
ward scatterings between the impurity and fermions in the
particle-particle channel. At a nonzero temperature T , the
contributions of ladder diagrams are represented by the in-
verse two-particle vertex function,

�−1(q, ω) = 1

g
−

∑
k

f (−ξq−k )G(k, ω − ξq−k ), (3)

where f (x) ≡ 1/(eβx + 1), with β ≡ 1/(kBT ), is the Fermi-
Dirac distribution function and G(k, ω) is the retarded
impurity Green’s function at momentum k with real frequency
ω at finite temperature. In our self-consistent treatment, this
impurity Green’s function itself already includes the interac-
tion effect. In other words, it is a dressed Green’s function
given by the Dyson equation,

G(k, ω) = 1

ω − εk − 
(k, ω)
, (4)

where the retarded impurity self-energy 
(k, ω) is related to
the vertex function �(q, ω),


(k, ω) =
∑

q

f (ξq−k )�(q, ω + ξq−k ). (5)

Equations (3), (4) and (5) provide a set of coupled equations in
the real-frequency domain, where the dressed impurity
Green’s function G(k, ω) needs to be self-consistently deter-
mined.

In the non-self-consistent T -matrix theory, such self-
consistency is not required. In Eq. (3), we directly
use the noninteracting Green’s function G0(k, ω − ξq−k ) =
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1/(ω − ξq−k − εk ) to replace the dressed Green’s function
G(k, ω − ξq−k ), yielding the expression [23]

�−1
0 (q, ω) = m

4π h̄2a
−

∑
k

[
1 − f (ξq−k )

ω − ξq−k − εk
+ m

h̄2k2

]
, (6)

where we have rewritten the bare interaction strength g in
terms of the physical s-wave scattering length a. In turn,
we substitute the leading-order approximated vertex function
�0(q, ω) into Eq. (5) to determine the impurity self-energy

0(k, ω) at the first iteration. In the non-self-consistent
treatment, we simply assume that the resulting self-energy

0(k, ω) might already be useful enough and would lead to a
reasonably accurate impurity Green’s function G(k, ω) when
it is used in the Dyson equation (4).

In contrast, in our fully self-consistent treatment, we need
to use 
0(k, ω) to obtain an improved impurity Green’s
function G1(k, ω − ξq−k ) = 1/[ω − ξq−k − εk − 
0(k, ω −
ξq−k )] and then repeat the above-mentioned procedure to iter-
atively update the impurity Green’s function until it converges.

The numerical workload of self-consistent calculations is
therefore much heavier.

B. Numerical calculations

To reduce the workload, it is worth noting that the key dif-
ficulty of numerical calculations comes from the integration
over the momentum k in Eq. (3) because the poles of the im-
purity Green’s function make the integrand very singular. This
singularity actually already appears in the non-self-consistent
calculations. As can be readily seen from Eq. (6), the inte-
grand on the right-hand side badly diverges at some momenta
k once the frequency ω is in the two-particle continuum and
satisfies ω = ξq−k + εk. Fortunately, since we can precisely
locate the pole position of the noninteracting impurity Green’s
function, the vertex function �0(q, ω) can be efficiently cal-
culated, as outlined in detail in a previous work [29]. As we
anticipate that �0(q, ω) makes the dominant contribution to
the full vertex function �(q, ω), the difference

δχ (q, ω) ≡ �−1(q, ω) − �−1
0 (q, ω) = −

∑
k

f (−ξq−k )
(k, ω − ξq−k )

(ω − ξq−k − εk )[ω − ξq−k − εk − 
(k, ω − ξq−k )]
(7)

would be small and therefore would not require high-precision
calculation. We may then artificially introduce a small imagi-
nary part η to the real frequency ω to remove the singularity in
the integrand of Eq. (7). In practice, we find that the approxi-
mated expression

δχ (q, ω) � 2δχ (q, ω + iη) − δχ (q, ω + 2iη) (8)

works extremely well, with a small η = 0.2εF . The choice of
this value for η is carefully examined in Appendix A. We
confirm that the converged results of the impurity Green’s
function and spectral function do not depend on η.

The whole procedure of numerical iterations is then simple
to carry out. We start from the non-self-consistent result of
the self-energy 
0(k, ω) and calculate the difference δχ (q, ω)
using Eqs. (7) and (8). We then update the vertex function

�(q, ω) = 1

�−1
0 (q, ω) + δχ (q, ω)

(9)

and use it to obtain a new self-energy 
(k, ω) with Eq. (5).
The iteration is repeated until the change δ
(k, ω) in the
self-energy becomes negligible. Typically, the convergence
can quickly be reached in just a few iterations. During the
iteration procedure, the self-energy 
(k, ω) will be stored in
the form of a two-dimensional array. The numbers of grid
points for the momentum k = |k| and the frequency ω are
about 200 and 500, respectively. The dense grid points are
distributed in a nonequidistant way, so both large-momentum
and large-frequency behaviors of the self-energy can be well
sampled. We can then use a cubic spline interpolation to ac-
curately extract a self-energy 
(k, ω) at arbitrary momentum
k and frequency ω.

It is also worth noting that, for a large and positive dimen-
sionless interaction parameter 1/(kF a), the vertex function
�(q, ω) may develop a pole, which signals the existence of

a well-defined molecule state [23]. In that case, specific at-
tention should be paid to handling the singularity in Eq. (5).
However, in this work, we always focus on the polaron
regime, where the vertex function �(q, ω) is consistently
well behaved. Although the initial vertex function �0(q, ω)
may suffer from a singularity at large 1/(kF a) in the polaron
regime, the singularity will quickly be removed by the self-
consistency iteration.

III. POLARON SPECTRAL FUNCTION

In Fig. 1, we report the zero-momentum vertex function
at two interaction parameters and at a low temperature T =
0.2TF , predicted by the self-consistent (black solid lines) and
non-self-consistent (red dashed lines) many-body T -matrix
theories. In Figs. 1(a) and 1(b), we take the unitary limit
1/(kF a) = 0, where a two-body bound state starts to emerge.
In Figs. 1(c) and 1(d), we consider the Bose-Einstein con-
densate (BEC) side or the molecule side of the Feshbach
resonance with 1/(kF a) = 0.5, where a two-body bound state
exists, with binding energy EB = 2εF /(kF a)2 = 0.5εF . For
both interaction parameters, we find that the self-consistency
treatment strongly modifies the results of the vertex function.

Let us focus on the imaginary part of the vertex
function shown in Figs. 1(b) and 1(d). Physically, the vertex
function describes a molecule state in the presence of the
many-body environment of a Fermi sea [33]. Its imaginary
part can therefore be used to define a molecule spectral func-
tion,

Amol(q, ω) ∝ − 1

π
Im�(q, ω), (10)

which is precisely the quantity plotted. We always find a peak
in Amol(q, ω), although there is no well-defined two-body
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FIG. 1. (a) and (c) The real part and (b) and (d) imaginary part
of the zero-momentum vertex function �(q = 0, ω), in arbitrary
units, at temperature T = 0.2TF . The top panels are the results
in the unitary limit [i.e., 1/(kF a) = 0], while the bottom panels
present the results on the molecular side of the Feshbach resonance
with 1/(kF a) = 0.5. The black solid lines and the red dashed lines
correspond to the predictions from the self-consistent and non-self-
consistent many-body T -matrix theories, respectively.

bound state in the unitary limit. This is understandable since
the presence of a Fermi sea is known to be favorable for stabi-
lizing a many-body (Cooper) pair [49]. It is easy to see that the
non-self-consistent T -matrix theory predicts a much sharper
peak in the molecule spectral function than the self-consistent
T -matrix theory. Moreover, with the self-consistency in the
impurity Green’s function, the molecule peak shifts to the
low-energy side by an amount about 0.5εF .

Although for the impurity Green’s function the advan-
tage of taking the self-consistency is not granted, for the
vertex function (or, boldly, the molecule Green’s function),
there is no doubt that the self-consistency treatment will
improve its accuracy. The lower molecule peak or smaller
molecule energy, predicted by the self-consistent T -matrix
theory, therefore implies that the critical interaction strength
for the polaron-molecule transition [50] can be smaller than
what is predicted by the non-self-consistent T -matrix theory.
This observation is consistent with previous T -matrix studies
on polaron energy at zero temperature [24].

In Fig. 2, we present the real part and the imaginary
part of the impurity self-energy at zero momentum for the
same parameters as in Fig. 1. Once again, we find significant
changes due to the self-consistency treatment. At k = 0, the
pole of the impurity Green’s function in Eq. (4) occurs at
ω = Re
(k = 0, ω) if we neglect the (possibly large) imag-
inary part Im
(k = 0, ω). Therefore, in Figs. 2(a) and 2(c),
we also show the curve y = ω by a green dotted line. The
crossing point between the green dotted line and the curve
Re
(k = 0, ω) determines the polaron energy EP at the pole
of the impurity Green’s function.

FIG. 2. (a) and (c) The real part and (b) and (d) imaginary part
of the zero-momentum self-energy 
(k = 0, ω), in units of εF , at
temperature T = 0.2TF and at the two interaction strengths indicated.
The black solid lines and the red dashed lines correspond to the pre-
dictions from the self-consistent and non-self-consistent many-body
T -matrix theories, respectively. In (a) and (c), the crossing points of
Re
(k = 0, ω) and the green dotted curves (i.e., y = ω) determine
the polaron energies (of different polaron branches).

On the negative-frequency side, we always find a crossing
point, which gives the energy of an attractive Fermi polaron.
The self-consistent many-body T -matrix theory predicts a
lower polaron energy than its non-self-consistent counterpart,
with an energy shift of about 0.1εF –0.2εF , which is smaller
than the shift in the molecule energy that we observe in
the molecule spectral function. On the other hand, on the
positive-frequency side, we can find only the crossing point
at the positive interaction parameter 1/(kF a) > 0 in Fig. 2(c),
which determines the energy of the repulsive Fermi polaron.
As in the case of the attractive polaron, we observe that the
self-consistency still leads to a small redshift in the repulsive-
polaron energy. Interestingly, at 1/(kF a) = 0.5 there is an
additional crossing point located close to the zero frequency
ω = 0. However, this crossing point can hardly be viewed as
the pole of the impurity Green’s function since the imaginary
part of the impurity self-energy becomes too large near ω = 0.

For the imaginary part of the impurity self-energy shown in
Figs. 2(b) and 2(d), we find that the self-consistent T -matrix
theory consistently predicts a more negative imaginary part
than the non-self-consistent T -matrix theory at the frequency
near the polaron energy. As we shall see, it will lead to the
prediction of a larger decay rate of polaron quasiparticles.

We now turn to discussing the impurity spectral function
defined by

A(k, ω) = − 1

π
ImG(k, ω). (11)

Near the polaron energy EP at the pole of the impurity Green’s
function, we may Taylor expand the self-energy at small
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momentum,


(k → 0, ω → EP ) � EP + ∂Re
(k, EP )

∂εk

∣∣∣∣
k=0

εk + ∂Re
(0, ω)

∂ω

∣∣∣∣
ω=EP

(ω − EP ) + iIm
(0, EP ), (12)

where we have used the condition EP = Re
(0, EP ). It is a
convention to introduce the polaron residue

Z =
[

1 − ∂Re
(0, ω)

∂ω

∣∣∣∣
ω=EP

]−1

(13)

and polaron decay rate

� = −2ZIm
(0, EP ), (14)

with which we may explicitly rewrite the zero-momentum
spectral function A(k = 0, ω) into the approximate Lorentzian
form near the polaron energy,

A(0, ω) � Z �/(2π )

(ω − EP )2 + �2/4
. (15)

Therefore, the residue Z measures the area under the polaron
peak, and the decay rate � determines the FWHM of the peak.

In Fig. 3, we report the zero-momentum impurity spectral
function at three typical temperatures in the unitary limit

FIG. 3. Zero-momentum spectral function of the impurity (in
units of ε−1

F ) (a) in the unitary limit and (b) on the molecular side of
the Feshbach resonance at three different temperatures, as indicated.
For clarity, the results at T = 0.2TF and T = 0.5TF are vertically
upshifted. The solid lines (dashed lines) show the predictions of the
self-consistent (non-self-consistent) many-body T -matrix theory.

with 1/(kF a) = 0 [Fig. 3(a)] and on the BEC side of the
Feshbach resonance with 1/(kF a) = 0.5 [Fig. 3(b)]. In com-
parison with the non-self-consistent T -matrix theoretical
results (i.e., red dashed lines), it is readily seen that the self-
consistent T -matrix theory always predicts a broader polaron
peak, indicating a larger polaron decay rate. The tempera-
ture evolutions of the polaron spectral function provided by
the two T -matrix theories are qualitatively similar. However,
there are quantitative differences that we shall discuss in detail
in the following.

In the unitary limit [Fig. 3(a)], both T -matrix theories show
a nonmonotonic temperature dependence of the (attractive)
polaron energy. This can be seen more clearly in Fig. 4, where
we report the polaron energy and decay rate as a function
of the temperature. With increasing temperature, the polaron
energy initially decreases, reaches a global minimum at cer-
tain temperature, and then increases. The initial decrease in
the polaron energy with temperature might be understood
from the Pauli exclusion principle. The thermal blurring of
the Fermi sea reduces the statistical exclusion and therefore
is favorable for the particle-hole excitations that are crucial
for the polaron formation [15]. However, a large tempera-
ture eventually reduces the effective interaction between the

FIG. 4. Temperature dependence of (a) the energy and (b) decay
rate of the attractive polaron in the unitary limit. The black solid lines
and red dashed lines report the predictions of the self-consistent and
non-self-consistent many-body T -matrix theories, respectively.
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FIG. 5. Temperature dependence of (a) the energy and (b) decay
rate of the attractive polaron and repulsive polaron at interaction
strength 1/(kF a) = 0.5. The black solid lines and red dashed lines
respectively report the predictions of the self-consistent and non-self-
consistent many-body T -matrix theories for the repulsive polaron.
The black solid lines with solid circles and red dashed lines with
open circles correspond to the results of the attractive polaron. The
green stars show the experimental data for the energy and decay rate
of the attractive polaron (empty star) and of the repulsive polaron
(solid stars) at T � 0.1TF , extracted from Ref. [14].

impurity and Fermi sea and increases the polaron energy. We
find that the two many-body T -matrix theories give different
temperatures for the minimum polaron energy, so the two
curves for the polaron energy cross at around TX ∼ 0.5TF .
Above TX , the self-consistent T -matrix theory predicts a larger
polaron energy than the non-self-consistent T -matrix theory,
different from what we observe in Fig. 2 for the impurity
self-energy at T = 0.2TF .

On the BEC side of the Feshbach resonance [see Fig. 3(b)],
there are two branches of Fermi polarons. In Fig. 5, we show
the temperature dependence of the polaron energy and decay
rate for both the attractive Fermi polaron and repulsive Fermi
polaron. The attractive-polaron branch does not always exist.
We can find the attractive-polaron solution only for EP =
Re
(0, EP ) at temperature T < 0.5TF in the self-consistent
many-body T -matrix theory. The non-self-consistent theory
seems to give a wider temperature range for the attractive
polaron, i.e., T < TF . However, its decay rate increases too
rapidly with temperature. As a result, it may hardly be viewed
as a well-defined quasiparticle once T > 0.7TF , where the
decay rate becomes larger than εF .

In contrast, we can always find a solution of
EP = Re
(0, EP ) for the repulsive-polaron branch. The

repulsive-polaron energies predicted by the two theories do
not differ too much. The difference is about 0.3εF at most
near zero temperature, and it becomes negligible above the
Fermi degenerate temperature. Remarkably, the decay rates of
the repulsive polaron given by the two T -matrix theories are
very different. In particular, near zero temperature the decay
rate obtained from the self-consistent calculations is about
1.1εF , significantly larger than the non-self-consistent result
of about 0.2εF . In comparison with the recent measurement
from the European Laboratory for Non-Linear Spectroscopy
(LENS), the decay rate of the repulsive polaron calculated
from the non-self-consistent T -matrix theory agrees better
with the experimental data [see, i.e., the green star in Fig. 5(b)
at T � 0.1TF ], which are tens of percent of the Fermi energy
[14]. We note finally that the repulsive-polaron energy from
both T -matrix theories decreases with increasing temperature.
The temperature dependence of the repulsive-polaron decay
rate from both theories is not monotonic. Once T > 0.7TF ,
the polaron decay rate becomes comparable to εF . The
repulsive polaron may then hardly be treated as a well-defined
quasiparticle as the quality factor Q = EP/� < 1.

IV. ATOMIC SPECTROSCOPY

In experiments, the polaron spectral function can be probed
by using rf spectroscopy or Raman spectroscopy. In those
spectroscopic measurements, the impurity is initially in the
hyperfine state that interacts with the Fermi sea. It is then
transferred or ejected to a second, noninteracting hyperfine
state using either rf beams or Raman beams with energy ω.
According to the linear-response theory the ejection rate is
proportional to [15,17,29,32]

I (ω) = 1

V

∑
k

A[k, εk+Q − ω] f (εk+Q − ω − μI ), (16)

where Q is the momentum of the light beams. In the case of rf
spectroscopy, the momentum is negligible, so we take Q = 0.
Realistically, one always uses a small impurity density nimp in
the experiments [15,17], which can be theoretically set by an
impurity chemical potential μI through the number equation,

nimp = 1

V

∑
k

∫ +∞

−∞
dω f (ω − μI )A(k, ω). (17)

By integrating over the frequency in Eq. (16), it is easy to see
that the rf spectrum or Raman spectrum is normalized to the
impurity density, i.e.,

∫
dωI (ω) = nimp. In the following, we

always plot a normalized spectrum by dividing I (ω) by nimp.
It is also useful to note that, to calculate the rf spectrum or Ra-
man spectrum one needs to integrate the spectral function over
different momenta. As a result, a clear interpretation of the
spectroscopic measurement, in terms of the zero-momentum
spectral function, may become difficult. In Appendix B, we
briefly discuss the spectral function of a unitary Fermi po-
laron at finite momentum predicted by the two T -matrix
theories.

A. rf spectrum

In Fig. 6, we show the rf spectra of a unitary Fermi polaron
at two temperatures, T = 0.2TF [Fig. 6(a)] and T = 0.5TF
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FIG. 6. The ejection rf spectra of a unitary Fermi polaron at
(a) T = 0.2TF and (b) T = 0.5TF , in units of ε−1

F . The
black solid lines and red dashed lines report the predic-
tions of the self-consistent and non-self-consistent many-body
T -matrix theories, respectively. Here, we use impurity density
nimp = 0.1n. The spectrum is normalized, so

∫
dωI (ω) = 1.

[Fig. 6(b)]. In each spectrum, there is a peak associated with
the attractive polaron. The peak position is located at ω �
−EP, while the peak width might become broader than the
decay rate of the zero-momentum attractive polaron due to
the contribution from finite-momentum Fermi polarons. We
observe that the self-consistent many-body T -matrix theory
predicts a broader rf peak at higher energy than the non-self-
consistent theory. This is consistent with what we find in the
spectral function.

The changes due to the self-consistent treatment are quan-
titatively significant, as the height of the rf peak is much
reduced. For example, at the low temperature T = 0.2TF , the
rf peak height can be reduced by a factor of more than 2. As
temperature increases, the reduction effect becomes weaker.
At T = 0.5TF , we can see a reduction of only about 35%.

At this point, it is interesting to compare the theoretical
predictions of the two T -matrix theories with the latest rf
measurement from the Massachusetts Institute of Technology
(MIT) at T < TF , as shown in Fig. 7. To simulate the realistic
experimental conditions, we have taken a convolution of the
theoretical rf spectrum with a Lorentzian line shape, which
accounts for the experimental energy resolution of 0.1εF . We
have also horizontally shifted the spectrum by an amount of
0.09εF to compensate for the final-state effect arising from the
residual interaction of the impurity in the second hyperfine
state after transfer. Otherwise, there are no free adjustable
parameters used in the comparison. A more refined treatment
of the final-state effect will be explored in future studies.

FIG. 7. The ejection rf spectra, predicted by the self-consistent
(solid lines) and non-self-consistent (dashed lines) many-body
T -matrix theories, are compared with the experimental data from
MIT (circles) [15]. Here, we use impurity density nimp = 0.1n. We
have applied a Lorentzian broadening on all the theoretical curves to
take into account a well-calibrated experimental energy resolution of
0.1εF and have also shifted the curves to the right by 0.09εF in order
to eliminate the residual final-state effect.

It is readily seen that, overall, the predictions from the
self-consistent many-body T -matrix theory better fit the
experimental data. The non-self-consistent theory always pre-
dicts a higher peak height than the experimental observation.
It is worth noting that, as temperature increases, a pronounced
peak starts to emerge at about ω ∼ 0 in the measured rf spec-
trum. However, both T -matrix theories fail to produce such an
important experimental feature. As a result, at T = 0.74TF we
find an apparent discrepancy between theory and experiment
near the zero frequency (see the bottom curves and data in
Fig. 7 at ω ∼ 0).

This discrepancy becomes particularly evident when we
compare the results for the peak position (which is inter-
preted as −EP) and the FWHM width (i.e., the decay rate
� of the polaron in our interpretation), which are extracted
from the simulated theoretical curves and the measured rf
spectra. These results are shown in Figs. 8(a) and 8(b), re-
spectively. We see a clear jump in the measured peak position
at temperature T ∼ 0.8TF . Above this temperature, the peak
position seems to be pinned near zero frequency. In contrast,
the peak position predicted by both T -matrix theories gradu-
ally decreases towards ω = 0. In line with the sudden jump
in the peak position, the measured FWHM width reaches
maximum at T ∼ 0.8TF . After this temperature, the width
quickly decreases. This observation also cannot be under-
stood by both T -matrix theories. As temperature increases,
maximum widths occur at T ∼ 1.2TF and T ∼ 1.5TF for the
self-consistent and non-self-consistent calculations, respec-
tively. Moreover, the predicted temperature dependence of the
FWHM width appears to be much smoother than what was
observed in the measured spectra.
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FIG. 8. The peak position and the FWHM width of the ejection rf
spectra, predicted by the self-consistent (black solid lines) and non-
self-consistent (red dashed lines) many-body T -matrix theories, are
compared with the experimental data from MIT (green circles) [15].
Here, we use impurity density nimp = 0.1n in the calculations of the
ejection rf spectra. In the experimental data, we subtracted the energy
resolution 0.1εF in the FWHM width � and compensated the final-
state energy shift 0.09εF in the extracted peak position −EP [15].

B. Raman spectrum

Finally, let us briefly discuss the Raman spectroscopy. In
Fig. 9, we report the Raman spectrum of a unitary Fermi

FIG. 9. The ejection Raman spectra of a unitary Fermi polaron
at T = 0.2TF (the lines with symbols) and T = 0.5TF (plain lines),
in units of ε−1

F . The black solid lines and red dashed lines report the
predictions of the self-consistent and non-self-consistent many-body
T -matrix theories, respectively. Here, we use transferred momentum
q = kF and impurity density nimp = 0.15n.

FIG. 10. The ejection Raman spectra, predicted by the self-
consistent (black solid lines) and non-self-consistent (red dashed
lines) many-body T -matrix theories, are compared with the ex-
perimental data from TIIT (symbols) at three different interaction
strengths [17]. Here, we use impurity density nimp = 0.23n and trans-
ferred momentum Q = 1.9kF , as in the experiment. The temperature
is set to T = 0.2TF . In the theoretical calculations, we do not include
the inhomogeneous density profiles due to external harmonic traps,
which lead to only small, unimportant changes in the predicted
Raman spectrum [31].

polaron at two temperatures, T = 0.2TF and T = 0.5TF ,
calculated using both T -matrix theories. At both tempera-
tures, the self-consistency treatment does not lead to notable
changes. This probably can be understood from the fact that
the Raman spectrum at a large transferred momentum Q ∼ kF

is mainly contributed by Fermi polarons at finite momentum
with k ∼ kF , for which the self-consistency in the impurity
Green’s function becomes less important.

In Fig. 10, we compare the predictions of the two T -matrix
theories with the latest measurement of the Raman spectrum
from the Technion-Israel Institute of Technology (TIIT) at a
temperature around 0.2TF . For a weak interaction between
the impurity and the Fermi sea in Fig. 10(a), the predicted
Raman spectra from the two T -matrix theories are indistin-
guishable at the scale of the figure. Both predictions agree well
with the measured spectrum. For large interaction strengths,
near the unitary limit [Fig. 10(b)] or on the BEC side of the
Feshbach resonance [Fig. 10(c)], the two T -matrix theories
do predict different theoretical Raman spectra. However, the
improvement due to the self-consistency treatment seems to
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FIG. 11. The real part and imaginary part of the pair propagator
χ0(q, ω) = �−1

0 (q, ω) and δχ (q, ω) at zero wave vector q = 0, in
arbitrary units. The red circles, black solid lines, and blue dot-dashed
lines show the results with η/εF = 0.1, 0.2, and 0.3, respectively. We
consider the unitary limit and temperature T = 0.2TF .

be too small to resolve the puzzling discrepancy found earlier
between the non-self-consistent T -matrix theoretical results
and the experimental observations [31].

V. CONCLUSIONS AND OUTLOOKS

In conclusion, we studied the spectral function of Fermi
polarons at finite temperature in three dimensions by applying

FIG. 12. The zero-momentum spectral function, in units of ε−1
F ,

calculated with η/εF = 0.1 (red circles), 0.2 (black solid line), and
0.3 (blue dot-dashed line). We consider the unitary limit and temper-
ature T = 0.2TF .

FIG. 13. The contour plot of the impurity spectral function
A(k, ω) of a unitary Fermi polaron at T = 0.2TF as a function
of momentum k and frequency ω, predicted by (a) the non-self-
consistent and (b) self-consistent many-body T -matrix theories. The
two-dimensional plot is shown at a logarithmic scale in units of ε−1

F ,
as indicated by the color bar.

a self-consistent many-body T -matrix theory. In compari-
son with the widely used non-self-consistent T -matrix theory
[23,28,29], we find the introduction of the self-consistency
in the impurity Green’s function quantitatively changes the
polaron spectral function. The changes are mostly significant
at low temperature, where the self-consistency treatment in-
creases the polaron decay rate and therefore notably broadens
the line shape of the spectral function. We related the en-
hanced polaron decay rate to the two-particle vertex function,
which describes the in-medium molecule state created by the
successive scatterings between the impurity and the Fermi sea.

Although we believe that the molecule state is more accu-
rately described by the self-consistent many-body T -matrix
theory, there is no consensus that the self-consistency in
the impurity Green’s function will necessarily improve the
description of Fermi polarons. Therefore, we compared the
theoretical predictions from both self-consistent and non-self-
consistent theories with the latest experimental measurements
[15,17]. For the radio-frequency spectroscopy of a unitary
Fermi polarons [15], at low temperature (i.e., below 0.8TF )
we observed that the self-consistent T -matrix theory seems
to explain better the experimental data. However, at high
temperature, both T -matrix theories fail to account for the
experimental observations. For the Raman spectroscopy of
Fermi polarons [17], the use of the self-consistent T -matrix
theory does not lead to too much of a difference. Near the
Feshbach resonance, the predictions of both T -matrix theories
differ largely from the experimental results at T ∼ 0.2TF .
The discrepancy between the T -matrix theories and exper-
iments for both radio-frequency spectroscopy and Raman
spectroscopy suggests that we need to significantly improve
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the theory of the polaron spectral function, beyond the stan-
dard T -matrix approximation.

Alternatively, we may consider the case of heavy Fermi po-
larons, for which the exact solution can be obtained by using
a functional-determinant approach [6,7]. The exact spectral
function of heavy polarons in a BCS Fermi superfluid was
recently determined [38,39]. It would be interesting to cal-
culate the spectral function of such heavy BCS polarons
with both self-consistent and non-self-consistent many-body
T -matrix theories and compare the approximate results with
the exact solution. Finally, it might be useful to note that our
technique used to calculate a dressed Green’s function in the
real frequency could be extended to investigate the spectral
function of other interacting Fermi systems, particularly a
two-component spin-1/2 Fermi gas with a balanced popula-
tion in each component.
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APPENDIX A: THE η DEPENDENCE OF THE
DIFFERENCE IN THE VERTEX FUNCTION

Throughout this work, in the calculation of the difference
in the vertex function δχ ≡ �−1 − �−1

0 , we have added a
small imaginary part η = 0.2εF to the frequency ω in order to

remove the singularity in the integrand of Eq. (7). In Fig. 11,
we show the dependence of δχ (q = 0, ω) at zero momentum
on the choice of the value η in comparison with the dominant
contribution χ0 = �−1

0 (q = 0, ω). Here, as an example, we
consider the unitary limit at temperature T = 0.2TF . At the
scale of �−1

0 , we can barely see the changes in δχ due to
the use of different values of η. We find that the use of a
smaller value of η = 0.1εF introduces an oscillation at large
frequency. This is anticipated since the integrand needs to be
more finely sampled in our Gaussian quadrature integration,
which is time-consuming. Our choice of η = 0.2εF turns to be
a good balanced selection, so the numerical calculations can
be carried out in an efficient and accurate way. In Fig. 12, we
also report the corresponding spectral functions at different
values of η. The three spectral functions are indistinguishable
from each other.

APPENDIX B: SPECTRAL FUNCTION
AT FINITE MOMENTUM

In Fig. 13, we present the polaron spectral function at finite
momentum in the form of a two-dimensional contour plot. We
consider the unitary limit with 1/(kF a) = 0 and temperature
T = 0.2TF . We find that in comparison with the non-self-
consistent T -matrix results in Fig. 13(a), the self-consistency
treatment in Fig. 13(b) leads to a much broader polaron peak.
As the momentum increases, it also makes the polaron easier
to dissolve.
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