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Inequivalence of stochastic and Bohmian arrival times in time-of-flight experiments
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Motivated by a recent prediction [Commun. Phys. 6, 195 (2023).] that time-of-flight experiments with
ultracold atoms could test different interpretations of quantum mechanics, this work investigates the arrival times
predicted by the stochastic interpretation, whereby quantum particles follow definite but nondeterministic and
nondifferentiable trajectories. The distribution of arrival times is obtained from a Fokker-Planck equation and
confirmed by direct simulation of trajectories. It is found to be, in general, different from the distribution
predicted by the Bohmian interpretation, in which quantum particles follow definite deterministic and differ-
entiable trajectories. This result suggests that trajectory-based interpretations of quantum mechanics could be
experimentally discriminated.
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I. INTRODUCTION

Do quantum particles follow definite trajectories? In the
textbook presentations of quantum mechanics [1–4] following
the standard Copenhagen interpretation of the theory or its
statistical interpretation [5], emphasis is put on measurements
as the only accessible elements of reality. Classical concepts
such as trajectories are thus considered unnecessary or even
inconsistent with observations. In this conception, a particle is
only described by its quantum state in the absence of any ob-
servation, and “materializes” only at a certain position where
it is observed by an experimental apparatus at a certain time.

However, it was shown long ago, prominently by Bohm
[6,7], that the formalism of quantum theory is not inconsis-
tent with the particles having definite trajectories in between
measurements. This has led to the de Broglie-Bohm theory
or pilot wave theory, which has been recognized as an alter-
native interpretation of quantum mechanics [8], in so far as
it yields the same predictions as the standard interpretation.
The Bohmian interpretation, however, has not gained much
popularity, notably because it posits the seemingly unneces-
sary existence of hidden variables (the particles’ positions at
all times), and mainly because, like most interpretations of
quantum mechanics, it does not seem to provide any new
testable prediction.

It has long been known, however, that there are measure-
ments for which the interpretations of quantum mechanics
may lead to different predictions, namely, the measurements
of arrival times [9]. While the quantum formalism gives the
probabilities of a particle’s position measurements at a given
time through the square modulus |ψ (x, t )|2 of its wave func-
tion, it does not provide explicit probabilities for the time t
at which a particle arrives at a certain point x. One could
naïvely think that this probability distribution is still provided
by the square modulus |ψ (x, t )|2 at a fixed point x, but a quick
dimensional analysis shows that it cannot be so: |ψ (x, t )|2
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has the units of density, whereas the sought probability dis-
tribution should be a number per units of surface and time.
The mathematical reason behind this difficulty is that time is
only a parameter in standard quantum mechanics, whereas
the conventional formalism requires measurable quantities
to be described by a self-adjoint operator, and it is known
that a self-adjoint operator cannot be constructed for time
[10,11]. This problem has led to various efforts to find a
plausible way to predict arrival times in quantum mechanics.
Some of these works [12–18] either extend or reformulate the
original formalism of quantum theory to obtain predictions,
while others [19–30] have attempted to obtain predictions
within the conventional framework of quantum theory (al-
though this has been disputed [31–34]). On the other hand, in
a trajectory-based interpretation of quantum mechanics such
as the Bohmian interpretation, there is seemingly no difficulty
to predict arrival times since the particle is assumed to follow
a definite trajectory, with a definite arrival time at a certain
point [35,36]. As a result, rather than a mere interpretation
it becomes a falsifiable theory in its own right when applied
to the arrival time problem. By measuring arrival times in
time-of-flight experiments, it is therefore possible in principle
to test the different formulations, extensions, and trajectory-
based interpretations of quantum mechanics [37].

However, up to now, time-of-flight measurements have
only been performed far from the particle’s source of emis-
sion, in a regime where all theories give the same predictions,
consistent with a classical motion of the particle near the
detector. The situation may change, however, as a recent
proposal [38] shows that it may be possible to discriminate
these theories by measuring the arrival time distribution in a
double-slit (or double-well) experiment.

In this context, it is of interest to revisit a rather little-
known trajectory-based interpretation of quantum mechanics
called stochastic mechanics. Stochastic mechanics started
with the realization by Fényes [39] and then Nelson [40] that
the Schrödinger equation naturally appears when considering
a certain kind of frictionless Brownian motion. This led to
an attempt to reconstruct quantum theory from the stochastic
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motion of particles induced by a hypothetical fluctuating ether
[41]. Reference [42] gives a good account of the current status
of stochastic mechanics. Although the original aim of deriv-
ing quantum theory from a more fundamental theory has not
been achieved by stochastic mechanics, it allows for a given
wave function to assign definite (but nondeterministic and
nondifferentiable) trajectories to the corresponding particles
in accordance with the predictions of quantum mechanics.
From this perspective, it can be used as an alternative pilot
wave theory. This theory may be regarded as a stochastic
version of the de Broglie-Bohm pilot wave theory, and we call
it the stochastic pilot wave theory, to distinguish it from the
original stochastic mechanics.

Although the Bohmian and stochastic pilot wave theories
are similar, there appear to have been no detailed comparisons
between stochastic and Bohmian trajectories’ arrival times.
Previous results [43,44] suggest that stochastic trajectories
and Bohmian trajectories lead to the same arrival time dis-
tribution. In this work, it is shown that they do in fact lead to
different arrival time distributions, most notably in the case of
the double-well experiment proposed in Ref. [38]. This opens
the possibility to evidence, and even characterize, the trajec-
tories of particles underlying the standard quantum theory.
However, this requires the arrival times of such trajectories
to be faithfully reported by a detecting apparatus, without any
substantial error or perturbation from the detection scheme.
The last section of this article discusses possible issues with
actual measurements of these arrival times.

II. BOHMIAN AND STOCHASTIC TRAJECTORIES

The definitions of Bohmian and stochastic trajectories for
a given wave function are closely related. Consider for sim-
plicity, the case of a single nonrelativistic particle of mass m,
described by a wave function ψ (x, t ). One can define from
the wave function the complex velocity V = h̄

m ∇ ln ψ with
real part u and imaginary part v called respectively osmotic
and average velocities [40]. Accordingly, one obtains the two
probability currents i = ρu and j = ρv, where ρ is the proba-
bility density |ψ |2. Note that j is the usual probability current
h̄
m Im(ψ∗∇ψ ) satisfying the continuity equation

∂ρ

∂t
+ ∇ · j = 0. (1)

One may also define the forward and backward drifts

b = v + u, (2)

b∗ = v − u, (3)

and the corresponding forward and backward currents

J = ρb,

J ∗ = ρb∗.

The Bohmian trajectory starting from a point x0 at time t0
is simply the trajectory that remains tangent to the average
velocity field v. Namely, the position x′ at time t ′ = t + dt is
obtained from the position x at time t by the relation:

x′ = x + v(x, t )dt . (4)

Note that the trajectory is by construction differentiable,
uniquely defined by the starting point, and never intersects
any other trajectory starting from a different point at the same
time.

On the other hand, a stochastic trajectory starting from a
point x0 at time t0 is defined as a stochastic diffusive process
drifting along the forward velocity field b. Namely, the posi-
tion x′ at time t ′ = t + dt is obtained from the position x at
time t by the relation

x′ = x + b(x, t )dt + ξ, (5)

where ξ is a random vector with average zero and variance
h̄
m dt . Note that, in this case, the trajectories are nondetermin-
istic, nondifferentiable, and may intersect.

It has be shown for both Bohmian [45] and stochastic
[40,41] trajectories that when starting from an ensemble of
points x0 at time t0 distributed according to the initial den-
sity distribution ρ(x, t0), the subsequent positions along the
trajectories at a later time t are distributed according to the
density ρ(x, t ), in accordance with the predictions of standard
quantum mechanics. This is illustrated in Figs. 1 and 2 for
the case of an ensemble of particles initially confined in the
ground state of a single harmonic well of oscillator lengths
σx, σy, σz ≡ σ , with a wave function given by

ψ (x, t ) = Gσx (x, t )Gσy (y, t )Gσ (z, t ), (6)

and in the ground state of two degenerate harmonic wells
separated by distance 2d in the vertical direction z, with wave
function

ψ (x, t ) = Gσx (x, t )Gσy (y, t )
Gσ (z − d, t ) + Gσ (z + d, t )√

2
,

(7)
where Gσ denotes the expanding Gaussian wave packet,

Gσ (x, t ) = exp
(− x2

4σ st

)
(
2πs2

t

)1/4 with st = σ + ih̄t

2mσ
. (8)

In both cases, it is assumed that the confining wells are im-
mediately switched off at time t = 0, letting the particles free
thereafter. In the case of the double well, it is assumed that
the two wells are well separated (d � σ ), so that the free
expansion leads to an interference pattern in the density. One
can check in Fig. 2 that this interference pattern is correctly
reproduced by both the Bohmian and stochastic trajectories.

III. ARRIVAL TIME DISTRIBUTION

Now let us consider the arrival time of the particle on a
detector. As mentioned earlier, the determination of arrival
times is, in principle, straightforward since the particle’s pos-
sible trajectories are known. Nevertheless, one is immediately
faced with several important assumptions about the detector
that can affect the measured arrival times. Is the detector
localized around a single point, or a two-dimensional plane?
Is the particle “destroyed” by the detector when it is detected
(in the sense that it cannot be detected again)? Does the de-
tector affect the particle’s motion? If so, does it simply select
trajectories guided by the wave function, or does it directly
affect the wave function itself?
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FIG. 1. Cloud of particles released from a single harmonic well of frequency ω = h̄/2mσ 2 and oscillator length σ . (a) Integrated density∫
dxdy|ψ (x, t )|2 as a function of time. (b) z component of 400 Bohmian trajectories. (c) z component of 400 stochastic trajectories. The

trajectories are calculated from Eqs. (4) and (5) with dt = 1/(1600ω). The red dashed line indicates the position of a detector at the distance
L = 5σ from the center of the well.

In the following, it will be assumed that the detector is
planar, destroys the particle as soon as it is detected, but does
not affect its wave function (i.e., the wave function is assumed
to remain the same as in the absence of detector). Let us say
that the detector is placed at a certain distance L below the
source of the particle. Then, according to our assumptions,
the particle can only arrive from above the detector plane (as-
suming that the detector plane is large enough to prevent any
trajectory from going around the detector and hitting it from
below). For a statistical distribution of trajectories, the arrival
time distribution is then simply proportional to the arrival flux
of trajectories hitting the detector plane from above. Note that
the motion in the three spatial directions are independent due
to the separability of the wave functions (6) and (7), so that
one can simply consider the motion along the z direction as
far as the arrival times on the detector are concerned.

In the case of Bohmian trajectories, it has been shown
[46] that the flux of trajectories through a plane is simply
the flux of the probability current j through that plane. When
all trajectories hit the detector plane from above, as in the

case of a particle released from a single harmonic well [see
Fig. 1(b)], the arrival flux F (t ) is thus the flux − ∫

P dS · j(x, t )
of j through the detection plane P. Here, dS = dSn, where
dS is the surface integration element and n the unit vec-
tor orthogonal to the detection plane and pointing out from
the detecting side. Figure 3 confirms that the arrival flux
of Bohmian trajectories numerically simulated from Eq. (4)
(gray fill) coincides with the flux of the probability current
j (dashed curve). As discussed in Ref. [38], the situation is
more complicated in the case of the double well, because some
trajectories may cross the detection plane three times [see
Fig. 2(b)], thus hitting once the detector plane from below (a
situation known as quantum reentry [47,48]). According to the
assumption that the particle is destroyed as soon as it first hits
the detector from above, the subsequent contributions from
these trajectories to the flux of j through the plane should be
discarded in the calculation of the arrival flux. This can only
be achieved through the simulation of many trajectories, as
shown in Fig. 4(a). One can see that the obtained arrival flux
(gray fill) is zero at and, slightly after, the arrival times where

FIG. 2. Cloud of particles of mass m = 4mu released from two wells of oscillator length σ = 0.5 μm, separated by a distance 2d = 20 μm
along the z direction. The panels are similar to those of Fig. 1. The red dashed line indicates the position of a detector at the distance L = 15 μm
from the center of the two wells.
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FIG. 3. Arrival flux of a cloud of particles released from a single well of frequency ω = h̄/2mσ 2 and oscillator length σ , onto a detector
at different distances L from the well. (a) L = 50σ . (b) L = 5σ . (c) L = 2σ . The Bohmian (gray fill) and stochastic (red fill) arrival fluxes are
obtained by sampling 32 000 trajectories propagated from Eqs. (4) and (5) with dt = 1/(1600ω).

the flux of j (dashed curve) is negative because the corre-
sponding trajectories are blocked by the detector. Away from
these specific arrival times, the arrival flux is well reproduced
by the flux of j.

In the case of stochastic trajectories, one could think by
comparing Eqs. (4) and (5) that the arrival flux would be
given by the forward current J . However, that it is not the
case. As shown in Fig. 3, the arrival flux of stochastic tra-
jectories numerically simulated from Eq. (5) (red fill) is in
fact better approached by the flux of the backward current
J ∗ (dotted curve) than the forward current J (dot-dashed
curve). This makes sense when one realizes that the backward
current corresponds to the average current arriving at a given
point, whereas the forward current corresponds to the average
current departing from that point. Yet, the backward current
only provides an approximation of the arrival flux.

It is actually possible to determine the arrival flux exactly
by considering the density ρL(x, t ) of trajectories that do not
reach the detection plane. That is because once the density
of such trajectories is known at a certain instant, one can
calculate the number of those first reaching the plane at the
next instant. As shown in Appendix D, the density ρL satisfies
the following forward Fokker-Planck equation,

∂ρL

∂t
+ ∇ · (bρL ) − h̄

2m
∇2ρL = 0, (9)

which is also known to be satisfied by the full density ρ(x, t )
of all possible trajectories [40]. However, here it is comple-
mented by the following Dirichlet boundary condition at the

detection plane, ρL(x, t ) = 0 ∀ x ∈ P, which effectively im-
plements the restriction that the underlying trajectories cannot
reach the plane. It can be shown (see Appendix D) that the
first-arrival flux F (t ) at the plane (for trajectories that do reach
the plane) is then given by

F (t ) = −
∫

P
dS · h̄

2m
∇ρL(x, t ). (10)

Figures 3 and 4(b) show that the flux of Eq. (10) obtained
by solving numerically the Fokker-Planck equation (9) (red
curve) agrees within the sampling errors with the one cal-
culated from the simulation of stochastic trajectories from
Eq. (5) (red fill). Unlike the case of Bohmian trajectories, the
arrival time distribution of stochastic trajectories can thus be
obtained without resorting to a sampling of trajectories.

IV. EXPERIMENTAL OBSERVATION

Figures 3 and 4 clearly demonstrate that the arrival fluxes
of Bohmian and stochastic trajectories are in general different.
However, they may be difficult to distinguish experimentally.
As found in Ref. [44], far from the source of particles, both
the Bohmian and stochastic fluxes are indistinguishable from
the flux of the probability current j, as seen in Fig. 3(a). They
become in principle distinguishable for detectors closer to the
source, as shown in Fig. 3(b), but remain largely proportional
to each other. Unless the initial number of particles is pre-
cisely known and the detection is 100% efficient, one could
only extract the arrival time distribution from the detector’s
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FIG. 4. Arrival flux of a cloud of particles released from a double well onto a detector at a distance L = 15 μm from the center of the two
wells: (a) case of Bohmian trajectories; (b) case of stochastic trajectories. The fluxes are obtained by sampling 5 × 106 trajectories propagated
from Eqs. (4) and (5) with dt = 3.75 μs.

counts, which would not be conclusive. Much closer to the
source, as in Fig. 3(c) where the distance L is only twice the
trap width σ , the arrival time distributions are predicted to
be noticeably different. However, besides the technical issues
with implementing such a close detector, the assumption that
the detector does not alter the wave function is questionable
in this case.

As advocated in Ref. [38], the double-well system with
a detection plane perpendicular to the axis joining the two
wells is more promising. The authors propose to confine a
cloud of ultracold atoms in a double-well trap, release the
trap and measure the arrival times of the atoms on a detector.
At ultracold temperature, all atoms condense into the ground
state of the trap. Each atom thus constitutes a realization of
a single-particle time-of-flight experiment for the same wave
function. The best candidate for this purpose is metastable
4He, since it can be efficiently detected due to its high internal
energy [49]. For easier comparison, the same parameters as
those chosen in Ref. [38] have been taken in Figs. 2, 4, and
5, namely, m = 4mu (4He mass, with mu being the atomic
mass unit), d = 10 μm, σ = 0.5 μm. Note that the horizontal
initial velocity assumed in Ref. [38] to mimic a double-slit
experiment does not affect the vertical motion and is irrelevant
in a double-well experiment where atoms are simply released
from their trap. For a detector at L = 15 μm from the center

of the double well (thus at a distance 10σ from the nearest
well), about 44% of the released atoms reach the detector
within 6 ms. Their normalized arrival time distribution in that
time frame is shown in Fig. 5, for both the Bohmian (gray)
and stochastic trajectories (red). They are compared with the
Kijowski arrival time distribution (black), which constitutes an
important reference since it can be derived from different ap-
proaches to arrival time measurements, such as an axiomatic
approach [23], an absorption potential model [21], a canonical
quantization of the arrival time with the construction of a
(generally non-self-adjoint) arrival-time operator [19,25], or
a self-adjoint arrival-time operator that is not conjugate to the
Hamiltonian [26].

One can see clear discrepancies between the three pre-
dicted distributions. In particular, trajectory-based interpreta-
tions of quantum theory both predict time frames where there
are no arrivals, in contrast with the prediction of the Kijowski
distribution. Observing a signal in these time frames would
therefore invalidate these theories. To simulate the statistical
noise, the Bohmian and stochastic distributions are calculated
with the trajectories of 5 × 106 atoms, a number typically
achieved in experiments. One can see that this noise is not
an issue for distinguishing the curves. A major drawback
is that to experimentally rule out any of these curves, the
experimental data must be compared with a theoretical cal-
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FIG. 5. (top) Arrival time distribution normalized over 6 ms, for different theories: the Kijowski arrival time distribution (black) obtained
in several theories of the quantum arrival time [19,21,23,25,26], and the first-arrival time distributions obtained from Bohmian (gray) and
stochastic (red) trajectories. The dashed curve shows the normalized distribution proportional to the wave-function density |ψ (x, t )|2 integrated
on the detection plane; this distribution corresponds to the multiple-arrival time distribution of stochastic trajectories, as well as the as the
distribution obtained in the quantum clock proposal [37]. (bottom) Closeup of top panel around 2 ms, showing the time frames where the
Bohmian and stochastic distributions vanish.

culation. Thus, very precise calibrations of all the parameters
of the experiments, in particular the position of the detector,
trap frequency, and time of release, are necessary. Neverthe-
less, the experimental discrimination appears to be feasible in
principle.

It is important to note that the above conclusions are bound
to the assumptions made in Sec. III. Let us briefly discuss what
to expect if these assumptions are invalidated.

If one assumes that the detector does not necessarily detect
the particle on its first arrival but has a certain probability
distribution for detecting the particle at its various positions
as it goes through the detector, the resulting arrival time
distribution may be quite different, especially for stochastic
trajectories. Indeed, while Bohmian trajectories are smooth
and cross the detector plane at most three times, stochastic tra-
jectories can enter the detector many times if the particle is not
immediately destroyed. It was found numerically in Ref. [44]
that taking into account these multiple counts through the de-
tector gives a flux that is proportional to the density |ψ (x, t )|2
on the detector plane. This result may sound surprising, since
the density does not have the units of a flux, as stressed earlier.
The proportionality coefficient must therefore have units of
velocity. But what could be that constant velocity? Although
the work of Ref. [44] did not address this question, it is in fact

possible to express analytically the flux F (t ) of all stochastic
trajectories through the detector plane (see Appendix E). It
turns out that this flux is indeed proportional to the density,
but the proportionality coefficient is formally infinite:

F (t ) = lim
dt→0

2

√
h̄

2m πdt

∫
P

dS|ψ (x, t )|2. (11)

This means that the stochastic trajectories cross the detector
plane so many times that it results in an infinite flux. Physi-
cally, however, the proportionality coefficient should be finite
due to the limited temporal resolution of the detector. There-
fore, a detector detecting many passages of a single particle is
expected to yield a finite number of counts proportional to
the density. The first-arrival detection and multiple-passage
detection constitute two opposite limits. For a detector de-
tecting the particle with some delay probability distribution,
the measured arrival time distribution is expected to be some-
where between these two limits. These limits are shown in
Fig. 5 by the solid red curve (immediate detection of the first
arrival) and the dashed red curve (multiple-passage detection).
One can conclude from that figure that, even if the detector
experiences delays and multiple counts, the distribution result-
ing from stochastic trajectories likely remains distinguishable
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from other predictions, although it is more complicated to
predict. Incidentally, let us remark that the normalized dis-
tribution obtained from the flux of Eq. (11) coincides with
the distribution obtained from the quantum clock proposal
[37], according to which time measurement is obtained from
the entanglement of the particle with a clock taken as a time
reference.

Finally, there remains the question of whether the detector
affects the wave function. Some works [50–53] have proposed
that the wave function is affected by the detector through
an absorbing boundary condition making the wave function
proportional to its gradient through the detector,

n · ∇ψ (x, t ) = iκψ (x, t ) ∀ x ∈ P, (12)

where κ is an inverse length characterizing the detector. It is
clear that this condition makes the current n · ρV = h̄

m ψ∗n ·
∇ψ purely imaginary, i.e., n · j = n · J ∗ = h̄

m κρ. This situ-
ation is similar to that of Fig. 3(a), where n · j = n · J ∗. It
was observed in that case that the stochastic and Bohmian
trajectories lead to indistinguishable arrival time distributions.
It is therefore likely that such a back effect of the detector on
the wave function would make it difficult to distinguish the
predictions of stochastic and Bohmian trajectories. However,
it is presently unknown whether the detector affects the wave
function in this way.

V. CONCLUSION

This work shows that two trajectory-based interpretations
of quantum mechanics, the Bohmian and stochastic pilot wave
theories, do not in general yield the same arrival times. It
appears that these theories could be discriminated experimen-
tally from other theories of arrival time, as well as from each
other, using ultracold atoms released from a double well trap,
as proposed in Ref. [38]. Although questions remain regarding
the role of the detection scheme, it is an intriguing prospect
that such experiments could shed some light on the long-
standing question of the existence and nature of trajectories
in quantum mechanics.
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APPENDIX A: STOCHASTIC MOTION

Let us consider a one-dimensional stochastic motion with
forward drift b(x, t ) and diffusion coefficient D = h̄/2m.
Namely, the position x′ of the particle at time t ′ = t + dt is
obtained from its position x at time t by the relation:

x′ = x + b(x, t )dt + ξ, (A1)

where ξ is a random number with average zero and variance
2Ddt . A realization of such motion is shown in Fig. 6.

APPENDIX B: TEMPORAL DISTRIBUTION F

Let us define F (x, t |x0, t0)dt as the probability for first
reaching x between t and t + dt starting from x0 at time t0.

FIG. 6. Example of stochastic trajectory going from (x0, t0) and
reaching t between x and x + dx. It first reaches x between time τ

and τ + dt and then crosses x again several times between time τ +
dt and t . The ensemble of all possible such trajectories determines
the spatial probability distribution R(x, t |x0, t0 ). The ensemble of all
possible trajectories going from (x0, t0) and reaching x for the first
time between τ and τ + dt (green section of the curve) determines
the temporal probability distribution F (x, τ |x0, t0).

“First” means that x has not been crossed along the trajectory:
the particle reaches x for the first time between t and t + dt
(see the green section of the curve in Fig. 6).

The probability for reaching x between time t0 and t start-
ing from x0 is therefore

0 �
∫ t

t0

F (x, τ |x0, t0)dτ � 1. (B1)

APPENDIX C: SPATIAL DISTRIBUTION R

Let us now define R(x, t |x0, t0)dx as the probability for
reaching t between x and x + dx, starting from x0 at time t0
(see the whole curve in Fig. 6).

1. Basic properties

Since the particle must be somewhere at any time t , one
must have ∫ ∞

−∞
dx R(x, t |x0, t0) = 1. (C1)

Moreover, by summing the probabilities for all possible po-
sitions at an intermediate time τ , one obtains the following
chain rule:∫ ∞

−∞
dy R(x, t |y, τ )R(y, τ |x0, t0) = R(x, t |x0, t0). (C2)

2. Fokker-Planck equation

The probability distribution R can be shown to satisfy the
forward Fokker-Planck equation [54]

∂R

∂t
+ ∂

∂x
(bR) − D ∂2

∂x2
R = 0 (C3)

with initial condition R(x, t0|x0, t0) = δ(x − x0). Thus for
any density ρ(x, t ) satisfying the above Fokker-Planck
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equation with initial condition ρ(x, t0) = ρ0(x), one can
write ρ(x, t ) = ∫

dx0R(x, t |x0, t0)ρ0(x0). For this reason,
R(x, t |x0, t0) may be regarded as the propagator of the Fokker-
Planck equation.

3. Relation between F and R

One can find a relation between F and R by summing
the probabilities for all possible times at which the particle
first reaches x before eventually reaching x again at the final
time t :∫ t

t0

dτR(x, t |x, τ )F (x, τ |x0, t0) = R(x, t |x0, t0). (C4)

This relation is illustrated in Fig. 6.

APPENDIX D: DENSITY FROM TRAJECTORIES
NOT REACHING y

The probability density for reaching (x, t ) starting from
(x0, t0) without having crossed y at any time τ ∈ [t0, t] is
given by

Ry(x, t |x0, t0) ≡ R(x, t |x0, t0) − R̃(x, t |y|x0, t0), (D1)

where

R̃(x, t |y|x0, t0) =
∫ t

t0

dτR(x, t |y, τ )F (y, τ |x0, t0) (D2)

is the probability for reaching (x, t ) from (x0, t0) and having
crossed y at least once at some intermediate time τ . This
implies that Ry(y, t |x0, t0) = 0, owing to Eq. (C4).

Let us now calculate the following derivatives:
∂

∂t
R̃ = R(x, t |y, t )︸ ︷︷ ︸

δ(x−y)

F (y, t |x0, t0)

+
∫ t

t0

dτ
∂R(x, t |y, τ )

∂t
F (y, τ |x0, t0), (D3)

∂

∂x
(bR̃) =

∫ t

t0

dτ
∂

∂x
[bR(x, t |y, τ )]F (y, τ |x0, t0), (D4)

∂2

∂x2
(R̃) =

∫ t

t0

dτ
∂2

∂x2
[R(x, t |y, τ )]F (y, τ |x0, t0). (D5)

By summing the above equations and using the fact that R
satisfies the Fokker-Planck equation (C3), one arrives at

∂

∂t
R̃ + ∂

∂x
(bR̃) − D ∂2

∂x2
(R̃) = δ(x − y)F (y, t |x0, t0). (D6)

Therefore, Ry satisfies the Fokker-Planck equation

∂

∂t
Ry + ∂

∂x
(bRy) − D ∂2

∂x2
(Ry) = 0 (D7)

on ] − ∞, y[ and ]y,∞[, with a discontinuity of the spatial
derivative at x = y given by[

∂

∂x
Ry

]
x→y+

−
[

∂

∂x
Ry

]
x→y−

= F (y, t |x0, t0)

D . (D8)

Let us suppose that the starting point x0 is on the left
side of y. Since by construction the particle cannot cross y,
Ry(x, t |x0, t0) must be identically zero for x � y, and the first

term in Eq. (D8) should vanish. Therefore, for an arbitrary
initial density distribution ρ0(x) of points x < y, the den-
sity ρL(x, t ) ≡ ∫ y

−∞ dx0Ry(x, t |x0, t0)ρ0(x0) is also identically
zero for x � y and satisfies the Fokker-Planck equation

∂

∂t
ρL + ∂

∂x
(bρL ) − D ∂2

∂x2
(ρL ) = 0 (D9)

with the initial condition ρL(x < y, t ) ≡ ρ0(x) and the bound-
ary condition ρL(y, t � t0) = 0. The density ρL is the density
resulting from trajectories not crossing y from the left, starting
from an initial density ρ0. The temporal distribution FL(y, t )
for trajectories first reaching y from the left at time t is there-
fore FL(y, t ) ≡ ∫ y

−∞ dx0F (y, t |x0, t0)ρ0(x0). From Eq. (D8),
one obtains

FL(y, t ) = −D
[
∂ρL(x, t )

∂x

]
x→y−

. (D10)

The formulation can be generalized to a three-dimensional
stochastic motion. The density ρL(x, t ) of three-dimensional
trajectories first reaching a plane P from a given side (say
left), starting from an initial density ρ0(x), satisfies the three-
dimensional Fokker-Planck equation

∂ρL

∂t
+ ∇ · (bρL ) − D∇2ρL = 0, (D11)

with the boundary condition ρL(x, t ) = 0 ∀ x ∈ P. The flux of
these trajectories through the plane is then given by

F (t ) = −
∫

P
dS · D∇ρL(x, t ), (D12)

where dS = dSn is the elementary surface vector pointing
from the left side of the plane.

APPENDIX E: FLUX FROM ALL TRAJECTORIES

Let us now go back to the one-dimensional motion and
consider the flux of all (unblocked) trajectories through a
certain point x0 between time t and t + dt . The basic idea of
the calculation is as follows: At time t , the probability density
resulting from all unblocked trajectories is known to given
by ρ(x, t ). For very small dt , the contributions to the flux
between t and t + dt are given by trajectories coming from the
neighborhood of x0, typically from the range [x0 − b(x, t )dt −√
Ddt, x0 − b(x, t ) + √

Ddt] since the trajectories diffuse
during a time dt within a typical distance ≈2

√
Ddt . The

number dN of such trajectories is therefore ≈ρ(x0, t )2
√
Ddt ,

which gives a flux dN /dt ∼ ρ(x0, t )2
√
D/dt that is propor-

tional to the local density ρ(x0, t ) but diverging as dt−1/2.
Here is a more precise derivation. The total number dN

of trajectories starting at time t from the density ρ(x, t ) and
crossing the point x0 (either from left or right) before time
t + dt is given by

dN =
∫ ∞

−∞
dx ρ(x, t )Px0 (x′|x), (E1)

where Px0 (x′|x) is the probability of crossing x0 when starting
from x and ending at x′ given by the stochastic process of
Eq. (A1). If the starting point x is smaller than x0, it is the
probability that x′ > x0 and if the starting point x is larger than
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x0, it is the probability that x′ < x0, namely,

Px0 (x′|x) =
{

P(x′ > x0) for x < x0

P(x′ < x0) for x > x0.
(E2)

From Eq. (A1), one has x′ = x + b(x, t )dt + ξ , and since
ξ ∼ √

Ddt , for sufficiently small dt one can neglect the term
b(x, t )dt with respect to ξ in the calculation of the probabili-
ties. This gives

Px0 (x′|x) =
{

P(ξ > x0 − x) for x0 − x > 0
P(ξ < x0 − x) for x0 − x < 0.

(E3)

Even if the probability distribution of ξ is not normal
at very small timescale, for dt larger than that timescale, it
becomes normal due to the central limit theorem. Thus one
can write

Px0 (x′|x) = P(ξ > |x0 − x|)

=
∫ ∞

|x0−x|

1√
4πDdt

exp

(
− ξ 2

4Ddt

)
dξ

= 1

2
erfc

( |x0 − x|√
4Ddt

)
. (E4)

Now one can make a Taylor expansion of ρ(x, t ) around x0 by
setting x = x0 + ε in Eq. (E1):

dN =
∫ ∞

−∞
dε

[
ρ(x0, t ) + ε

∂ρ

dx
(x0, t ) + O(ε2)

]
Px0 (x′|x).

(E5)

Performing the integration over ε using the explicit expression
of Px0 given by Eq. (E4), one arrives at

dN =
√

4Ddt

π
ρ(x0, t ) + 0 + O(dt3/2). (E6)

The total flux through x0 at time t is therefore

dN
dt

=
√

4D
πdt

ρ(x0, t ) + O(dt1/2) (E7)

which is divergent in the limit of small dt .
The result is generalized to three dimensions for the adi-

rectional flux through a surface S:

F =
√

4D
πdt

∫
S

dSρ(x, t ). (E8)
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