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Spectral properties and observables in ultracold Fermi gases
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We calculate nonperturbative self-consistent fermionic and bosonic spectral functions of ultracold Fermi gases
with the spectral functional approach. This approach allows for a direct real-time computation of nonperturbative
correlation functions, and in the present work we use spectral Dyson-Schwinger equations. We focus on the
normal phase of the spin-balanced Fermi gas and provide numerical results for the full fermionic and bosonic
spectral functions. The spectral functions are then used for the determination of the equation of state, the Tan
contact, and ejection rf spectra at unitarity. These results are compared to experimental data, the self-consistent
T -matrix approach, and lattice results. Our approach offers a wide range of applications, including the ab initio
calculation of transport and spectral properties of the superfluid phase in the BCS-BEC crossover.
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I. INTRODUCTION

Ultracold Fermi gases [1–3] represent a versatile tool for
studying strongly correlated quantum systems at low ener-
gies. The experimental control over the system parameters
allows for the investigation of a wide range of phenomena,
such as the BCS-BEC crossover [4–8], the formation of po-
larons [9–13], and the emergence of superfluidity [14–16].

Strong correlations, e.g., close to unitarity [1], render
the theoretical description of interacting Fermi gases a
nonperturbative problem. Therefore, various nonperturbative
approaches, such as quantum Monte Carlo (QMC) simula-
tions [17,18], self-consistent T -matrix theory [19–22], and
Dyson-Schwinger equation (DSE) [23–25] and functional
renormalization group (fRG) [26–28] approaches, have been
employed to describe the system. Various important properties
of the gas, such as transport and scattering properties [29–31]
and the excitation spectrum [32–34], are encoded in its
spectral functions, which requires the computation of the
fermionic and bosonic self-energies at real frequencies.

While QMC simulations are formulated at imaginary fre-
quencies by construction, also functional methods such as
the DSE and fRG approaches are usually formulated in Eu-
clidean space-time due to significantly reduced computational
costs. Then the computation of spectral functions requires
an analytic continuation from Matsubara to real frequencies.
While this is an ill-conditioned numerical task accompanied
by large systematic uncertainties [35] (see also [36,37] for
further discussions and developments), the advantage lies in
its simple use and fast generation of new imaginary-time
results. Respective results can be found, e.g., in [38,39].

Due to the large systematic uncertainties, direct real-time
computations are much preferable and have been performed
in similar quantum systems, e.g., in [40–48]. Most of these
works use a self-consistent T -matrix approximation and
the integrals are computed by employing various numerical
techniques.

Recently, the spectral functional approach was put forward
in [49], which utilizes directly the spectral representation of

propagators and vertices: Inserting them into nonperturba-
tive diagrams in a given functional approach, the respective
frequency sums or integrals can be performed analytically,
and the remaining real spectral integrals are readily computed
numerically. This allows for a direct computation of the spec-
tral functions in terms of spectral loop integrals. The spectral
functional approach has been developed within the framework
of Dyson-Schwinger equations, but it applies to all functional
approaches. The spectral functional renormalization has been
set up and used in [50,51], and the spectral approach is
tailor-made for application in two-particle irreducible (2PI)
resummation schemes [52], where all correlation functions
are constructed from nonperturbative propagators. It has
been successfully used for the nonperturbative computation
of spectral functions and bound-state properties in scalar
theories [49,53,54], gauge theories [55–58], and quantum
gravity [50].

In this work we use the spectral functional approach for the
computation of nonperturbative self-consistent single-particle
spectral functions in the normal phase of a strongly interacting
spin-balanced Fermi gas for all scattering lengths a and in
particular close to a Feshbach resonance [59] with a → ∞.
This constitutes an application of the spectral functional ap-
proach [49] to nonrelativistic systems. Specifically, we set
up spectral Dyson-Schwinger equations for the fermionic and
bosonic self-energies at real frequencies, yielding direct ac-
cess to their spectral functions. Notably, our approach allows
for the simultaneous calculation of the fermionic single-
particle and the bosonic two-particle (dimer) spectral function
at no additional cost. With the spectral functions we also
determine the density equation of state [16], the Tan con-
tact [60], and ejection rf spectra [7] at unitarity. Our results
agree with results from the self-consistent T -matrix approx-
imation [19,38], but the flexibility of the spectral functional
approaches gives access to more generic expansion schemes.

The present paper is organized as follows. In Sec. II we
introduce our microscopic model for the spin-balanced Fermi
gas. In Sec. III we set up the spectral Dyson-Schwinger
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equations for bosonic and fermionic propagators. Our numer-
ical results for the spectral functions as well as the density,
rf spectra, and Tan contact are presented in Sec. IV. We
summarize and provide an outlook for future work in Sec. V.

II. MICROSCOPIC MODEL

We consider a nonrelativistic two-component Fermi gas
described by the Euclidean classical action

S[ψ] =
∫ β

0
dτ

∫
d3x

( ∑
σ=↑,↓

ψ∗
σ (∂τ − ∇2 − μσ )ψσ

+ λψ∗
↑ψ∗

↓ψ↓ψ↑

)
, (1)

where λ is the coupling constant of the contact interaction. If
used on the mean-field level, λ would be related directly to the
scattering length a via [28]

λ = 8πa. (2)

Instead of using the common split into bare coupling and
cutoff contribution, Eq. (2) is readily converted into a cutoff-
independent relation including quantum effects [for more
details see Sec. III and Appendix A, in particular (A1) and
(A2)].

In (1) we also introduced the chemical potential of the
fermion species, μσ with σ = (↑,↓). The fermionic fields
ψσ (τ, x) are Grassmann valued and depend on the Euclidean
time τ , which is restricted to the circumference β = 1/T , and
the spatial coordinates x. In (1) we also used natural units
h̄ = kB = 2mψ = 1, where mψ is the mass of fermions.

The emergence of bosonic dimers and their condensation
at low temperatures in the fermionic ultracold gas can be
efficiently accommodated by rewriting the action (1) with a
Hubbard-Stratonovich transformation. Thus, we will consider
a spin-balanced system (μ↑ = μ↓ = μ), where the contact
interaction of fermions with opposite spin is replaced by the
exchange of bosonic dimers,

S[ψ, φ] =
∫ β

0
dτ

∫
d3x

( ∑
σ=↑,↓

ψ∗
σ (∂τ − ∇2 − μ)ψσ

+ νφ∗φ − h(φ∗ψ↑ψ↓ − φψ∗
↑ψ∗

↓ )

)
, (3)

where h is the Feshbach coupling between the fermions and
bosons and ν is the detuning of the dimer. On the mean-field
level, similarly to (2), the couplings and the detuning parame-
ter would be related by

λ = −h2

ν
. (4)

For the full relation on the quantum level, see Sec. III and
Appendix A, in particular (A1) and (A2).

It is readily shown that (3) reduces to (1) in the equation of
motion (EOM) of φ, also using (4). Solving (4) for the de-
tuning parameter on the full quantum level leads to (A2) in
Appendix A. Notably, while the four-fermion coupling λ gets
strongly affected by fluctuations, the Feshbach coupling h is

well approximated by its classical value, as these fluctuation
effects are encoded in ν. The latter is used to tune the (in-
verse) scattering length (for a detailed discussion of all these
properties see [28]). We also emphasize that the absence of
an explicit s-channel four-fermion scattering can be sustained
on the quantum level within the fRG approach with emergent
composites or rebosonization (for the respective conceptual
developments see [61–64] and for an application to the present
system see [65,66]). Heuristically, this approach may be
understood as a scale-dependent Hubbard-Stratonovich trans-
formation.

For a dilute ultracold Fermi gas, the effective range r0 of
the interaction is of the order of the inverse van der Waals
length lvdW and defines a physical momentum cutoff scale
� ∼ 1/r0, which is much larger than all relevant physical
scales (� 	 kF ). Throughout this work we work in the limit
of contact interactions with zero effective range such that �

can be sent to infinity in the end. For a more detailed discus-
sion of the renormalization scheme, refer to Appendix A.

The complex bosonic field φ(τ, x) was introduced as an
efficient book-keeping device for the s-channel interaction
between fermions of opposite spin. For example, bubble re-
summations of s-channel diagrams but also beyond bubble
resummations of t and u-channel contributions are encoded
in two-point function diagrams or corrections to the Yukawa
coupling. More importantly, emergent dynamical s-channel
dimer degrees of freedom are already taken care of as is their
condensation.

Hence, by tuning the dimensionless interaction strength
(kF a)−1, the system can be driven from a BCS-type su-
perfluid to a Bose-Einstein condensed state, allowing for
the exploration of the BCS-BEC crossover [44,67–69]. Here
the interaction strength is measured in terms of the Fermi
momentum

kF = (3π2n)1/3, TF = εF = k2
F , (5)

where n is the total density and we have also defined the
Fermi energy and temperature for later use. On the BCS side
of the crossover (kF a)−1 < 0, the bosonic dimer φ describes
weakly bound Cooper pairs. On the BEC side (kF a)−1 > 0,
φ describes tightly bound bosonic molecules. Bose-Einstein
condensation of the bosonic pairs, i.e., a nonvanishing ex-
pectation value of φ, leads to superfluidity in the system. In
the following we consider the normal phase of the BCS-BEC
crossover with a special focus on the strongly correlated uni-
tary regime at (kF a)−1 = 0.

III. SPECTRAL DYSON-SCHWINGER EQUATIONS

In this section we briefly introduce the coupled spectral
propagator DSEs which will be used in obtaining all numer-
ical and analytical results in this work. We also specify the
underlying approximation of the effective action.

A. Gap equations and the approximation of the effective action

Functional approaches, such as the DSEs and the fRG
or 2PI resummation schemes, provide exact nonperturbative
relations for correlation functions in terms of full propagators
and vertices (fRG) as well as the classical vertices (DSE

063311-2



SPECTRAL PROPERTIES AND OBSERVABLES IN … PHYSICAL REVIEW A 109, 063311 (2024)

+=

−=

FIG. 1. Fermion (solid line) and boson (dotted line) propagator
Dyson-Schwinger equation for balanced ultracold Fermi gases in the
normal phase. The notation is as defined in Fig. 2

and 2PI). For reviews, see [70] (DSEs) and [71–75] (fRG)
and [52] (2PI). The central object in these approaches is
the quantum effective action [�], which is the generating
functional of 1PI correlation functions, or the 2PI effective
action. Correlation functions of n fields are obtained by n
functional derivatives with respect to the mean fields, � =
(ψσ ,ψ∗

σ , φ, φ∗), where for the sake of notational simplicity
we have used the same expressions as for the classical fields.

The most important example is the full nonperturbative
two-point function, the full propagator G�, which is the piv-
otal building block of all diagrammatic functional approaches.
In terms of the 1PI effective action, it is given as the inverse of
the 1PI two-point function G� = [(2)]−1

��∗ , which is a matrix
inverse in field space. In the normal phase, the expectation
value of the bosonic field is zero, i.e., φ = 0, and the prop-
agator, if evaluated on the EOMs, is diagonal in field space.
Since we are dealing with a balanced system, the propagators
of the ↑ and ↓ species are the same and we are left with
only one fermion propagator Gψ↑ = Gψ↓ = Gψ and one boson
propagator Gφ . The gap equation or DSE for the inverse prop-
agator 

(2)
��∗ involves the classical inverse propagator S(2)

��∗ ,
whose fermionic and bosonic components are obtained from
the microscopic action (3),

S(2)
ψψ∗ (P) = −iωn + p2 − μ, S(2)

φφ∗ (Q) = ν. (6)

Here P = (ωn, p) and Q = (εn, q) with the fermionic (ωn) and
bosonic (εn) Matsubara frequencies, respectively,

ωn = (2n + 1)πT, εn = 2nπT . (7)

The coupled Dyson-Schwinger equations for the fermion and
boson propagator are depicted in Fig. 1, while the diagram-
matic notation is summarized in Fig. 2. The renormalized
fermion and boson gap equations are given by

G−1
ψ (P) = −iωn + p2 − μ + �ψ (P),

(8)

G−1
φ (Q) = − h2

8πa
− �φ (Q),

with the renormalized fermionic and bosonic self-energies
�ψ (P) and �φ (Q), respectively. For more details on the spec-
tral renormalization procedure see Appendix A.

S(n) =

n

Γ(n) =

n

G =, ,

FIG. 2. Diagrammatic notation used throughout this work. Lines
stand for full propagators, small dots stand for classical vertices, and
larger dots stand for full vertices.

Now we specify the approximation of the effective action
used for the following computations. As already discussed
below (4), the approximation of a classical constant Yukawa
coupling h is working well as the fluctuations of the four-
fermion interaction are well captured by that in the detuning
parameter. The latter is part of the full propagator and hence
will be accessed here. This approximation is readily lifted by
also solving the spectral DSE for the Yukawa coupling and the
remnant four-fermion interaction, which will be considered
elsewhere. This leads us to the approximation of the renor-
malized finite effective action

[ψ, φ] =
∫ β

0
dτ

∫
d3x[ψ∗

σ (∂τ − ∇2 − μ + �ψ )ψσ

+ φ∗(ν − �φ )φ − h(φ∗ψ↑ψ↓ − φψ∗
↑ψ∗

↓ )], (9)

where the spin sum over σ =↑,↓ is implied. Equation (9)
includes the full frequency- and momentum-dependent
fermionic and bosonic propagator and keeps the classical in-
teraction part. This approximation incorporates the s-channel
bubble resummation with full fermionic propagators in �ψ as
the bosonic dimer propagator simply constitutes the bubble
chain.

Using (3) and (9) on both sides of the gap equations (8)
leads us to the diagrammatic expression for the nonpertur-
bative self-consistent and renormalized self-energies at finite
temperature,

�φ (Q) = h2
∫

p

⎛
⎝T

∑
ωm

Gψ (P)Gψ (Q − P) − 1

2p2

⎞
⎠,

�ψ (P) = h2
∫

q
T

∑
εm

Gφ (Q)Gψ (Q − P), (10)

with ∫
q

=
∫

d3q

(2π )3
, (11)

and similarly for the integral over p. The subtraction with
−1/2p2 on the right-hand side of the equation for �φ in (10)
arises from the spectral renormalization. Equation (10) is
given by Fig. 1 with two classical vertices in each diagram.
Note also that in the fermionic self-energy �ψ (P), the sum
is over bosonic Matsubara frequencies εm = 2mπT , whereas
in the bosonic self-energy �φ (Q), the sum is over fermionic
Matsubara frequencies ωm = (2m + 1)πT .

Evidently, the present truncation with (3) = S(3) in the
gap equations, i.e., (10) derived from (9), is equivalent to
an s-channel bubble resummation, also known as the self-
consistent T -matrix approximation [22,38,76]. It has been
argued in the literature that the inclusion of self-consistency
without the simultaneous inclusion of vertex corrections
may lead to incorrect results for dynamical quantities, e.g.,
the violation of the conservation laws for energy and fur-
ther conserved quantities can lead to secular behavior in a
nonequilibrium evolution. We note that the present functional
approach can be generalized straightforwardly by taking the
full three-point function (3) into account, as has been done
in [49,53] for a scalar theory. However, this topic requires a
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dedicated study, which goes beyond the scope of the present
work.

B. Spectral representation

The spectral representation of the propagator is at the core
of the spectral functional approach developed in [49]. In the
present work we employ the Källén-Lehmann representation
of the full propagators [38,77,78]

G(ωn, p) =
∫ ∞

−∞
dλ

ρ(λ, p)

−iωn + λ
, (12)

where ρ(λ, p) is the frequency- and momentum-dependent
spectral function. In this way, the spectral function acts as
a linear response function of the propagator, encoding the
energy spectrum of the theory. Equation (12) leads to the
inverse relation between the spectral function and the retarded
propagator

ρ(ω, p) = 1

π
ImGR(ω, p), (13)

where GR(ω, p) = G( − i(ω + i0+), p) and ω is now a real
frequency. Note that (13) always defines the spectral function,
related to the statistical function by the fluctuation-dissipation
theorem, whereas (12) only holds true for fields that define
physical asymptotic states. While this is true in the present ul-
tracold gas, it is far from obvious for theories defined in terms
of unphysical degrees of freedom such as gauge fields (for
more details see [55–57]). In summary, the present ultracold
gas is optimally suited for application of spectral functional
approaches.

The existence of a spectral representation restricts all non-
analyticities of the propagator to lie on the real frequency and
momentum axis. The fermion spectral function satisfies the
sum rule ∫ ∞

−∞
dλ ρψ (λ, p) = 1. (14)

The fermionic spectral functions satisfy ρψ (ω, p) � 0. In our
approach, the frequency and momentum dependence of the
bosonic inverse propagator is only given by the self-energy
[see Eq. (8)]. Accordingly, its spectral function is not that of a
physical state and is not normalized to unity like the fermionic
one. Moreover, the respective spectral function is not positive
semidefinite but satisfies sgn(ω)ρφ (ω, p) � 0 [78]. Note that
the negative sign of the boson spectral function for negative
frequencies guarantees the positivity of the bosonic momen-
tum distribution function [47].

Using the spectral representation (12) for the fermion and
boson propagator, the self-energies can be written in terms of
spectral loop integrals. We find for the bosonic self-energy

�φ (εn, q) = h2
∫

p

(∫
λ1,λ2

ρψ (λ1, p)ρψ (λ2, q − p)

× T
∑
ωm

1

iωm − λ1

1

i(εn − ωm) − λ2
− 1

2p2

)
.

(15)

The fermionic self-energy takes the form

�ψ (ωn, p) = h2
∫

λ1,λ2,q
ρφ (λ1, q)ρψ (λ2, q − p)

× T
∑
εm

1

iεm − λ1

1

i(εm − ωn) − λ2
. (16)

In both (15) and (16) we have used (11) and∫
λ

=
∫ ∞

−∞
dλ. (17)

Importantly, the Matsubara sum in (16) and (15) can be carried
out analytically. This leaves us with symbolic expressions
in terms of the argument εn and ωn for both self-energies
that can be evaluated at any complex frequency. The explicit
spectral integral expressions for �ψ and �φ can be found in
Appendixes B and C.

We close this section with a brief discussion of the ex-
istence of a spectral representation and its relation to the
self-consistent solution of the gap equations above. Here self-
consistent refers to the use of the same spectral function on
both sides of the gap equation, hence providing a solution
of the gap equation: If the iterative solution of the self-
consistent coupled set of spectral gap equations, described in
Appendix E, converges, it entails already the existence of the
spectral representation for fermionic atoms and dimers in the
given approximation. This is discussed further in Appendix D,
where we also provide additional numerical evidence by com-
paring the spectral representation to the diagrammatic results
at imaginary frequencies for both fermion and dimer propaga-
tors. A direct consequence of this self-consistent solution of
the gap equations is the existence of a spectral representation
for the bosonic dimer in the current approximation (a related
discussion can be also found in [42,44,46]). Let us emphasize
that the notion of self-consistency in the T -matrix approach
refers to a diagrammatic self-consistency. Note that in general
these two notions do not agree, but they agree within the
approximation used in the present work.

C. Evaluation at real frequencies

The regularized and coupled DSEs in Eq. (8) can be eval-
uated for arbitrary complex frequencies. For the extraction of
the spectral functions with (13), we choose ωn = −i(ω + iε)
with ε → 0+. The limit ε → 0+ is performed analytically
using the relation

1

x ± i0+ = P

(
1

x

)
∓ iπδ(x), (18)

where P(1/x) denotes the principal value of 1/x. This allows
us to write the imaginary part of the retarded self-energies as

Im�R
φ (ω, q) = πh2

∫
λ,p

ρψ (ω − λ, p)ρψ (λ, q − p)

× [1 − nF (ω − λ) − nF (λ)], (19)

Im�R
ψ (ω, p) = πh2

∫
λ,q

ρφ (ω + λ, q)ρψ (λ, q − p)

× [−nB(ω + λ) − nF (λ)]. (20)
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FIG. 3. Results for the fermionic spectral function ρψ (ω, p)εF for T/TF = 0.56 at different interaction strengths (a) (kF a)−1 = −0.5,
BCS regime, βμ = 0.5; (b) (kF a)−1 = 0, unitarity, βμ = 0.13; and (c) (kF a)−1 = 0.5, BEC regime, βμ = −0.54. Respective results for the
imaginary-time propagator Gψ (ωn, 0)εF at the same interaction strengths are shown in Fig. 13.

Here we have introduced the Fermi-Dirac distribution nF and
Bose-Einstein distribution nB with

nF (x) = 1

ex/T + 1
, nB(x) = 1

ex/T − 1
. (21)

Detailed derivations of the above formulas are deferred to
Appendixes B and C. Note that the pole of nB(ω + λ) in the
fermion self-energy is exactly canceled by the zero crossing
of the boson spectral function ρφ (see Sec. III B).

From the imaginary part of the fermion self-energy, e.g.,
the real part can be obtained via the Kramers-Kronig relation

Re�R
ψ (ω, p) = 1

π
P

∫
λ

Im�R
ψ (λ, p)

λ − ω
. (22)

For the real part of the boson self-energy, the renormalization
of ν has to be taken into account. The problematic vacuum
part can be treated analytically (see Appendix E). This set of
equations allows for an iterative calculation of the retarded
self-energies and therefore a direct determination of the spec-
tral functions which are presented in the next section. For
a detailed discussion of the numerical implementation see
Appendix E.

IV. RESULTS

In this section we discuss the numerical results for the
fully-self-consistent spectral functions as well as their use for
the computation of the density equation of state, the Tan con-
tact, and ejection rf spectra at unitarity. In Sec. IV A we focus
on the results obtained in real frequencies. In Sec. IV B we use
the spectral functions from Sec. IV A to compute rf spectra
in comparison to experimental data. Finally, in Sec. IV C we
compute the equation of state and use the high-momentum
dependence of the density to extract the Tan contact.

A. Spectral functions

We present numerical results for the self-consistent spec-
tral functions of the spin-balanced Fermi gas in the normal
phase at different scattering lengths and in particular at
unitarity. Physical properties of the single-particle fermion
spectral function have been discussed extensively in the lit-
erature [33,38,79]. In this work we also discuss the bosonic
two-particle (dimer) spectral function, which has not received

much attention in the past. For details on the numerical imple-
mentation, we refer the reader to Appendix E.

Figure 3 shows results for the full frequency- and
momentum-dependent fermion spectral function ρψ and
Fig. 4 shows the corresponding bosonic dimer spectral func-
tions ρφ for different interaction strengths 1/kF a, with the
Fermi momentum kF defined in (5). Furthermore, Fig. 5
shows results for the fermionic spectral function ρψ at p = 0
for the unitary Fermi gas at different temperatures, which are
used for the computation of the rf spectra in Sec. IV B. In
Figs. 3–5 the frequency ω and momentum p are measured in
the Fermi energy εF and kF , respectively, and the fermionic
(bosonic) spectral functions have units of ε−1

F (ε−1/2
F ). We state

all results in dimensionless form. Note that the bosonic dimer
spectral function is not normalized and depends on the choice
of the Feshbach coupling h. This is connected to it being
a pure interaction exchange boson and not a real particle.
To eliminate the h dependence, we multiply ρφ by h2/8π

since h2Gφ/8π is the relevant quantity, which is related to the
scattering amplitude (see Appendix A).

Our results are computed directly in real time and agree
qualitatively with the reconstruction results from previous
works for the fermion spectral function [38]. It is well known
that numerical reconstruction problems are ill-conditioned or
at least have a high condition number. Moreover, the respec-
tive ambiguities are specifically large in the low-frequency
regime at finite temperature. The computation of dynamical
properties such as the shear viscosity requires a precise deter-
mination of the low-frequency regime and its transport peaks,
which can be achieved with our spectral functional approach.
We envisage a two-step process with a direct use of Euclidean
benchmark results for a quality check of the direct spectral
computation as well as using its structural low-frequency
properties as an inductive bias for spectral reconstructions.
This allows for direct access to the spectral properties of ultra-
cold gases while maintaining the quantitative thermodynamic
results of imaginary-time approaches. In summary, this fully
justifies the increased numerical costs.

The results for the bosonic dimer spectral function encode
important information about the physics of the ultracold Fermi
gas and are consistent with previous studies. First, we observe
a very broad peak structure for weak attractive interactions
in the BCS regime and a very sharp peak structure with
thermal broadening for strong attractive interactions in the
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FIG. 4. Results for the bosonic dimer spectral function h2ρφ (ω, p)
√

εF /(8π ) for T/TF = 0.56 at different interaction strengths
(a) (kF a)−1 = −0.5, BCS regime, βμ = 0.5; (b) (kF a)−1 = 0, unitarity, βμ = 0.13; and (c) (kF a)−1 = 0.5, BEC regime, βμ = −0.54.
Respective results for the imaginary-time propagator h2Gφ (εn, 0)

√
εF at the same interaction strengths are shown in Fig. 14.

BEC regime. The latter property signals the tightly bound
molecules on the BEC side. On this side of the BCS-BEC
phase diagram at 1/kF a = 0.5, the boson spectral function is
very sharp and the system can be described as a normal Bose
liquid. On the BCS side of the crossover at 1/kF a = −0.5,
the fermion spectral function is sharper and the system is
described as a normal Fermi liquid.

Additionally, the boson spectral function reveals crucial
information about the critical region of the phase transition
to the superfluid state. The onset of superfluidity is marked
by the divergence of the boson propagator at zero frequency
and momentum G−1

φ (0, 0) = 0. This property is known as the
Thouless criterion [80]. Thus, the closer and sharper the peak
gets at zero frequency and momentum, the closer the system
is to the phase transition, until the spectral function eventually
diverges at the critical temperature. We refrain from a respec-
tive analysis and only present results in the normal phase.

Computations at and below the phase transition are be-
yond the scope of the present paper and will be considered
elsewhere. Note, however, that respective work in the spec-
tral functional approach has already been done in relativistic
systems with both the DSE and the fRG [49,53,54]. The
approximations there go beyond that used in the present work.
In [49,53,54], the full s-channel resummation of the four-point

FIG. 5. Results for the fermionic spectral function ρψ (ω, 0)εF

for the unitary Fermi gas at different temperatures, which are used
for the computation of the rf spectra.

function was considered, as well as additional diagrams that
arise in the presence of a condensate φ0. In contrast to the
Monte Carlo (MC) integration routine used here, we used
efficient integration routines in [49,53,54], aiming at optimal
convergence for low-dimensional integrals. The use of adap-
tive MC integrators in the present work has to be understood
as a test case for higher-dimensional computations as will
arise for nontrivial vertex approximations beyond mere sums
of momentum channels. This may be relevant in the presence
of competing order effects.

In summary, we emphasize that the present spectral
functional approach allows for a very efficient numerical
implementation. Indeed, one of the reasons for setting up
the spectral functional approach was its numerical efficiency,
which by now has been proven in abundance in [49,50,53–58].
These successful tests include its convergence in coupled sets
of integral equations, as well as the evaluation of bound-state
properties in the broken phase as well as through the phase
transition from the symmetric to the broken phase. Specif-
ically, self-consistent real-time computations in the broken
phase have so far solely been done in the present approach
and standard Bethe-Salpeter-type computations. We add that,
given the structural similarities of the approaches used in [81],
as well as [82], to the spectral functional approach, it should
be possible to extend the former approaches towards the bro-
ken regime along the lines of [49,53,54].

B. Radio-frequency spectroscopy

Now we use our numerical results for the spectral functions
to compute experimentally measurable rf spectra [83–85]. We
compare the results from our approach, obtained for the spin-
balanced Fermi gas at unitarity, with recent experimental data
from [7]. Specifically, we apply the relation

I (ω) =
∫

q
ρψ (εq − ω − μ, q)nF (εq − ω − μ) (23)

for the computation of rf spectra I (ω) from the fermion spec-
tral functions ρψ (see [83,86]). In Eq. (23), εq = q2 is the
classical fermion dispersion.

Note that the chemical potential μ(T ) is temperature de-
pendent and has to be determined self-consistently from the
density equation (25) below (see also [19,87–90]). More ex-
plicitly, the number density n = 1/3π2 is fixed by the choice
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FIG. 6. Calculated ejection rf spectra I (ω) for the spin-balanced
unitary Fermi gas as a function of the reduced temperature T/TF .
Results of this work (solid lines) are compared to experimental data
from [7] (circles). A Fourier broadening of 0.1εF to account for the
finite experimental resolution and a right shift by 0.09εF to account
for the final-state interaction were applied.

kF = 1, and temperature is measured in units of TF . Conse-
quently, the chemical potential μ(T ) has to be chosen such
that the density remains constant. One readily observes that
the rf spectrum is normalized to the total density n [88],

n = 2
∫

λ

I (λ). (24)

Figure 6 shows our results in comparison with the experimen-
tal data from [7]. Apart from adjusting the peak heights, no
fitting parameters have been used. In order to account for the
finite rectangular rf pulse duration and thus a finite experi-
mental resolution, a Fourier broadening of 0.1εF has been
applied. Additionally, the curves have been right-shifted by an
amount of 0.09εF to compensate for residual final-state inter-
actions [48]. Even after taking into account all these possible
factors, the calculated rf spectra do not fit the experimental
data for higher temperatures very well. This is also apparent
in the comparison of the peak position and full width as shown
in Fig. 7.

This discrepancy was already observed in [48] for the
case of a highly-spin-imbalanced unitary Fermi gas with the
non-self-consistent T -matrix approach and persists in the very
recent update in [91]. It was argued in [48] that the misalign-
ment may be caused by the missing vertex corrections, which
may also be relevant for pseudogap effects above Tc [92].

FIG. 7. Peak positions (Ep = −ωp) and full width at half maxi-
mum  as a function of the reduced temperature T/TF . The vertical
dashed line marks the transition to the superfluid phase.

Another possible explanation might be the absence of a trap
average (see, e.g., [93]).

C. Equation of state and Tan contact

Finally, we use the present results for the spectral functions
to compute the equation of state for the unitary Fermi gas.
Thermodynamic quantities, such as the total particle density,
can be calculated precisely in imaginary frequencies without
the need of analytic continuation. For this reason, it is a good
way to validate the new spectral approach against well-tested
and robust imaginary-time calculations [19,94–99]. The to-
tal density n of fermions at finite chemical potential μ and
temperature T can be calculated from the spectral function
via [90]

n = 2
∫

p
T

∑
ωn

Gψ (ωn, p)eiωn0+ = 2
∫

p
n(p), (25)

where the factor 2 accounts for both fermion species and n(p)
is the momentum distribution function

n(p) =
∫

λ

ρψ (λ, p)nF (λ). (26)

For recent precision computations with functional approaches
in the full phase structure of ultracold gases, see [100].
The high-momentum tail of n(p) is related to the Tan con-
tact [101,102]

lim
p→∞ n(p) = C

p4
, (27)
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FIG. 8. Large-p behavior of the momentum density n(p) of the
balanced unitary Fermi gas at T/TF = 0.9 (βμ = −0.5). The 1/p4

tail for p 	 kF is clearly visible and the contact C can be determined
from the fit. Lattice data are from [103]; see also [94].

where p = ‖p‖ and C is the contact parameter that can be
determined from the fit. For a different computation in the
DSE approach, see [25]. We have compared the present
results for the momentum density n(p) and the total den-
sity n with lattice data generated for this purpose with a
Metropolis algorithm [103]. For results in the literature also
see, e.g., [94,96,98], which use simulations with complex
Langevin equations. The results for n(p) in the present spec-
tral DSE approach compare well to the benchmark results
from the lattice simulation [103]. Moreover, in Fig. 8 we also
show a fit to the high-momentum asymptotics and we deduce
that the asymptotic 1/p4 tail is approached for

‖p‖ � pas, pas = 8kF . (28)

The Tan contact C is the slope of the asymptotics and, within
the present approach, its value for T/TF = 0.9 (βμ = −0.5)
is given by

C/k4
F ≈ 0.084. (29)

Equation (29) and further values for the Tan contact C(βμ) for
other βμ are shown in Fig. 9 and will be used for the following

FIG. 9. Universal contact Cλ4
T , where λT = √

4πβ is the thermal
wavelength, of the spin-balanced unitary Fermi gas as a function of
dimensionless chemical potential βμ. Our results in real frequencies
compare well with those of the Luttinger-Ward [19,95] and bold
diagrammatic Monte Carlo [60] approaches.

FIG. 10. Normalized density n/n0 of the spin-balanced unitary
Fermi gas as a function of dimensionless chemical potential βμ.
Results directly obtained in real frequencies (this work) are show in
comparison with experimental data from Ref. [16], the lattice [103]
(see also [96,98]), and the Luttinger-Ward approach [19,95].

determination of the density equation of state, which is an
additional benchmark result: Figure 10 shows the results for
the normalized density n/n0 as a function of dimensionless
chemical potential βμ in comparison with other approaches.
The density n0 of the noninteracting Fermi gas is given by

n0 = 2
∫

p
nF (p2 − μ) = −2 Li3/2(−eβμ)/λ3

T , (30)

where λT = √
4π/T is the thermal wavelength and Li3/2 is a

polylogarithmic function [104].
The computation of the total density (25) through the spec-

tral function requires its high-momentum tail. For an efficient
computation we split the momentum integral in (25) into
parts with radial momenta smaller and larger than pas defined
in (28),

n =
∑
±

�n±
pas

, �n±
pas

= 2
∫

‖p‖≷pas

n(p). (31)

The low-momentum part �n−
pas

is computed directly from the
spectral function, while we use the results for the asymp-
totic behavior of n(p) for the high-momentum part �n+

pas
:

Equation (27) provides us with an analytic form of the high-
momentum distribution and we obtain

�n+
pas

= 2
∫

‖p‖>pas

C

p4
= C

π2 pas
. (32)

Here we have used pas = 10kF in the explicit computation.
Our real-time method reproduces the results of the well-tested
Luttinger-Ward approach [19,95].

V. CONCLUSION

In the present work we have extended the spectral
functional approach [49] for the nonperturbative and self-
consistent computation of spectral properties in nonrelativistic
systems. The approach was used for the direct real-time
computation of fermionic single-particle and bosonic dimer
spectral functions in the normal phase of a three-dimensional
ultracold gas for a wide range of scattering lengths. The
present results were benchmarked with observables in the
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unitary limit of a spin-balanced Fermi gas: the equation of
state, the Tan contact, and ejection rf spectra in comparison to
other theoretical results and the experiment.

The present approach opens the path towards a wide range
of applications, including transport properties and the ab ini-
tio calculation of spectral functions in the superfluid phase
of ultracold Fermi gases [34,46,105], and through the phase
transition, including the evaluation of critical properties of the
system. Its potential for computations in the broken phase of
quantum systems as well as in the critical regime has already
been demonstrated in relativistic systems and the respective
computational advances can directly be applied here. Further-
more, the present approach can also be readily applied to
general spin and mass imbalance to study polaron physics
or Fermi-Bose mixtures [106–108], where even the bosonic
dimer spectral function can be measured using molecular in-
jection spectroscopy [109]. Finally, we envisage the inclusion
of vertex corrections or other classes of diagrams in system-
atic extensions towards full quantitative precision.

Note added. Recently, two works with complementary
approaches for real-time computations on the Keldysh con-
tour were published [81,82]. The respective results compare
well with our results, and in combination this provides a
systematic error control in particular within improvements.
Furthermore, another independent work on the computation
of self-consistent spectral functions of Fermi polarons was put
forth very recently [91].
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APPENDIX A: RENORMALIZATION

The four-fermion model with the action (1) or equivalently
its bosonized version with the action (3) requires regulariza-
tion and renormalization. While either version of the present
model has a physical cutoff given by the van der Waals length
[see also the discussion below (4)], the respective standard
renormalization procedure is accommodated in the present
nonperturbative spectral approach with spectral renormaliza-
tion (see [49,51]).

In the present approximation the renormalization proce-
dure is easily implemented, following the standard renor-
malization procedure (see, e.g., [3,39,110]). To begin with,
the physical renormalization condition can be extracted by
the quantum analog of the classical relation between the
two-body scattering length a in the vacuum and the full two-
to-two scattering coupling at large distances λ. In the present

approximation this is simply the bubble-resummed four-
fermion interaction and (2) turns into

−8πa = h2Gφ (0, 0). (A1)

This can be written in terms of the full physical detuning
parameter

ν = G−1
φ (0, 0) = 

(2)
φφ∗ (0, 0). (A2)

Equation (A2) is the quantum analog of the classical rela-
tion (4) and constitutes a renormalization condition of the
dimer gap equation. A renormalization at vanishing momen-
tum and frequency in vacuum yields

�φ (0, 0) = 0, (A3)

which marks the detuning parameter in the effective ac-
tion (9) as the physical one in (A2). The renormalization
condition (A3) yields the renormalized boson DSE

G−1
φ (εn, q) = − h2

8πa

− h2
∫

p

⎛
⎝T

∑
ωm

Gψ (P)Gψ (Q − P) − 1

2p2

⎞
⎠.

(A4)

We have used the T independence of h in the present approx-
imation together with the fact that the fermion propagator is
classical in the present approximation (see [24,39]). In this
approximation the renormalized vacuum result for �φ (Q) is
readily obtained from (A4) by evaluating the self-energy loop
integral with the classical fermion propagators

�φ (εn, p) = h2
∫

q

(
1

−iεn + εq + εp−q
− 1

2εq

)

= − h2

8π

√
− iεn

2
+ p2

4
(A5)

for general complex frequencies εn ∈ C. This concludes our
discussion of the renormalization of the bosonized theory
within the present approximation.

APPENDIX B: BOSON SELF-ENERGY CALCULATION

In this Appendix we discuss the explicit computations and
analytic results for the boson self-energy. Starting from (15),
we define

�φ (εn, p) = h2
∫

q

( ∫
λ1,λ2

ρψ (λ1, q)ρψ (λ2, p − q)

× I (εn, λ1, λ2) − 1

2q2

)
, (B1)

with the analytic sum over fermionic Matsubara frequencies
ωm = (2m + 1)πT ,

I (εn, λ1, λ2) = T
∑
ωm

1

iωm − λ1

1

i(εn − ωm) − λ2

= 1 − nF (λ1) − nF (λ2)

−iεn + λ1 + λ2
. (B2)
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Performing the analytic continuation iεn → ω + i0+ and tak-
ing the imaginary part, we end up with Eq. (19).

For the first iteration, analytic expressions for the self-
energy at finite and zero temperature can be derived. Inserting
the classical fermion spectral function ρψ (λ, p) = δ(λ − p2 +
μ), we obtain the well-known expression for the retarded
boson self-energy [42,67,111]

�R
φ (ω, p)=h2

∫
q

(
1 − nF (εq − μ) − nF (εp−q − μ)

−ω + εq + εp−q − 2μ − i0+ − 1

2εq

)
,

(B3)

where εp = p2 is the classical momentum dispersion. The
boson self-energy can be separated into a temperature-
independent part and a temperature-dependent part,

�R
φ = �R,0

φ + �R,T
φ . (B4)

After the shift q → q + p/2, the angular integration is trivial,
and we obtain the finite expression for the vacuum part

�R,0
φ (ω, p) =

∫
q

(
h2

−ω + εq + εp−q − 2μ − i0+ − h2

2εq

)

= − h2

8π

√
−y − i0+, (B5)

where we have defined y = ω/2 − p2/4 + μ. The
temperature-dependent part can be obtained analogously.
We note that the contribution from both Fermi distributions is
identical in the spin-balanced case and find

�R,T
φ (ω, p) = −h2

∫
q

nF (εq − μ) + nF (εp−q − μ)

−ω + εq + εp−q − 2μ − i0+

= − h2

4π2

∫ ∞

0

2χ (q)q2dq

q2 − y − i0+ , (B6)

with the angle-integrated function

χ (q) =
∫ 1

−1

dx

2
nF ((q ± p/2)2 − μ) =

⎧⎨
⎩

nF (q2 − μ) for p = 0

T
2pq ln

( nF (μ−q2
+ )

nF (μ−q2− )

)
for p �= 0,

(B7)

with q± = q ± p/2. Here x = cos(θpq) and θpq is the angle between the vectors p and q. Note that this function yields a nonzero
contribution in the vacuum for μ > 0. In the limit T → 0, the Fermi functions nF (x) → θ (−x) and the expression simplifies to

χT =0(q) =
{

θ (μ − q2) for p = 0
θ (μ−q2

− )
2pq [μ − q2

− − (μ − q2
+)θ (μ − q2

+)] for p �= 0.
(B8)

The real and imaginary parts can be obtained analytically by using

1

x − i0+ = P

(
1

x

)
+ iπδ(x). (B9)

There are the following two cases. If y < 0, the integrals for the real part are well defined and Im�R,T
φ = 0. If y � 0, the

imaginary part is given analytically by

Im�R,T
φ (ω, p) = − h2

4π

∫ ∞

0
dq 2χ (q)q2δ(q2 − y) = − 1

4π

√
yχ (

√
y) (B10)

and the real part Re�R,T
φ can be obtained numerically via a one-dimensional principal value integral (see [48]).

For completeness, we also give the analytic expressions for the real part at T = 0. Since the contributions from both Fermi
functions are identical, we obtain, for Re�R,T =0

φ at zero temperature (μ > 0),

Re�R,T =0
φ (ω, p) = h2

4π2

[
√

μ − y − μ + p2

4

2p
ln

(
y − ξ 2

+
y − ξ 2−

)
−

√
|y| ×

{
arctanh

(
ξ−√

y

) + arctanh
(

ξ+√
y

)
for y � 0

arctan
(

ξ−√|y|
) + arctan

(
ξ+√|y|

)
for y < 0

]
, (B11)

with ξ± = √
μ ± p/2. The p = 0 limit is given by

Re�R,T =0
φ (ω, 0) = h2

2π2
×

⎧⎨
⎩

√
μ − √

y arctanh
(√

μ

y

)
for y � 0

√
μ − √|y| arctan

(√
μ

|y|
)

for y < 0.
(B12)

The contribution from the next iterations has to be computed
numerically and gives rise to a finite correction on top of the
analytic result. For more details on the numerical treatment
see Appendix E. Finally, an exemplary plot of the fully con-
verged boson self-energy �R

φ (ω, p) is shown in Fig. 11.

APPENDIX C: FERMION SELF-ENERGY CALCULATION

For the fermion self-energy, the Matsubara sum can also
be calculated analytically. However, there is no analytic result
for the first iteration since the classical boson spectral function
is not defined. Therefore, the fermion self-energy has to be
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FIG. 11. (a) Real and (b) imaginary parts of the retarded boson self-energy �R
φ (ω, p) for the balanced Fermi gas at unitarity and T/TF =

0.56 (βμ = 0.13).

computed numerically. Starting from Eq. (16), we define

�ψ (ωn, p) =
∫

λ1,λ2,q
ρφ (λ1, q)ρψ (λ2, p − q)I (ωn, λ1, λ2),

(C1)

with the analytic Matsubara sum over bosonic frequencies
εm = 2mπT ,

I (ωn, λ1, λ2) = T
∑
εm

1

iεm − λ1

1

i(εm − ωn) − λ2

= −nB(λ1) − nF (λ2)

−iωn + λ1 − λ2
. (C2)

Performing the analytic continuation iωn → ω + i0+ and tak-
ing the imaginary part, we recover Eq. (20). Note that the pole
in nB(λ1) at λ1 = 0 is exactly canceled by the zero transition
of ρφ (λ1).

For the numerical computation of the fermion self-energy,
the high-frequency tails contribute significantly. Therefore,
we adopt a semianalytic treatment, which is discussed in
Appendix D and improves the determination of the real part
via Kramers-Kronig substantially. An exemplary plot of the
fully converged fermion self-energy �R

ψ (ω, p) is shown in
Fig. 12.

APPENDIX D: EXISTENCE OF THE SPECTRAL
REPRESENTATION

While the propagator, or two-point function, of the
fermionic atom field is that of a physical particle and hence
has a spectral representation, such a representation may not
hold for the composite bosonic dimer field. Moreover, even
in the case of the existence of spectral representations for
both fields, they may not be present in given approximations.
Within the present spectral functional DSE approach, both
the absence of a spectral representation and its failure in a
given approximation are signaled by a lack of convergence
of the iterative procedure underlying the solution of the DSE.
This has been discussed in detail in [56] using the example
of Yang-Mills theory. In turn, if such a convergent solution of
the coupled system of DSEs for the spectral functions ρψ/φ

exists, this proves the existence of the spectral representation
for both fields in the given approximation: By definition, the
diagrammatic part carries the correct complex structure un-
derlying the spectral representation, and the iterative solution
of the system of spectral gap equations only converges if (12)
with (13) provides the full propagator.

Here we demonstrate explicitly that the spectral represen-
tation of the propagators, evaluated at imaginary frequencies,
agrees with the diagrammatic solution of the imaginary-
time gap equation: In Figs. 13 and 14 we compare the full

FIG. 12. (a) Real and (b) imaginary parts of the retarded fermion self-energy �R
ψ (ω, p) for the balanced Fermi gas at unitarity and T/TF =

0.56 (βμ = 0.13).
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(a) (b) (c)

FIG. 13. Comparison of the full fermionic imaginary-time propagator Gψ (ωn, 0)εF for T/TF = 0.56 at different interaction strengths
(a) (kF a)−1 = −0.5, (b) (kF a)−1 = 0, and (c) (kF a)−1 = 0.5, obtained from the spectral representation (12) and directly from the gap
equation (8) at imaginary frequencies. Respective results for the spectral function ρψ (ω, p)εF at the same interaction strengths are shown
in Fig. 3.

fermionic and bosonic imaginary-time propagators, respec-
tively, obtained from the spectral representation in Eq. (12)
(solid lines) with that obtained within a direct evaluation of
the gap equation in Eq. (8) at imaginary frequencies (square
data points). The propagators from these two procedures agree
within the numerical errors and this agreement also extends to
finite momenta (see Figs. 15 and 16).

APPENDIX E: NUMERICAL IMPLEMENTATION

The numerical iteration is done with a standard iteration
procedure for integral equations. The first iteration step is
done for the bosonic propagator and only involves the clas-
sical fermion propagators. The following one for the fermion
propagator includes the results of the first step for the bosonic
propagator and again uses the classical fermion propagator.
All the remaining ones use the fully numerical results from the
previous steps. The respective workflow can be summarized
as follows.

(1) First iteration of the boson propagator. Start with the
analytic expression for Im�R

φ and calculate Re�R
φ on a finite

grid. To simplify the calculation, treat the divergent vacuum
part analytically (discussed below). Choose a grid size large
enough such that the numerical corrections are small. This can
be quantified in dependence on the temperature.

(2) First iteration of the fermion propagator. Take the clas-
sical fermion spectral function (δ peak) and the semianalytic

boson spectral function from the first iteration and calculate
Im�R

ψ with (20) on a finite grid. From this, obtain Re�R
ψ as

described below.
(3) Further iterations of the fermion propagator. Take the

numerical spectral functions for the fermion and boson and
calculate the self-energy as in step 2.

(4) Further iterations of the boson propagator. Take numer-
ical spectral functions for the fermions and calculate Im�R

φ

on a finite grid. Compute the difference from the non-self-
consistent result and obtain the real part. Outside the grid, glue
smoothly to the semianalytical non-self-consistent result.

For the numerical calculation of the two-dimensional func-
tions, an adaptive method is used. The sampling points are
chosen automatically based on the functional form. Fewer
samples are taken in slowly varying regions and more samples
are taken in faster varying regions. Additionally, the calcula-
tion of these sampling points can be parallelized over multiple
cores. The resulting sampling points are then linearly interpo-
lated. It is useful to simplify the interpolation by transforming
the functions onto the quadratic dispersion relation. For the
bosonic self-energy, this step can significantly improve the
resolution of sharp edges in the function. For the fermionic
self-energy, it can additionally help to ensure a large enough
distance of the grid boundary to the main peak such that
asymptotic behavior is guaranteed for all momenta.

The numerical integration of the three-dimensional self-
energy loop integrals is performed mainly with an adaptive

(a) (b) (c)

FIG. 14. Comparison of the full bosonic imaginary-time propagator h2Gφ (εn, 0)
√

εF for T/TF = 0.56 at different interaction strengths
(a) (kF a)−1 = −0.5, (b) (kF a)−1 = 0, and (c) (kF a)−1 = 0.5, obtained from the spectral representation (12) and directly from the gap
equation (8) at imaginary frequencies. Respective results for the spectral function h2ρφ (ω, p)

√
εF /8π at the same interaction strengths are

shown in Fig. 4.
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FIG. 15. Full fermionic imaginary-time propagator
Gψ (ωn, 2kF )εF for T/TF = 0.56 at momentum ‖p‖ = 2kF and
unitarity, obtained from the spectral representation (12) and directly
from the gap equation (8) at imaginary frequencies.

Monte Carlo method. This allows for maximal flexibility
when dealing with highly peaked integrands in a multidimen-
sional space and can be generalized easily towards further
classes of diagrams. However, it comes with the downside of
a long runtime in comparison to standard adaptive routines in
low dimensions like here. For this specific case, a different
adaptive integration routine using sparse grids is far more
efficient. The one-dimensional principal value integral for the
real part of the self-energy is computed efficiently using an
adaptive quadrature integration.

For the representation of the numerical self-energy on the
finite grid, an adaptive grid is chosen for the imaginary and
real parts, separately. Typical boundaries in frequency are
ω = [−200, 200]εF and in momentum p = [0, 10]kF . Ap-
proximately 10.000–20.000 grid points are needed to obtain
stable numerical results.

FIG. 16. Full bosonic imaginary-time propagator
h2Gφ (εn, 2kF )

√
εF for T/TF = 0.56 at momentum ‖p‖ = 2kF

and unitarity, obtained from the spectral representation (12) and
directly from the gap equation (8) at imaginary frequencies.

1. Boson spectral function

In this section we detail the numerical calculation and
representation of the boson spectral function ρφ . Since the
vacuum part of the bosonic self-energy is problematic, the
numerical procedure requires suitable subtraction schemes
and analytic treatment.

As seen above, the vacuum contribution to the boson self-
energy is given by

�0
φ (εn, p) = − h2

8π

√
− iεn

2
+ p2

4
− μ. (E1)

With (E1), the (retarded) imaginary part follows as

Im�R,0
φ (ω, p) = h2

8π

√
ω

2
− p2

4
+ μ. (E2)

In order to obtain the full real part Re�R
φ of the self-energy

via the Kramers-Kronig relation numerically, we can subtract
Eq. (E2) from the total numerical imaginary part Im�R

φ and
find

Re�R
φ (ω, p) = Re�R,0

φ (ω, p)

+ 1

π

∫
λ

Im�R
φ (λ, p) − Im�R,0

φ (λ, p)

λ − ω
, (E3)

where the real part of the vacuum solution is

Re�R,0
φ (ω, p) = − h2

8π

√
−ω

2
+ p2

4
− μ. (E4)

With these formulas, we can obtain Im�R
φ and Re�R

φ on a
finite grid numerically. However, the calculation of the real
part requires also information about the high-frequency tails
outside the numerical grid. In this case, the imaginary part
outside the grid is approximated by the analytic formula of
the non-self-consistent self-energy discussed in Appendix D,

Im�R
φ (ω, p) − Im�R,0

φ (ω, p) ≈ Im�R,T
φ (ω, p) (E5)

for large ω. Thus, the bosonic spectral function outside the
grid is approximated by the non-self-consistent (first iteration)
spectral function ρ

(1)
φ . A different subtraction scheme would

be to subtract the whole non-self-consistent imaginary part
straight away and only deal with differences from the first
iteration. In principle, both methods are equivalent and work
similarly. For practical reasons, we choose the latter subtrac-
tion scheme.

Another trick to improve the numerical calculation was
already mentioned above. Since the boson self-energy follows
a quadratic dispersion relation, it is practical to transform
the functions into the dispersion relation before interpolation.
This way, a better sampling and interpolation of the important
regions can be achieved. Afterward, the interpolated function
is shifted back to the correct dispersion relation.

Since the fermion spectral functions in the self-energy
integrals are very peaked for lower temperatures and higher
momenta, it might be useful to subtract a broadened classi-
cal spectral function, or the first iteration, from the further
iterations in order to improve the integration for higher mo-
menta. The contribution from the subtracted spectral function
then has to be taken into account. Since the fermion spectral
functions are represented on a finite numerical grid, the bare
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δ peak contributions from outside the grid has to be taken into
account too. This is similar to the peak-tail splits from [49].

2. Calculation of the real part via the Kramers-Kronig relation

It turns out that the calculation of the real part via
the Kramers-Kronig relation is very sensitive to the high-
frequency tails of the imaginary part. We accommodate for
this fact with an extrapolation of the high-frequency tail,
which allows us to estimate its contribution. For constant
momentum p, the high-frequency asymptotics of the fermion
self-energy is captured by the power law

lim
ω→∞ Im�R

ψ (ω) = aω−1/2, (E6)

where the constant a is determined by a fitting routine. From
this fit we can calculate the missing contribution for the real
part at a frequency ω via

δ Re�R
ψ (ω) = 2a

π
√

�
2F1

(
1

2
,

1

2
;

3

2
; − ω

�

)
, (E7)

where � = ωmax − ω, ωmax is the highest frequency of the
grid, and 2F1(a, b; c; z) is the hypergeometric function [104].
Using this high-frequency contribution from outside the
grid improves the determination of the fermion real part
significantly.

This asymptotic behavior can be shown by arguments sim-
ilar to those in Ref. [85]. We consider the high-frequency
behavior and rewrite the imaginary part of the fermion self-
energy (20) as

Im�R
ψ (ω) ∼

∫
λ1,λ2,q

ρφ (λ1)ρψ (λ2)δ(ω − λ1 + λ2)

× [nB(λ1) + nF (λ2)]. (E8)

In the limit ω → ∞, the δ function contributes only if (a) λ1

is large and λ2 is small or (b) λ2 is a large negative value and
λ1 is small. In case (b), however, the fermion spectral function
ρψ vanishes for low momenta and λ2 → −∞. Thus, only case
(a) contributes and we are left with

Im�R
ψ (ω) ∼

∫
λ2,q

ρφ (ω + λ2)ρψ (λ2)nF (λ2), (E9)

where we have used nB(λ1) → 0 for λ1 → ∞. As seen above,
the high-frequency behavior of the boson spectral function
is dominated by ρφ (ω) ∼ 1/

√
ω. Additionally, the integrand

vanishes for large negative values of λ2, since ρψ (λ2) van-
ishes, and for large positive values of λ2, since nF (λ2)
vanishes. Thus, the range of λ2 is limited and we can write

Im�R
ψ (ω) ∼

∫
λ2,q

ρψ (λ2)nF (λ2)/
√

ω ∼ 1/
√

ω, (E10)

where we used that
∫
λ2,q

ρψ (λ2)nF (λ2) = n is finite in the last

step. With the same argument we can show that Im�R
ψ (ω) is

mostly suppressed for large negative frequencies.

3. Iterative procedure

Using (20), (19), and the Kramers-Kronig relation, the
retarded self-energies can be computed in every iteration step
and fed back into the next, after extraction of the spectral
function via Eq. (13). The iterative procedure is initialized
with the classical fermion spectral function

ρ
(0)
ψ (ω, p) = δ(ω − p2 + μ). (E11)

This initial guess is inserted into the spectral form of �φ (P)
to obtain the first iteration of the boson spectral function
ρ

(1)
φ . Then ρ

(1)
φ together with ρ

(0)
ψ is inserted into the spectral

integral of �ψ (P) to obtain the first iteration of the fermion
spectral function ρ

(1)
ψ . Now ρ

(1)
ψ can be used to obtain the next

iteration for the boson spectral function ρ
(2)
φ and so on. In gen-

eral, ρ
(i)
ψ is used to obtain ρ

(i+1)
φ , and ρ

(i+1)
φ and ρ

(i)
ψ are used

to obtain ρ
(i+1)
ψ . This iteration is repeated until convergence is

reached. We observe that around 5–20 iterations are needed to
obtain a converged result with∫

λ

‖ρ (i)(λ, p) − ρ (i−1)(λ, p)‖ � 0.005 ∀ p. (E12)

As mentioned in the main text, the convergence is worse
closer to the critical temperature and the spectral functions
may oscillate between intermediate solutions. One can im-
prove the convergence by iterating twice over the fermions
or updating the spectral functions only partially.

[1] I. Bloch, J. Dalibard, and W. Zwerger, Many-body physics
with ultracold gases, Rev. Mod. Phys. 80, 885 (2008).

[2] S. Giorgini, L. P. Pitaevskii, and S. Stringari, Theory of ultra-
cold atomic Fermi gases, Rev. Mod. Phys. 80, 1215 (2008).

[3] W. Zwerger, in Quantum Matter at Ultralow Temperatures,
Proceedings of the International School of Physics “Enrico
Fermi,” Course CXCI, Varenna, 2016, edited by M. Ingus-
cio, W. Ketterle, S. Stringari, and G. Roati (IOS, Amsterdam,
2016), pp. 63–142.

[4] M. Greiner, C. A. Regal, and D. S. Jin, Emergence of a
molecular Bose–Einstein condensate from a Fermi gas, Nature
(London) 426, 537 (2003).

[5] C. Chin, M. Bartenstein, A. Altmeyer, S. Riedl, S. Jochim,
J. H. Denschlag, and R. Grimm, Observation of the pairing gap
in a strongly interacting Fermi gas, Science 305, 1128 (2004).

[6] A. Perali, P. Pieri, L. Pisani, and G. C. Strinati, BCS-BEC
crossover at finite temperature for superfluid trapped Fermi
atoms, Phys. Rev. Lett. 92, 220404 (2004).

[7] B. Mukherjee, P. B. Patel, Z. Yan, R. J. Fletcher, J. Struck, and
M. W. Zwierlein, Spectral response and contact of the unitary
Fermi gas, Phys. Rev. Lett. 122, 203402 (2019).

[8] G. C. Strinati, P. Pieri, G. Röpke, P. Schuck, and M. Urban,
The BCS–BEC crossover: From ultra-cold Fermi gases to
nuclear systems, Phys. Rep. 738, 1 (2018).

[9] A. Schirotzek, C.-H. Wu, A. Sommer, and M. W. Zwierlein,
Observation of Fermi polarons in a tunable Fermi liquid of
ultracold atoms, Phys. Rev. Lett. 102, 230402 (2009).

[10] S. Nascimbène, N. Navon, K. J. Jiang, L. Tarruell, M.
Teichmann, J. McKeever, F. Chevy, and C. Salomon, Col-
lective oscillations of an imbalanced Fermi gas: Axial

063311-14

https://doi.org/10.1103/RevModPhys.80.885
https://doi.org/10.1103/RevModPhys.80.1215
https://doi.org/10.1038/nature02199
https://doi.org/10.1126/science.1100818
https://doi.org/10.1103/PhysRevLett.92.220404
https://doi.org/10.1103/PhysRevLett.122.203402
https://doi.org/10.1016/j.physrep.2018.02.004
https://doi.org/10.1103/PhysRevLett.102.230402


SPECTRAL PROPERTIES AND OBSERVABLES IN … PHYSICAL REVIEW A 109, 063311 (2024)

compression modes and polaron effective mass, Phys. Rev.
Lett. 103, 170402 (2009).

[11] P. Massignan, M. Zaccanti, and G. M. Bruun, Polarons,
dressed molecules and itinerant ferromagnetism in ultracold
Fermi gases, Rep. Prog. Phys. 77, 034401 (2014).

[12] G. Ness, C. Shkedrov, Y. Florshaim, O. K. Diessel, J. von
Milczewski, R. Schmidt, and Y. Sagi, Observation of a smooth
polaron-molecule transition in a degenerate Fermi gas, Phys.
Rev. X 10, 041019 (2020).

[13] F. Scazza, M. Zaccanti, P. Massignan, M. M. Parish, and J.
Levinsen, Repulsive Fermi and Bose polarons in quantum
gases, Atoms 10, 55 (2022).

[14] M. W. Zwierlein, J. R. Abo-Shaeer, A. Schirotzek, C. H.
Schunck, and W. Ketterle, Vortices and superfluidity in a
strongly interacting Fermi gas, Nature (London) 435, 1047
(2005).

[15] M. W. Zwierlein, A. Schirotzek, C. H. Schunck, and W.
Ketterle, Fermionic superfluidity with imbalanced spin pop-
ulations, Science 311, 492 (2006).

[16] M. J. H. Ku, A. T. Sommer, W. C. Lawrence, and M. W.
Zwierlein, Revealing the superfluid lambda transition in the
universal thermodynamics of a unitary Fermi gas, Science 335,
563 (2012).

[17] E. Burovski, N. Prokof’ev, B. Svistunov, and M. Troyer, Crit-
ical temperature and thermodynamics of attractive fermions at
unitarity, Phys. Rev. Lett. 96, 160402 (2006).

[18] P. Magierski, G. Wlazlowski, A. Bulgac, and J. E. Drut, The
finite temperature pairing gap of a unitary Fermi gas by quan-
tum Monte Carlo, Phys. Rev. Lett. 103, 210403 (2009).

[19] R. Haussmann, W. Rantner, S. Cerrito, and W. Zwerger, Ther-
modynamics of the BCS-BEC crossover, Phys. Rev. A 75,
023610 (2007).

[20] H. Hu, X.-J. Liu, and P. D. Drummond, Comparative study of
strong-coupling theories of a trapped Fermi gas at unitarity,
Phys. Rev. A 77, 061605(R) (2008).

[21] C.-C. Chien, H. Guo, Y. He, and K. Levin, Comparative study
of BCS-BEC crossover theories above Tc: The nature of the
pseudogap in ultracold atomic Fermi gases, Phys. Rev. A 81,
023622 (2010).

[22] R. Hanai and Y. Ohashi, Self-consistent T -matrix approach
to an interacting ultracold Fermi Gas with mass imbalance,
J. Low Temp. Phys. 175, 272 (2014).

[23] R. B. Diener, R. Sensarma, and M. Randeria, Quantum fluctu-
ations in the superfluid state of the BCS-BEC crossover, Phys.
Rev. A 77, 023626 (2008).

[24] S. Diehl and C. Wetterich, Universality in phase transitions
for ultracold fermionic atoms, Phys. Rev. A 73, 033615
(2006).

[25] I. Boettcher, S. Diehl, J. M. Pawlowski, and C. Wetterich,
Tan contact and universal high momentum behavior of the
fermion propagator in the BCS-BEC crossover, Phys. Rev. A
87, 023606 (2013).

[26] S. Diehl, H. Gies, J. M. Pawlowski, and C. Wetterich, Flow
equations for the BCS-BEC crossover, Phys. Rev. A 76,
021602(R) (2007).

[27] S. Diehl, H. Gies, J. M. Pawlowski, and C. Wetterich, Renor-
malization flow and universality for ultracold fermionic atoms,
Phys. Rev. A 76, 053627 (2007).

[28] S. Diehl, S. Floerchinger, H. Gies, J. M. Pawlowski, and
C. Wetterich, Functional renormalization group approach

to the BCS-BEC crossover, Ann. Phys. (Berlin) 522, 615
(2010).

[29] E. Taylor and M. Randeria, Viscosity of strongly interacting
quantum fluids: Spectral functions and sum rules, Phys. Rev.
A 81, 053610 (2010).

[30] T. Enss, R. Haussmann, and W. Zwerger, Viscosity and scale
invariance in the unitary Fermi gas, Ann. Phys. (NY) 326, 770
(2011).

[31] B. Frank, W. Zwerger, and T. Enss, Quantum critical thermal
transport in the unitary Fermi gas, Phys. Rev. Res. 2, 023301
(2020).

[32] M. Greiner, C. A. Regal, and D. S. Jin, Probing the excitation
spectrum of a Fermi gas in the BCS-BEC crossover regime,
Phys. Rev. Lett. 94, 070403 (2005).

[33] F. Palestini, A. Perali, P. Pieri, and G. C. Strinati, Dispersions,
weights, and widths of the single-particle spectral function in
the normal phase of a Fermi gas, Phys. Rev. B 85, 024517
(2012).

[34] H. Biss, L. Sobirey, N. Luick, M. Bohlen, J. J. Kinnunen,
G. M. Bruun, T. Lompe, and H. Moritz, Excitation spectrum
and superfluid gap of an ultracold Fermi gas, Phys. Rev. Lett.
128, 100401 (2022).

[35] M. Jarrell and J. E. Gubernatis, Bayesian inference and the
analytic continuation of imaginary-time quantum Monte Carlo
data, Phys. Rep. 269, 133 (1996).

[36] A. K. Cyrol, J. M. Pawlowski, A. Rothkopf, and N. Wink,
Reconstructing the gluon, SciPost Phys. 5, 065 (2018).

[37] J. Horak, J. M. Pawlowski, J. Rodríguez-Quintero, J.
Turnwald, J. M. Urban, N. Wink, and S. Zafeiropoulos, Re-
constructing QCD spectral functions with Gaussian processes,
Phys. Rev. D 105, 036014 (2022).

[38] R. Haussmann, M. Punk, and W. Zwerger, Spectral functions
and rf response of ultracold fermionic atoms, Phys. Rev. A 80,
063612 (2009).

[39] R. Schmidt and T. Enss, Excitation spectra and rf response
near the polaron-to-molecule transition from the functional
renormalization group, Phys. Rev. A 83, 063620 (2011).

[40] J. Schmalian, M. Langer, S. Grabowski, and K. H.
Bennemann, Self-consistent summation of many-particle di-
agrams on the real frequency axis and its application to
the FLEX approximation, Comput. Phys. Commun. 93, 141
(1996).

[41] B. Kyung, E. G. Klepfish, and P. E. Kornilovitch, Density-
induced breaking of pairs in the attractive Hubbard model,
Phys. Rev. Lett. 80, 3109 (1998).

[42] D. Rohe and W. Metzner, Pair-fluctuation-induced pseudogap
in the normal phase of the two-dimensional attractive Hubbard
model at weak coupling, Phys. Rev. B 63, 224509 (2001).

[43] C. P. Moca and E. Macocian, Transport properties calculation
in the superconducting state for a quasi-two-dimensional sys-
tem, Physica C 356, 268 (2001).

[44] A. Perali, P. Pieri, G. C. Strinati, and C. Castellani, Pseudogap
and spectral function from superconducting fluctuations to the
bosonic limit, Phys. Rev. B 66, 024510 (2002).

[45] P. Pieri, L. Pisani, and G. C. Strinati, Pairing fluctuation effects
on the single-particle spectra for the superconducting state,
Phys. Rev. Lett. 92, 110401 (2004).

[46] P. Pieri, L. Pisani, and G. C. Strinati, BCS-BEC crossover at
finite temperature in the broken-symmetry phase, Phys. Rev.
B 70, 094508 (2004).

063311-15

https://doi.org/10.1103/PhysRevLett.103.170402
https://doi.org/10.1088/0034-4885/77/3/034401
https://doi.org/10.1103/PhysRevX.10.041019
https://doi.org/10.3390/atoms10020055
https://doi.org/10.1038/nature03858
https://doi.org/10.1126/science.1122318
https://doi.org/10.1126/science.1214987
https://doi.org/10.1103/PhysRevLett.96.160402
https://doi.org/10.1103/PhysRevLett.103.210403
https://doi.org/10.1103/PhysRevA.75.023610
https://doi.org/10.1103/PhysRevA.77.061605
https://doi.org/10.1103/PhysRevA.81.023622
https://doi.org/10.1007/s10909-013-0909-3
https://doi.org/10.1103/PhysRevA.77.023626
https://doi.org/10.1103/PhysRevA.73.033615
https://doi.org/10.1103/PhysRevA.87.023606
https://doi.org/10.1103/PhysRevA.76.021602
https://doi.org/10.1103/PhysRevA.76.053627
https://doi.org/10.1002/andp.201010458
https://doi.org/10.1103/PhysRevA.81.053610
https://doi.org/10.1016/j.aop.2010.10.002
https://doi.org/10.1103/PhysRevResearch.2.023301
https://doi.org/10.1103/PhysRevLett.94.070403
https://doi.org/10.1103/PhysRevB.85.024517
https://doi.org/10.1103/PhysRevLett.128.100401
https://doi.org/10.1016/0370-1573(95)00074-7
https://doi.org/10.21468/SciPostPhys.5.6.065
https://doi.org/10.1103/PhysRevD.105.036014
https://doi.org/10.1103/PhysRevA.80.063612
https://doi.org/10.1103/PhysRevA.83.063620
https://doi.org/10.1016/0010-4655(95)00134-4
https://doi.org/10.1103/PhysRevLett.80.3109
https://doi.org/10.1103/PhysRevB.63.224509
https://doi.org/10.1016/S0921-4534(01)00278-7
https://doi.org/10.1103/PhysRevB.66.024510
https://doi.org/10.1103/PhysRevLett.92.110401
https://doi.org/10.1103/PhysRevB.70.094508


DIZER, HORAK, AND PAWLOWSKI PHYSICAL REVIEW A 109, 063311 (2024)

[47] E. Fratini and P. Pieri, Single-particle spectral functions in
the normal phase of a strongly attractive Bose-Fermi mixture,
Phys. Rev. A 88, 013627 (2013).

[48] H. Hu and X.-J. Liu, Fermi polarons at finite temperature:
Spectral function and rf spectroscopy, Phys. Rev. A 105,
043303 (2022).

[49] J. Horak, J. M. Pawlowski, and N. Wink, Spectral functions in
the φ4-theory from the spectral Dyson-Schwinger equations,
Phys. Rev. D 102, 125016 (2020).

[50] J. Fehre, D. F. Litim, J. M. Pawlowski, and M. Reichert,
Lorentzian quantum gravity and the graviton spectral function,
Phys. Rev. Lett. 130, 081501 (2023).

[51] J. Braun et al., Renormalised spectral flows, SciPost Phys.
Core 6, 061 (2023).

[52] J. Berges, Introduction to nonequilibrium quantum field the-
ory, AIP Conf. Proc. 739, 3 (2004).

[53] J. Horak, F. Ihssen, J. M. Pawlowski, J. Wessely, and
N. Wink, Scalar spectral functions from the spectral fRG,
arXiv:2303.16719.

[54] G. Eichmann, A. Gómez, J. Horak, J. M. Pawlowski, J.
Wessely, and N. Wink, Bound states from the spectral Bethe-
Salpeter equation, Phys. Rev. D 109, 096024 (2024).

[55] J. Horak, J. M. Pawlowski, and N. Wink, On the quark spectral
function in QCD, SciPost Phys. 15, 149 (2023).

[56] J. Horak, J. M. Pawlowski, and N. Wink, On the complex
structure of Yang-Mills theory, arXiv:2202.09333.

[57] J. Horak, J. Papavassiliou, J. M. Pawlowski, and N. Wink,
Ghost spectral function from the spectral Dyson-Schwinger
equation, Phys. Rev. D 104, 074017 (2021).

[58] J. Horak, Realtime properties of QCD, Ph.D. thesis, Univer-
sität Heidelberg, 2023.

[59] C. Chin, R. Grimm, P. Julienne, and E. Tiesinga, Feshbach
resonances in ultracold gases, Rev. Mod. Phys. 82, 1225
(2010).

[60] R. Rossi, T. Ohgoe, E. Kozik, N. Prokof’ev, B. Svistunov, K.
Van Houcke, and F. Werner, Contact and momentum distribu-
tion of the unitary Fermi gas, Phys. Rev. Lett. 121, 130406
(2018).

[61] H. Gies and C. Wetterich, Renormalization flow of bound
states, Phys. Rev. D 65, 065001 (2002).

[62] J. M. Pawlowski, Aspects of the functional renormalisation
group, Ann. Phys. (NY) 322, 2831 (2007).

[63] S. Floerchinger and C. Wetterich, Exact flow equation for
composite operators, Phys. Lett. B 680, 371 (2009).

[64] W.-j. Fu, J. M. Pawlowski, and F. Rennecke, QCD phase
structure at finite temperature and density, Phys. Rev. D 101,
054032 (2020).

[65] S. Floerchinger, M. Scherer, S. Diehl, and C. Wetterich,
Particle-hole fluctuations in the BCS-BEC Crossover, Phys.
Rev. B 78, 174528 (2008).

[66] S. Floerchinger, M. M. Scherer, and C. Wetterich, Modified
Fermi-sphere, pairing gap and critical temperature for the
BCS-BEC crossover, Phys. Rev. A 81, 063619 (2010).

[67] P. Nozieres and S. Schmitt-Rink, Bose condensation in an
attractive fermion gas: From weak to strong coupling super-
conductivity, J. Low Temp. Phys. 59, 195 (1985).

[68] C. A. R. Sá de Melo, M. Randeria, and J. R. Engelbrecht,
Crossover from BCS to Bose superconductivity: Transition
temperature and time-dependent Ginzburg-Landau theory,
Phys. Rev. Lett. 71, 3202 (1993).

[69] Q. Chen, J. Stajic, S. Tan, and K. Levin, BCS–BEC crossover:
From high temperature superconductors to ultracold superflu-
ids, Phys. Rep. 412, 1 (2005).

[70] E. S. Swanson, A primer on functional methods and the
Schwinger-Dyson equations, AIP Conf. Proc. 1296, 75
(2010).

[71] P. Kopietz, L. Bartosch, and F. Schütz, Introduction to the
Functional Renormalization Group, Lecture Notes in Physics
Vol. 798 (Springer, Berlin, 2010).

[72] W. Metzner, M. Salmhofer, C. Honerkamp, V. Meden, and
K. Schonhammer, Functional renormalization group approach
to correlated fermion systems, Rev. Mod. Phys. 84, 299
(2012).

[73] M. M. Scherer, S. Floerchinger, and H. Gies, Functional
renormalization for the Bardeen–Cooper–Schrieffer to Bose–
Einstein condensation crossover, Phil. Trans. R. Soc. A 369,
2779 (2011).

[74] I. Boettcher, J. M. Pawlowski, and S. Diehl, Ultracold atoms
and the functional renormalization group, Nucl. Phys. B 228,
63 (2012).

[75] N. Dupuis, L. Canet, A. Eichhorn, W. Metzner, J. M.
Pawlowski, M. Tissier, and N. Wschebor, The nonperturbative
functional renormalization group and its applications, Phys.
Rep. 910, 1 (2021).

[76] M. Pini, P. Pieri, and G. C. Strinati, Fermi gas throughout
the BCS-BEC crossover: Comparative study of t-matrix ap-
proaches with various degrees of self-consistency, Phys. Rev.
B 99, 094502 (2019).

[77] A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Meth-
ods of Quantum Field Theory in Statistical Physics (Dover,
New York, 1975).

[78] A. L. Fetter and J. D. Walecka, Quantum Theory of Many-
Particle Systems (McGraw-Hill, New York, 1971).

[79] M. D. Reichl and E. J. Mueller, Quasiparticle dispersions and
lifetimes in the normal state of the BCS-BEC crossover, Phys.
Rev. A 91, 043627 (2015).

[80] D. J. Thouless, Perturbation theory in statistical mechanics
and the theory of superconductivity, Ann. Phys. (NY) 10, 553
(1960).

[81] C. H. Johansen, B. Frank, and J. Lang, Spectral functions of
the strongly interacting three-dimensional Fermi gas, Phys.
Rev. A 109, 023324 (2024).

[82] T. Enss, Particle and pair spectra for strongly correlated Fermi
gases: A real-frequency solver, Phys. Rev. A 109, 023325
(2024).

[83] M. Punk and W. Zwerger, Theory of rf-spectroscopy of
strongly interacting fermions, Phys. Rev. Lett. 99, 170404
(2007).

[84] J. Stewart, J. Gaebler, and D. Jin, Using photoemission spec-
troscopy to probe a strongly interacting Fermi gas, Nature
(London) 454, 744 (2008).

[85] W. Schneider, V. B. Shenoy, and M. Randeria, Theory
of radio frequency spectroscopy of polarized Fermi gases,
arXiv:0903.3006.

[86] S. Tsuchiya, R. Watanabe, and Y. Ohashi, Photoemission spec-
trum and effect of inhomogeneous pairing fluctuations in the
BCS-BEC crossover regime of an ultracold Fermi gas, Phys.
Rev. A 82, 033629 (2010).

[87] M. Veillette, E. G. Moon, A. Lamacraft, L. Radzihovsky, S.
Sachdev, and D. E. Sheehy, Radio-frequency spectroscopy

063311-16

https://doi.org/10.1103/PhysRevA.88.013627
https://doi.org/10.1103/PhysRevA.105.043303
https://doi.org/10.1103/PhysRevD.102.125016
https://doi.org/10.1103/PhysRevLett.130.081501
https://doi.org/10.21468/SciPostPhysCore.6.3.061
https://doi.org/10.1063/1.1843591
https://arxiv.org/abs/2303.16719
https://doi.org/10.1103/PhysRevD.109.096024
https://doi.org/10.21468/SciPostPhys.15.4.149
https://arxiv.org/abs/2202.09333
https://doi.org/10.1103/PhysRevD.104.074017
https://doi.org/10.1103/RevModPhys.82.1225
https://doi.org/10.1103/PhysRevLett.121.130406
https://doi.org/10.1103/PhysRevD.65.065001
https://doi.org/10.1016/j.aop.2007.01.007
https://doi.org/10.1016/j.physletb.2009.09.014
https://doi.org/10.1103/PhysRevD.101.054032
https://doi.org/10.1103/PhysRevB.78.174528
https://doi.org/10.1103/PhysRevA.81.063619
https://doi.org/10.1007/BF00683774
https://doi.org/10.1103/PhysRevLett.71.3202
https://doi.org/10.1016/j.physrep.2005.02.005
https://doi.org/10.1063/1.3523221
https://doi.org/10.1103/RevModPhys.84.299
https://doi.org/10.1098/rsta.2011.0072
https://doi.org/10.1016/j.nuclphysbps.2012.06.004
https://doi.org/10.1016/j.physrep.2021.01.001
https://doi.org/10.1103/PhysRevB.99.094502
https://doi.org/10.1103/PhysRevA.91.043627
https://doi.org/10.1016/0003-4916(60)90122-6
https://doi.org/10.1103/PhysRevA.109.023324
https://doi.org/10.1103/PhysRevA.109.023325
https://doi.org/10.1103/PhysRevLett.99.170404
https://doi.org/10.1038/nature07172
https://arxiv.org/abs/0903.3006
https://doi.org/10.1103/PhysRevA.82.033629


SPECTRAL PROPERTIES AND OBSERVABLES IN … PHYSICAL REVIEW A 109, 063311 (2024)

of a strongly imbalanced Feshbach-resonant Fermi gas, Phys.
Rev. A 78, 033614 (2008).

[88] H. Tajima and S. Uchino, Thermal crossover, transition, and
coexistence in Fermi polaronic spectroscopies, Phys. Rev. A
99, 063606 (2019).

[89] D. Kagamihara, D. Inotani, and Y. Ohashi, Shear viscosity
and strong-coupling corrections in the BCS–BEC crossover
regime of an ultracold Fermi gas, J. Phys. Soc. Jpn. 88, 114001
(2019).

[90] L. Pisani, M. Pini, P. Pieri, and G. C. Strinati, Peaks and widths
of radio-frequency spectra: An analysis of the phase diagram
of ultra-cold Fermi gases, Results Phys. 57, 107358 (2024).

[91] H. Hu and X.-J. Liu, Spectral function of Fermi polarons at
finite temperature from a self-consistent many-body T -matrix
approach in real frequency, arXiv:2311.11554.

[92] X. Li et al., Observation and quantification of the pseudogap
in unitary Fermi gases, Nature (London) 626, 288 (2024).

[93] R. Schmidt, T. Enss, V. Pietilä, and E. Demler, Fermi polarons
in two dimensions, Phys. Rev. A 85, 021602(R) (2012).

[94] J. E. Drut, T. A. Lahde, and T. Ten, Momentum distribution
and contact of the unitary Fermi gas, Phys. Rev. Lett. 106,
205302 (2011).

[95] B. Frank, Thermodynamics and transport in Fermi gases near
unitarity, Ph.D. thesis, TU München, 2018.

[96] J. E. Drut, T. A. Lahde, G. Wlazlowski, and P. Magierski, The
equation of state of the unitary Fermi gas: An update on lattice
calculations, Phys. Rev. A 85, 051601(R) (2012).

[97] J. E. Drut, Improved lattice operators for nonrelativistic
fermions, Phys. Rev. A 86, 013604 (2012).

[98] L. Rammelmüller, A. C. Loheac, J. E. Drut, and J. Braun,
Finite-temperature equation of state of polarized fermions at
unitarity, Phys. Rev. Lett. 121, 173001 (2018).

[99] S. Jensen, C. N. Gilbreth, and Y. Alhassid, Contact in the
unitary Fermi gas across the superfluid phase transition, Phys.
Rev. Lett. 125, 043402 (2020).

[100] B. M. Faigle-Cedzich, J. M. Pawlowski, and C. Wetterich, To-
wards quantitative precision in ultracold atoms with functional
renormalisation, arXiv:2307.14787.

[101] S. Tan, Large momentum part of a strongly correlated Fermi
gas, Ann. Phys. (NY) 323, 2971 (2008).

[102] E. Braaten and L. Platter, Exact relations for a strongly inter-
acting Fermi gas from the operator product expansion, Phys.
Rev. Lett. 100, 205301 (2008).

[103] M. Bauer (unpublished).
[104] Handbook of Mathematical Functions with Formulas, Graphs,

and Mathematical Tables, Natl. Bur. Stand. (U.S.) Appl. Math.
Ser. 55, edited by M. Abramowitz and I. A. Stegun (U.S. GPO,
Washington, DC, 1972).

[105] J. R. Engelbrecht, M. Randeria, and C. A. R. Sá de Melo, BCS
to Bose crossover: Broken-symmetry state, Phys. Rev. B 55,
15153 (1997).

[106] J. von Milczewski and R. Schmidt, Momentum-dependent
quasiparticle properties of the Fermi polaron from the func-
tional renormalization group, arXiv:2312.05318.

[107] J. von Milczewski, F. Rose, and R. Schmidt, Functional-
renormalization-group approach to strongly coupled Bose-
Fermi mixtures in two dimensions, Phys. Rev. A 105, 013317
(2022).

[108] Y. Guo, H. Tajima, T. Hatsuda, and H. Liang, BCS-
BCS crossover between atomic and molecular superfluids
in a Bose-Fermi mixture, Phys. Rev. A 108, 023304
(2023).

[109] O. K. Diessel, J. von Milczewski, A. Christianen, and R.
Schmidt, Probing molecular spectral functions and unconven-
tional pairing using Raman spectroscopy, arXiv:2209.11758.

[110] L. M. Schonenberg, P. C. Verpoort, and G. J. Conduit,
Effective-range dependence of two-dimensional Fermi gases,
Phys. Rev. A 96, 023619 (2017).

[111] M. Punk, Many-particle physics with ultracold gases, Ph.D.
thesis, TU München, 2010.

063311-17

https://doi.org/10.1103/PhysRevA.78.033614
https://doi.org/10.1103/PhysRevA.99.063606
https://doi.org/10.7566/JPSJ.88.114001
https://doi.org/10.1016/j.rinp.2024.107358
https://arxiv.org/abs/2311.11554
https://doi.org/10.1038/s41586-023-06964-y
https://doi.org/10.1103/PhysRevA.85.021602
https://doi.org/10.1103/PhysRevLett.106.205302
https://doi.org/10.1103/PhysRevA.85.051601
https://doi.org/10.1103/PhysRevA.86.013604
https://doi.org/10.1103/PhysRevLett.121.173001
https://doi.org/10.1103/PhysRevLett.125.043402
https://arxiv.org/abs/2307.14787
https://doi.org/10.1016/j.aop.2008.03.005
https://doi.org/10.1103/PhysRevLett.100.205301
https://doi.org/10.1103/PhysRevB.55.15153
https://arxiv.org/abs/2312.05318
https://doi.org/10.1103/PhysRevA.105.013317
https://doi.org/10.1103/PhysRevA.108.023304
https://arxiv.org/abs/2209.11758
https://doi.org/10.1103/PhysRevA.96.023619

