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Fast transport and splitting of spin-orbit-coupled spin-1 Bose-Einstein condensates

Yaning Xu,1 Yuanyuan Chen,1,* and Xi Chen 2,3,†

1Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China
2Department of Physical Chemistry, University of the Basque Country UPV/EHU, Apartado 644, 48080 Bilbao, Spain

3EHU Quantum Center, University of the Basque Country UPV/EHU, 48940 Leioa, Spain

(Received 27 March 2024; accepted 16 May 2024; published 5 June 2024)

In this study we investigate the dynamics of tunable spin-orbit-coupled spin-1 Bose-Einstein condensates
confined within a harmonic trap, focusing on rapid transport, spin manipulation, and splitting dynamics. Using
shortcuts to adiabaticity, we design time-dependent trap trajectories and spin-orbit-coupling strength to facilitate
fast transport with simultaneous spin flip. Additionally, we showcase the creation of spin-dependent coherent
states via engineering the spin-orbit-coupling strength. To deepen our understanding, we elucidate nonadiabatic
transport and associated spin dynamics, contrasting them with simple scenarios characterized by constant spin-
orbit coupling and trap velocity. Furthermore, we discuss the transverse Zeeman potential and nonlinear effect
induced by interatomic interactions using the Gross-Pitaevskii equation, highlighting the stability and feasibility
of the proposed protocols for the state-of-the-art experiments with cold atoms.
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I. INTRODUCTION

Spin-orbit coupling (SOC) refers to the interplay between
the spin and momentum of a quantum particle, holding rel-
evance for numerous fundamental applications in various
quantum systems, such as semiconductor quantum dots [1],
topological superconductors [2], and ultracold atomic gases
[3]. In condensed-matter physics, SOC effects are associated
with many novel quantum phenomena, such as the spin Hall
effect and topological insulators (see, e.g., the review in [4]).
Notably, by exploiting the coupling between the electron spin
and its motion, spin qubits with a long coherence time are
essential for quantum computation and information process-
ing tasks [5,6]. Understanding and controlling SOC within
nanometer-scale semiconductor devices are crucial steps to-
ward realizing efficient and reliable quantum technologies
[7]. In particular, semiconductor nanowire quantum dots with
strong SOC can be harnessed to manipulate a spin-orbit qubit,
employing techniques like electric dipole spin resonance [8]
and time-dependent modulation [9–11]. Along with this, the
controllable confinement potential or/and SOC can be further
exploited to generate nonclassical states [12,13] and quantum
gates [14] within semiconductor quantum dots.

In a similar vein, the experimental realization of synthetic
SOC of ultracold atomic systems [3,15] has recently emerged
as a powerful tool for manipulating the internal freedom of
atoms and exploring quantum states [16]. The characteristics
associated with tunable SOC effects, such as collective modes,
novel dynamics of the orbit and spin, and negative-mass
hydrodynamics, have been subject to extensive investiga-
tion [17–23], yielding fruitful SOC-related physics with
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ultracold atoms and potential applications in atomtronics
[24–29]. While electrons primarily manifest as spin-1/2 sys-
tems, neutral atoms, boasting an abundance of hyperfine
states, can exhibit higher pseudospins. Through techniques
such as coupling three hyperfine states with Raman lasers,
for instance, spin-orbit-coupled spin-1 Bose-Einstein conden-
sates (BECs) can be experimentally constructed in a gas
of 87Rb [30,31]. Such systems, with a richer spin structure
compared to spin-orbit-coupled spin-1/2 BECs, can exhibit
multiple internal spin states, allowing for more complex
spin-mixing dynamics, collective excitations, and topological
excitations [32–36]. In particular, spin-orbit-coupled spin-1
BECs can undergo quantum phase transitions between dif-
ferent ground-state phases, including plane-wave, stripe, and
zero-momentum phases, driven by changes in external param-
eters such as magnetic fields or interaction strengths [37–40].
Accordingly, such exotic systems enable enhanced control of
the center of mass [41,42] and also facilitate the manipulation
of spin dynamics driven by shaking harmonic traps, as well as
engineering SOC strength and Zeeman fields [43–45].

In this paper our goal is to manipulate the spin dynamics
and orbital motion to achieve fast transport and splitting of
tunable spin-orbit-coupled spin-1 BECs confined within a har-
monic trap. Based on the single-particle Hamiltonian, precise
control over the spin state and orbital motion is made possi-
ble by the analytical solvability of the exact wave function,
especially in the absence of atomic interaction and transverse
potential [10,46]. To realize this objective, we utilize inverse
engineering [43], a method inspired by shortcuts to adia-
baticity (STAs) [47], to design time-dependent SOC strength
and/or trap trajectories. This approach enables fast transport
with simultaneous spin flips and the splitting of wave packets
within short timescales as well. Additionally, we compare the
outcomes of simple adiabatic scenarios with constant SOC
strength and trap velocity. Furthermore, we delve into the
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stability analysis against the transverse Zeeman potential and
nonlinear effect, through comprehensive numerical simula-
tions based on the Gross-Pitaevskii equation. Although our
primary focus is on BECs, the results also have implications
for other systems such as quantum dots [12–14].

The remainder of this paper is organized as follows. In
Sec. II we introduce the Hamiltonian and model and present
the analytical solution for cold atoms trapped in a harmonic
trap by neglecting atomic interactions. Building upon this,
Sec. III details the inverse engineering method for achieving
fast transport with spin flip and splitting using the designed
SOC strength and/or trap trajectory. Subsequently, in Sec. IV
we compare these results with the case of constant SOC
strength and trap velocity. Additionally, we check the stability
against the nonlinearity induced by interatomic interactions
for different initial states and transverse Zeeman potential in
Sec. V. A brief summary is provided in Sec. VI.

II. PRELIMINARIES

We begin with spin-1 BECs confined in a one-dimensional
harmonic trap along the x axis with SOC. The experimental
setup for Raman-induced SOC in a spin-1 BEC is detailed
in Ref. [30], where a bias magnetic field along a specific axis,
typically the z axis, to manipulate the atomic states and induce
Zeeman splitting, and a pair of counterpropagating Raman
lasers with orthogonally polarized beams are further utilized
to coherently couple the different hyperfine states of the |F =
1, m = 0,±1〉 manifold, thereby inducing SOC. In the context
of a one-dimensional harmonic potential, the system can be
simply described by the Gross-Pitaevskii equation (GPE)

ih̄
∂�(x, t )

∂t
= (H + Hint )�(x, t ), (1)

where the spinor wave function �(x, t ) = [ψ1, ψ0, ψ−1]T de-
scribes the occupation of three components. By neglecting
a dispensable constant, the single-particle Hamiltonian in
Eq. (1) is written as [32–35,45]

H = p2
x

2m
+ 1

2
mω2[x − x0(t )]2 + α(t )pxFz + h̄�Fx. (2)

Here m is the mass of the atom, px denotes the momentum
operator in the x direction, and Fz corresponds to the z com-
ponent of the 3 × 3 spin-1 Pauli matrices. The external trap
is moving harmonic potential, with time-dependent trajectory
x0(t ) of the trap center and fixed trap frequency ω. The term
proportional to pxFz stands for the Raman-induced SOC with
tunable strength α(t ), achievable through the modulation of
external magnetic fields [30,31]. Also, � = �R/

√
2 is the

transverse Zeeman potential, with �R the Raman Rabi fre-
quency associated with the Raman laser process. However,
the detuning δ can indeed be utilized to select two out of the
three Zeeman states as a spin-1/2 system [3,17,25]. In this
context, we set δ = 0 within the Fz term to maintain Raman
resonance. In the GPE, the nonlinear term Hint, depending on
the number of atoms N , is described by the density-density
interaction with the coefficient c0 and the spin-spin interaction
with the coefficient c2, as we will discuss later. As a reminder,
the entire wave function satisfies the normalization condition

∫
dx(|ψ1|2 + |ψ0|2 + |ψ−1|2) = N (which equals 1 in the ab-

sence of nonlinear interaction).
In the actual setup, the spin-orbited-coupled BEC was

realized in a harmonic potential with frequency ω = 2π ×
250 Hz, where the 87Rb atomic mass is m = 1.443 × 10−25 kg
[30,31]. In order to simplify the numerical calculation using
the split-operator method for spinor wave-packet dynamics
[48,49], we adopt m = h̄ = ω = 1, so the units of the rele-
vant physical parameter are relabeled as T = 1/ω ≈ 0.637 ms
and the characteristic length a0 = √

h̄/mω ≈ 0.682 µm, cor-
respondingly.

Regarding the single-particle Hamiltonian (2) in the ab-
sence of the transverse potential (� = 0), the exact solution
of the time-dependent Schrödinger equation can be obtained
through a unitary transformation U (t ) such that

H0 = U (t )H (t )U†(t ) − iU̇ (t )U†(t ) = p2
x

2m
+ 1

2
mω2x2 (3)

becomes a stationary harmonic oscillator without SOC. Sim-
ilar to the spin-1/2 case [10,46], the unitary transformation
U (t ) = Uo(t )Us(t ) comprises two parts

Uo(t ) = e−(i/h̄)φx0 (t )e−ixc (t )pe(i/h̄)mẋc (t )x, (4)

Us(t ) = e−iφα (t )e−iφ(t )Fz e−(i/h̄)mαc (t )xFz e−(i/h̄ω2 )α̇c (t )pFz , (5)

where the overdot represents the time derivative, φα,x0 (t )
are two action phase factors defined as φα,x0 (t ) = − 1

h̄

∫ t
0 dτ

Lα,x0 (τ ) with the Lagrange functions Lα (t ) = mα̇2
c (t )/2ω2 −

mα2
c (t )/2 + mαc(t )α(t ) and Lx0 (t ) = mẋ2

c (t )/2 − mω2

[xc(t ) − x0(t )]2/2, and the phase factor φ(t ) is given by

φ(t ) = −m

h̄

∫ t

0
α̇c(τ )x0(τ )dτ. (6)

The parameters αc(t ) and xc(t ) satisfy auxiliary equations

ẍc(t ) + ω2[xc(t ) − x0(t )] = 0, (7)

α̈c(t ) + ω2[αc(t ) − α(t )] = 0. (8)

In this scenario, the solution of the original Hamiltonian (2) is
expressed as |�(t )〉 = U†(t )|ψ (t )〉, where |ψ (t )〉 represents
the solution of the transformed Hamiltonian H0. Conse-
quently, we have

|�(t )〉 = U†(t )e−iH0t/h̄U (0)|�(0)〉. (9)

In the case where the initial state is an eigenstate of H (0),
i.e., |�ns(0)〉 = U†(0)|ψn〉|χs〉, with |ψn〉 denoting the nth
eigenstate of the stationary harmonic oscillator H0 and |χs〉
representing a spinor with spin s, the time-evolved state sim-
plifies to

|�ns(t )〉 = e−iωntU†(t )|ψn〉|χs〉, (10)

where ωn = (n + 1/2)ω. In the subsequent discussion, the
ground state is of particular interest when n = 0.

Next we utilize Eqs. (6)–(8) to design fast transport with
spin flip and splitting using inverse engineering. The proposed
strategy involves taking the position of the trap x0(t ) and the
time-dependent SOC strength α(t ) as free parameters first and
then engineering inversely through the solutions of xc(t ) and
αc(t ) that meet the specified boundary conditions.
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III. INVERSE ENGINEERING

A. Fast transport with spin flip

In this section, to manipulate the spin states of atoms and
facilitate fast transport, we employ inverse engineering to
design the SOC strength α(t ) and the trap trajectory x0(t )
according to Eqs. (7) and (8) by selecting appropriate bound-
ary conditions. Assuming the trap’s minimum value starts at
x0(0) = 0 and ends at x0(t f ) = d after a time interval t f , we
opt for boundary conditions that ensure accelerated transport
without final excitation:

xc(0) = 0, ẋc(0) = 0, ẍc(0) = 0,

xc(t f ) = d, ẋc(t f ) = 0, ẍc(t f ) = 0. (11)

Various functions meet these conditions, and for simplic-
ity, we adopt a trigonometric ansatz in the form xc(t ) =∑5

n=0 an cos(nπt ). Consequently, the center of mass of the
cold atoms xc(t ) is expressed as

xc(t ) = d
[

1
2 − 25

32 cos(3πs) + 9
32 cos(5πs)

]
, (12)

where s = t/t f . Utilizing Eq. (7), the potential trajectory x0(t )
is obtained as x0(t ) = xc(t ) + ẍc/ω

2.

In order to control the spin states of atoms, we also design
the SOC strength α(t ) according to Eqs. (6) and (8) by choos-
ing appropriate boundary conditions. From the expression of
unitary, we have to set

αc(0) = α̇c(0) = α̈c(0) = 0, αc(t f ) = α̇c(t f ) = α̈c(t f ) = 0,

(13)

and

φ(t f ) = −m

h̄

∫ t f

0
α̇c(τ )x0(τ )dτ = π, (14)

yielding the spin flip, that is, the spin rotation around the z
axis by angle π . Here we just provide an example of spin
flip. Of course, one can choose another angle for spin rotation
or even nonadiabatic holonomic transformations [10]. Instead
of a trigonometric function, a simple and flexible polynomial
ansatz can be fitted according to the boundary conditions men-
tioned above in the form αc(t ) = ∑6

n=0 antn, and we finally
obtain

αc(t ) = N h̄

md
(s6 − 3s5 + 3s4 − s3), (15)

where

N = 253 125π7ω2t2
f

8
(
418 950π2 − 344 250π4 − 48 008ω2t2

f + 41 895π2ω2t2
f

) .

Once αc(t ) is obtained, the SOC strength α(t ) can be derived
from Eq. (8), α(t ) = αc(t ) + α̈c/ω

2. Figure 1(a) illustrates
the dimensionless trap trajectory x0(t )/d (blue solid line) de-
signed from the center of mass xc(t )/d of atoms (red dashed
line). Additionally, Fig. 1(b) demonstrates the dimensionless
SOC strength α(t )md/h̄ (blue solid line) alongside the evalu-
ation of the parameter αc(t )md/h̄ (red dashed line).

Next we investigate the fast transport of an atomic wave
packet using the designed moving trap and SOC strength, as
illustrated in Fig. 1. Based on Eq. (10), we assume that the
initial state is given by

|�(x, 0)〉 = 1
2 (1,

√
2, 1)T ⊗ |ψ (x, 0)〉, (16)

where the ground state is the wave function of the stationary
harmonic oscillator, resulting in

|ψ (x, 0)〉 =
(

1

πa2

)1/4

exp

(
− x2

2a2

)
. (17)

The wave function of the final state is given by

|�(x, t f )〉 = 1
2 (1,−

√
2, 1)T ⊗ |ψ (x, t f )〉, (18)

with

|ψ (x, t f )〉 =
(

1

πa2

)1/4

exp

(
− (x − d )2

2a2

)
. (19)

As an example, our objective is to transport the ground
state from x = 0 to x = d within a shorter time t f without
inducing final excitation, achieved by applying appropriate
boundary conditions (11). Additionally, the boundary con-
dition φ(t f ) = π in Eq. (6) also induces a spin rotation

through exp[−iφ(t )Fz]. Specifically, we assume that the ini-
tial spinor function |χs〉 is one of the eigenstates of Fx,

namely, (1/2, 1/
√

2, 1/2)T, transferring to the other one,

(1/2,−1/
√

2, 1/2)T, at t = t f .
Figure 2 provides insights into the transport of atomic

wave packets facilitated by a moving trap and SOC strength
designed as shown in Fig. 1. In Fig. 2(a) the propagation of the
wave packet during transport is illustrated, highlighting the
effectiveness of the designed trap trajectory. Figure 2(b) com-
pares the initial and final states. Clearly, in accordance with
the designed trap trajectory, the spin-1 atomic wave packet
is transported from x0 = 0 to x0 = d without experiencing
any excitation. Meanwhile, the probabilities of the three spin
components remain equal, due to the condition of spin flip.

To clarify the detailed spin rotation, we examine the prop-
agation of the three spin components as depicted in Fig. 3.
Initially, the spin, not being an eigenstate of the Hamiltonian
(2), commences rotation, leading to the splitting of the wave
packet into three components with distinct velocities. This
splitting is elucidated by the spin-dependent contribution,
where the velocity operator

v = i

h̄
[H, x] = p

m
+ α(t )Fz (20)

yields varying velocities for the spin components. At the
beginning, with the spin parallel to the x axis, the expec-
tation value of velocity is 0, triggering the divergence of
the wave-packet components. At the midpoint t = t f /2, the
spin aligns parallel to the y direction, causing the three
spin components to reconverge with an equal but nonzero
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FIG. 1. (a) Dependence of the trap position x0(t )/d (blue solid
line) and the center of mass xc(t )/d (red dashed line) of atoms on
time t/t f . (b) Dependence of the SOC strength α(t )md/h̄ (blue solid
line) and the auxiliary parameter αc(t )md/h̄ (red dashed line) on time
t/t f . All quantities are dimensionless.

expectation value of velocity. Ultimately, per boundary condi-
tion (6), the spin becomes antiparallel to the x axis, resulting in
the wave packet’s three spin components coinciding and zero
velocity.

Furthermore, we analyze the spin evolution using the
reduced density matrix. Following Ref. [50], the density ma-
trix is defined as ρ(t ) = |�(x, t )〉〈�(x, t )|, where ρi j (t ) =∫

�i(x, t )�∗
j (x, t )dx (i, j = 1, 0,−1). The reduced density

matrix adheres to the wave function’s normalization, tr(ρ) =
ρ11(t ) + ρ22(t ) + ρ33(t ) = 1, and defines the spin-component
expectations as 〈Fi〉 = tr(Fiρ) (i = x, y, z). Figure 4 illustrates
the spin evolution over time. At the outset, with the spin
parallel to the x axis, the spin polarization’s expectation value
is 〈Fx〉(0) = 1, transferring to 〈Fx〉(t f ) = −1 at the end time.
Consequently, atoms are transported while the spin rotates
around the z axis and flips. Although the spin remains in a
pure state initially and finally, nonadiabatic transport induces
spin-dependent excitation, resulting in a mixed state in the
spin subspace.

B. Fast wave-packet splitting

Now let us investigate the fast splitting of a wave
packet with spin-orbit-coupled spin-1 BECs via tunable SOC
strength. For simplicity, we consider a scenario with a static
harmonic trap, where x0(t ) = 0, although including a moving
trap is also possible.

FIG. 2. (a) Propagation contour map of wave packets during the
fast transport process designed using the inverse engineering method.
(b) Density distribution of the total wave function |�(x, t )|2 (black
line) at t = 0 and t = t f , along with the density distribution of the
three spin components |�1,0,−1(x, t )|2, denoted by blue solid line,
black dotted line, and red dashed line, respectively. The parameters
t f = 10 and d = 10 are given in units of T and a0, respectively, as
described in the text.

The single-particle Hamiltonian (2) is reduced to
H = p2

x/2m + mω2x2/2 + α(t )pxFz. In this case, the uni-
tary transformation is nothing but Us(t ) with Uo(t ) = 1.
Utilizing Eq. (10), the wave-function solution |�(t )〉 =

|
|2

-0.5 0 0.5 1 1.5

x/d

FIG. 3. Time evolution of the wave packets with spin-up (blue
solid line), spin-zero (black dotted line), and spin-down (red dashed
line) components at different times t = 0, t f /4, t f /2, 3t f /4, t f . The
parameters are the same as in Fig. 2.
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 F

i 

FIG. 4. Time evolution of spin components 〈Fi〉 during the fast
transport, representing 〈Fx〉 (black solid line), 〈Fy〉 (red dashed line),
and 〈Fz〉 (blue dash-dotted line). The parameters are the same as in
Fig. 2.

U†
s (t )e−iH0t/h̄Us(0)|�(0)〉 can be expressed as

|�(t )〉 = eiφα e[β(t )a†−β∗(t )a]Fz e−iH0t/h̄|�(0)〉, (21)

from which we introduce the displacement operator as

D̂(β ) = e[β(t )a†−β∗(t )a]Fz , (22)

with

β(t ) =
√

mω

2h̄

(
α̇c(t )

ω2
− i

αc(t )

ω

)
. (23)

Without loss of generality, we assume the initial wave function

|�(x, 0)〉 =
√

3

3
(1, 1, 1)T ⊗ |ψ (x, 0)〉, (24)

where the wave function is the ground state of the stationary
harmonic oscillator

|ψ (x, 0)〉 =
(

1

πa2

)1/4

exp

(
− x2

2a2

)
. (25)

Since the coherent state is specific to the harmonic oscillator,
we can determine the center-of-mass position of the atomic
packet for the spin-up and spin-down components as

〈x±(t )〉 = ± 1√
2

a0[β(t ) + β∗(t )] = ± α̇c(t )

ω2
, (26)

respectively. Additionally, the corresponding expectation
value of momentum is given by

〈p±(t )〉 = ± 1

i
√

2

h̄

a0
[β(t ) − β∗(t )] = ∓mαc(t ), (27)

from which the velocity (20) for each wave packet cor-
responding to spin-up and spin-down components can be
obtained from Eq. (8) as

〈v±(t )〉 = ∓[αc(t ) − α(t )] = ± α̈c(t )

ω2
. (28)

This is consistent with the derivation of Eq. (26) with respect
to time. With the expressions provided in Eq. (21) and consid-
ering the initial state assumed in Eq. (24), we can achieve the

0 0.2 0.4 0.6 0.8 1
-20

-15

-10

-5

0

5

10

FIG. 5. Dependence of the SOC strength α(t )t f /d (blue solid
line) designed from αc(t )t f /d (red dashed line) and trajectory
α̇c(t )t2

f /(10d ) (black dash-dotted line) on time t/t f . All quantities
are dimensionless. The parameters are t f = 10/ω and d = 10.

final state with equal spin components at t = t f , as depicted
by

|�i(x, t f )〉 =
√

3

3

(
1

πa2

)1/4

exp

(
− (x2 − x2

i )

2a2

)
, (29)

where i = {1, 0,−1}, x1 = d (x−1 = −d) represents the final
positions of the two split wave packets with spin-up (spin-
down) components, and x0 = 0 for the zero-spin component.

With this background and understanding, we can proceed
to engineer inversely the time-dependent SOC strength to
realize the desired fast splitting within the prescribed time t f

and distance d . To do this, we set the boundary conditions

αc(0) = 0, α̇c(0) = 0, α̈c(0) = 0,

αc(t f ) = 0, α̇c(t f ) = ω2d, α̈c(t f ) = 0. (30)

From Eqs. (20), (26), and (27), the boundary conditions men-
tioned above suggest that the final velocity for spin-up and
spin-down components is zero, like the initial one. Consistent
with this, we simply choose the polynomial ansatz in the form
αc(t ) = ∑5

i=0 ait i to satisfy the above boundary conditions
such that the function of αc(t ) is obtained as

αc(t ) = −dω2t f (3s5 − 7s4 + 4s3), (31)

which determines the trajectories of the split wave packets
with spin-up and spin-down components through Eq. (26).
Then the combination of Eqs. (8) and (31) finally gives

α(t ) = −ds

t f

[
ω2t2

f (4s2 − 7s3 + 3s4) + 12(5s2 − 7s + 2)
]
.

(32)

As depicted in Fig. 5, the time-dependent SOC strength α(t )
designed here is compared with the trajectory of the split wave
packets, which is determined by α̇c(t )/ω2.

Figure 6(a) illustrates the fast splitting process of spin-up
and spin-down polarized wave packets, which are transformed
to positions 〈x±(t f )〉 = ±d , fulfilling the boundary conditions
(30). Meanwhile, the zero-spin component remains static
without any displacement. It is notable that the trajectories
of the spin-up and spin-down components are symmetrically
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FIG. 6. (a) Contour map illustrating the propagation of three
spinor wave packets during the fast splitting process designed via
the inverse engineering method. In this process, the wave packets
are finally separated by the distance ±d for the spin-up and spin-
down components, while the zero-spin component remains static.
(b) Density distribution displaying the initial total wave function
|�(x, 0)|2 (black solid line) and the density distribution of the three
spin components |�1,0,−1(x, t f )|2 (red dashed line, black dotted line,
and blue dash-dotted line, respectively) at t = t f . The parameters are
consistent with those used in Fig. 5.

separated, a consequence of the opposing velocity of the two
components, as given by Eq. (28). To clearly depict the re-
sults of the wave-packet splitting, the probability distributions
of wave packets at the initial and final times are shown in
Fig. 6(b).

As a matter of fact, the utilization of time-dependent SOC
serves a similar function to spin-dependent forces in the con-
trolled splitting of atomic wave packets [51]. Our approach
offers alternative promising avenues for enhancing atomic
interferometry, providing precise manipulation and control
over atomic states to enable high-resolution measurements.
Through the inverse engineering of SOC, tailored atomic
wave packets with specific spatial and spin characteristics can
be generated, potentially enhancing the sensitivity and accu-
racy of interferometric analyses. Further investigation into this
approach, even with a moving trap, is worthwhile to explore
its nuances and potential applications.

IV. COMPARISON WITH A SIMPLE CASE OF CONSTANT
SOC AND VELOCITY

While the time-dependent SOC and trap trajectory pro-
vide intricate control over the dynamics, the simpler case of
constant SOC and velocity of the trap provides a baseline
for comparison. Constant SOC, albeit less flexible in its ma-

nipulation, still influences the motion and spin dynamics of
atoms.

First, to illustrate the advantage of the inverse engineering
method, we consider a scenario with constant SOC strength,
denoted by α, and constant velocity, represented by d/t f .
When t f is sufficiently large, the adiabatic condition is ful-
filled, ensuring that ẋc and ẍc are negligible, leading to xc(t ) =
x0(t ). By substituting the constant SOC strength α into Eq. (8),
we have

αc(t ) = α[1 − cos(ωt )], (33)

with the initial boundary conditions αc(0) = α̇c(0) = 0.
When ωt f = 2kπ (k = 1, 2, 3, . . .), the boundary conditions
αc(t f ) = α̇c(t f ) = 0 are fulfilled. Moreover, the phase factor
(6) is obtained as

φ(t f ) = −mdα

h̄ωt f
[sin(ωt f ) − ωt f cos(ωt f )], (34)

by using α̇c(t ) = αω sin(ωt ) and x0(t ) = dt/t f . When ωt f =
2kπ , the phase factor becomes φ(t f ) = d/λSOC, where
λSOC = h̄/mα, representing the SOC length. By imposing
φ(t f ) = π , we get the characteristic length for spin flip dsp =
πλSOC, resulting in the spin-flip time tsp = dspt f /d .

Figure 7(a) illustrates that the spin-orbit-coupled spin-1
wave packet of atoms can be transported from x0 = 0 to x0 =
d when t f = 200π/ω, a duration long enough to satisfy the
adiabatic criterion. In this scenario, t f is an integer multiple
of 2π/ω, resulting in αc(t f ) = α̇c(t f ) = 0, ensuring no final
excitation of the orbital motion and an exact displacement
of d for the wave function. Concurrently, the spin dynamics
is governed by the characteristic length dsp, indicating the
spin flip can be achieved if the transport distance is dsp or an
odd multiple of dsp. As depicted in Fig. 7(b), when d = 10
and α = 1, the spin-flip time is tsp = 0.314t f . In this case,
d 	= (2k − 1)dsp; hence the final spin state is not the eigenstate
of Fx, preventing complete spin flipping. However, at the final
moment, the wave function of the three spin components coin-
cides with the same displacement d . Consequently, the atomic
wave packet can be adiabatically transported from x0 = 0 to
x0 = (2k − 1)dsp, while achieving spin flip simultaneously.
It is worth noting that, in the adiabatic approximation, the
characteristic length for spin flip depends solely on the SOC
strength, not the transport velocity. Adiabatic transport with
constant SOC strength and velocity has an effect on the orbital
and spin dynamics that is comparable to the inverse engineer-
ing method, albeit requiring a specific longer time and limited
to relatively small final positions.

Second, we examine the splitting process with constant
SOC strength α for completeness. Again, we have αc(t ) =
α[1 − cos(ωt )] and x0(t ) = xc(t ) = 0. Based on Eq. (26), we
derive the center-of-mass position of the atomic wave packets
for the spin-up and spin-down components as

〈x±(t f )〉 = ± α̇c(t f )

ω2
= ±α sin(ωt f )

ω
. (35)

Also, the velocity for each wave packet can be obtained from
(28) as

〈v±(t f )〉 = ± α̈c(t f )

ω2
= ±α cos(ωt f ). (36)
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FIG. 7. (a) Density distribution of the total wave function
|�(x, t )|2 (black solid line) at t = 0 and t = t f , along with the density
distribution of the three spin components, denoted by |�1,0,−1(x, t )|2
(blue solid line, black dotted line and red dashed line, respectively).
(b) Time evolution of spin components 〈Fi〉 in the presence of con-
stant SOC strength during the adiabatic transport, where 〈Fx〉 (black
solid line), 〈Fy〉 (red dashed line), and 〈Fz〉 (blue dash-dotted line) are
depicted, respectively. The parameters are α = 1, t f = 200π/ω, and
d = 10.

Thus, Eq. (35) illustrates that the center-of-mass position of
the wave packets with the spin components varies with time
t f . Notably, when ωt f = 2kπ (k = 1, 2, 3, . . .), 〈x±(t f )〉 =
0 and the atomic packet cannot split into three compo-
nents. Additionally, to achieve stable wave packets with
three components, the final velocity for spin-up and spin-
down components must be zero. According to Eq. (36), this
condition requires ωt f = π/2 + kπ (k = 1, 2, 3, . . .) to be
satisfied. Based on this analysis, although constant SOC can
achieve stable wave-packet splitting, it provides only specific
values of t f . In this sense, the inverse engineering method
offers more flexibility and convenience.

V. NUMERICAL SIMULATION

In this section we explore the interatomic collisional inter-
actions in the transport and splitting processes, designed by
our inverse engineering method. When nonlinear interactions
exist between atoms, the mean-field Hamiltonian in Eq. (1)
can be expressed as [45]

Hint =
⎛
⎝�1 0 0

0 �0 0
0 0 �−1

⎞
⎠, (37)
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FIG. 8. Fidelity of (a) fast transport with spin flip and (b) split-
ting compared against the nonlinearity parameter c0, where the
Gaussian initial states are used. In (a) the time-dependent SOC and
moving trap trajectories are designed according to Fig. 1 and in
(b) the time-dependent SOC is designed according to Fig. 5. The
parameters are c2/c0 = −0.005 (red dashed line) and c2/c0 = −1
(blue solid line). The other parameters are consistent with those in
Figs. 1 and 5, respectively.

where �± = (c0 + c2)(|ψ1|2 + |ψ0|2 + |ψ−1|2) − 2c2|ψ∓|2
and �0 = (c0 + c2)(|ψ1|2 + |ψ0|2 + |ψ−1|2) − c2|ψ0|2. The
nonlinearities are determined by density-density interactions
with the coefficient c0 and spin-spin interactions with the
coefficient c2. Typically, for 87Rb atoms, one can select
parameters such as c0 = 0.05 (in units of

√
m/h̄2ω),

along with a ratio of c2/c0 = −0.005 in the literature
[45]. Moreover, in another study [52], different values
of c0 = 0.25 and c2 = −0.001 were used. As a matter
of fact, the strength of these interactions can be adjusted
using Feshbach resonance techniques. Hence, we intend to
investigate the stability of our STA protocols for transport and
splitting within the region of nonlinear interaction.

To quantify the stability against the nonlinear interaction,
we define the fidelity as

F = |〈�(x, t f )|�̃(x, t f )〉|2, (38)

where |�(x, t f )〉 represents the target state at t = t f obtained
through inverse engineering and |�̃(x, t f )〉 is the exact evo-
lution of the wave packet obtained using the split-operator
method, particularly for spinor BECs [48,49].

In Fig. 8(a) the fidelity of the rapid transport with spin flip
is illustrated using the designed time-dependent SOC strength
α(t ) and trap trajectory x0(t ) as shown in Fig. 1. Following
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the concept of STAs, the initial and final states are assumed by
Eqs. (16) and (18). However, the exact final state, calculated
from the split-operator method, slightly deviates from the
target state due to interatomic interactions. With the influence
of interatomic interaction, the final state obtained from numer-
ical simulation is different from the target one. Consequently,
the fidelity in terms of the nonlinearity parameter c0 deterio-
rates, especially as we increase the ratio c2/c0 from −0.005
to −1. In Fig. 8(b) we further elucidate the fidelity of fast
splitting using the STA protocol with the time-dependent SOC
strength α(t ), depicted in Fig. 5. Once again, the initial and
final states are determined by Eqs. (25) and (29). Again, we
observe that the fidelity decreases with increasing nonlinear
parameter c0. However, when altering the ratio c2/c0 from
−0.005 to −1, this fidelity behavior differs from that observed
in the transport case, owing to differences in the probabil-
ity of spinor wave functions. Nonetheless, Fig. 8 highlights
that the fidelity remains reasonably high when c0 = 1 and
c2/c0 = −1. This underscores the importance of mitigating
the effects of atomic interactions in the context of SOC BECs
for precise control and manipulation of atomic states, utilizing
our analytical STA presented before. In addition, for even
larger nonlinear interaction c0 
 5 and c2/c0 = −1 (not de-
picted in Fig. 8), the fidelity is far from perfect. In such cases,
we have to emphasize that alternative methods for designing
STAs, including hydrodynamic formalism [53] and variational
approximation [54], become necessary.

Finally, we attempt to access the stability concerning the
transverse potential � described in Eq. (2). We note that
when � = 0, the conservation of the spin component Fz is
observed. Consequently, the orbit motion corresponding to
the center of mass remains unaffected by the detuning δ,
as indicated in Eq. (20). Hence, we set δ to zero for this
case. However, the appearance of the transverse potential �

breaks the conservation of Fz, altering the dynamics. Con-
sequently, the fidelity decreases with the Zeeman potential
in both transport and splitting processes, as illustrated in
Fig. 9. Furthermore, to prepare the initial state with the spinor
component along Fx in a realistic experiment, we need to
switch on the Zeeman potential since the SOC strength is
initially zero. By gradually increasing the Zeeman poten-
tial, the energy spectrum corresponding to BECs changes
from parabolic to nonparabolic energy dispersion, leading to
changes in the eigenstates accordingly. In the insets of Fig. 9,
we showcase the stationary state through imaginary-time evo-
lution, which differs from the Gaussian ground state of the
harmonic trap. Naturally, the fidelity worsens as a conse-
quence in this scenario. In further work, the SOC strength
and trap trajectory can be optimized with respect to the trans-
verse potential �, or variational dynamics [22] combined
with inverse engineering may be employed to address this
issue.

VI. CONCLUSION

In summary, we have delved into the dynamics of spin-
orbit-coupled spin-1 BECs, specifically focusing on their fast
transport with spin flip and efficient splitting using the inverse
engineering method rooted in STAs. Initially, we achieved
fast transport of spin-orbit-coupled spin-1 BECs with spin
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FIG. 9. Fidelity of (a) fast transport with spin flip and (b) split-
ting compared against the transverse potential �, where the Gaussian
initial state (red dashed line) and the stationary state obtained from
the imaginary-time evolution (blue solid line) are used. In (a) the
time-dependent SOC and moving trap trajectories are designed ac-
cording to Fig. 1 and in (b) the time-dependent SOC is designed
according to Fig. 5. The inset illustrates the difference between the
Gaussian ground state of the harmonic trap (black solid line) and
the stationary state |�1,0,−1(x, 0)|2 obtained from the imaginary-time
evolution (blue solid line, black dash-dotted line, and red dashed
line), for example, at �/ω = 0.02. The parameters are c0 = 0.05 and
c2/c0 = −0.005. The other parameters are consistent with those in
Figs. 1 and 5, respectively.

flip within a short time. This involved designing the potential
position and time-dependent SOC strength using the inverse
engineering method, with careful consideration of boundary
conditions to ensure simultaneous rapid transport and spin
flip. Subsequently, we extended this method to achieve rapid
splitting, generating spin-dependent coherent states within a
short timescale in a static harmonic potential. Through rig-
orous numerical calculations, we confirmed the coherence
of the obtained states, validating the effectiveness of our
proposed method. Moreover, we conducted a comparative
analysis between our proposed method and simple (adiabatic)
case of constant SOC strength and/or trap velocity. De-
spite the challenges in controlling time-dependent SOC and
moving potential, the inverse engineering method demon-
strated greater flexibility and efficiency, enabling faster and
more precise control over atomic states. Additionally, we
examined the influence of nonlinear interactions described
by the GPE on the transport and splitting processes. Despite
the presence of atomic interactions, our proposed method
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remained effective, even with slightly different initial states
in the presence of transverse potential.

However, several challenges and open questions remain.
Experimental realization of the designed time-dependent
potentials and SOC strengths somehow poses technical chal-
lenges [18,31]. In addition, understanding the effects of
environmental noise and systematic errors on the fidelity,
scalability to larger systems with multiple interacting par-
ticles, and extension to other quantum systems beyond
spin-orbit-coupled spin-1 BECs are areas that require further
investigation. For instance, the SOC strength and trap trajec-
tory can be optimized with respect to systematic errors or
noise by using optimal control theory [55,56] and machine
learning as well [57]. Succinctly, we have proposed to ma-
nipulate cold atoms in the ground state effectively within
this framework, facilitating rapid transport [58,59] and the
creation of nonclassical states [60,61]. We hope the insights

gained from our study have potential applications in quantum
information processing and quantum metrology.
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