
PHYSICAL REVIEW A 109, 063309 (2024)

Pairing properties of an odd-frequency superfluid Fermi gas
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We theoretically investigate strong-coupling properties of an odd-frequency Fermi superfluid. This pairing
state has the unique property that Cooper pairs are formed between fermions, not at the same time, but at different
times. To see whether or not such unequal-time pairs still exhibit bosonic behavior, we examine the space-
time structure of the odd-frequency Cooper-pair wave function at T = 0, by employing the combined path-
integral formalism with the BCS-Eagles-Leggett-type superfluid theory. In the strong-coupling regime, the odd-
frequency pair wave function still has different space-time structure from that in the ordinary even-frequency s-
wave superfluid state; their magnitudes are found to become close to each other, except for the equal-time pairing
component. In this regime, we also evaluate the superfluid phase transition temperature Tc within the framework
of the strong-coupling theory developed by Nozières and Schmitt-Rink. The calculated Tc in the strong-coupling
regime of the odd-frequency system is found to be well described by the Bose-Einstein condensation of tightly
bound Bose molecules. Our results indicate that, in spite of vanishing equal-time pairing, odd-frequency Cooper
pairs still behave like bosons in the strong-coupling regime, as in the even-frequency s-wave superfluid case.

DOI: 10.1103/PhysRevA.109.063309

I. INTRODUCTION

In cold atom physics, along with the p-wave pairing
state [1–23] and the Fulde-Ferrell-Larkin-Ovchinnikov state
[24–40], the odd-frequency pairing state has recently attracted
much attention as a candidate for unconventional Fermi su-
perfluid [41–43]. As in the ordinary even-frequency s-wave
superfluid state, Cooper pairs are formed also in the odd-
frequency superfluid state; however, a crucial difference from
the even-frequency case is that the odd-frequency Cooper pair
consists of two fermions, not at the same time, but at different
times [43,44]. Since the even-frequency s-wave superfluid
state has been realized in 40K [45] and 6Li [46–48] Fermi
gases by using a Feshbach resonance [49–52], exploring an
odd-frequency pairing state is an exciting challenge in the
current stage of cold Fermi gas physics.

This unique state was first introduced in the context of
superfluid liquid 3He by Berezinskii [44], and this idea was
later extended to metallic superconductivity [53–55]. Since
then, the odd-frequency superconductivity has extensively
been discussed by many researchers in various supercon-
ducting systems, such as superconducting junctions [56–60],
strongly correlated electron systems [61–66], Kondo lat-
tice systems [67–71], multiband superconductors [72,73],
nonequilibrium systems [74–76], as well as superconducting
systems with Bogoliubov Fermi surfaces [77]. Experimen-
tally, the observation of the paramagnetic Meissner effect,
which is considered as a typical odd-frequency supercon-
ducting phenomenon near the surface, was recently reported
in an Al/Ho/Nb junction [78,79]. More recently, the gap-
less superconducting density of states, which is considered
to be consistent with a bulk odd-frequency pairing state,
was also observed through the temperature dependence of
the spin-lattice relaxation rate T −1

1 in heavy fermion com-
pound CeRh0.5Ir0.5In5 [80]. In this way, the odd-frequency

superconductivity has been extensively studied both theo-
retically and experimentally in condensed-matter physics.
Thus, the realization of an odd-frequency superfluid Fermi
atomic gas would also make a great impact on this research
field.

As mentioned previously, the unequal-time pairing is char-
acteristic of the odd-frequency superfluid state. Regarding
this, we recall that, in the ordinary even-frequency case,
the superfluid instability may be interpreted as a kind of
Bose-Einstein condensation (BEC) of Cooper-pair “bosons.”
Since the even-frequency pairing dominantly occurs between
fermions at the same time [see Fig. 1(a)], this simple picture
seems reasonable, especially in the strong-coupling regime,
where most fermions form tightly bound molecules. Indeed,
such a situation is realized in the BEC regime of the BCS-
BEC crossover phenomenon [51,81–88], where the superfluid
phase transition Tc agrees well with the BEC phase tran-
sition temperature TBEC of an ideal Bose gas consisting of
N/2 molecules (where N is the number of fermions). On the
other hand, as schematically shown in Fig. 1(b), the vanishing
equal-time pairing in the odd-frequency case is quite different
from the naive molecular picture. Thus, this raises the inter-
esting question of whether or not such kind of unequal-time
pair still behaves like a boson.

The purpose of this paper is to theoretically explore the
answer to this question. For this purpose, we consider a model
odd-frequency superfluid Fermi gas, and take the following
steps.

(1) At T = 0, we calculate the space-time structure of the
odd-frequency Cooper-pair wave function ϕodd(r, t ), within
the framework of the mean-field base strong-coupling theory
developed by Eagles and Leggett [89,90] (which is referred
to as the BCS-Eagles-Leggett theory in what follows). We
examine the similarity of ϕodd(r, t ) to the even-frequency
case, especially in the strong-coupling regime where the
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even-frequency system is well described by an ideal molecular
Bose gas.

(2) We evaluate Tc, by extending the strong-coupling the-
ory for even-frequency s-wave Fermi superfluids developed
by Nozières and Schmitt-Rink (NSR) [81], to the odd-
frequency case. In the strong-coupling regime where Tc in the
even-frequency case agrees well with TBEC of an ideal Bose
gas, we examine whether or not the same “bosonic picture” is
applicable to Tc in the odd-frequency case.

We briefly note that in theoretically treating a bulk
odd-frequency Fermi superfluid, the ordinary Hamiltonian
formalism is known to give the unphysical result that the
superfluid state becomes stable above Tc [91]. This puzzle
was recently solved by employing the path-integral formalism
[92,93]. Following this progress, we also construct our theory
by using this approach [92–95] in this paper.

This paper is organized as follows: In Sec. II, we explain
our formalisms in the superfluid state at T = 0 based on the
BCS-Eagles-Leggett theory [89,90], as well as at Tc based
on the NSR theory [81]. In Sec. III, we show our zero-
temperature results on the superfluid order parameter, as well
as the Fermi chemical potential. Using these data, we evaluate
the pair wave function ϕodd(r, t ) in Sec. IV. Here, we also cal-
culate Tc, to see whether or not a gas of odd-frequency Cooper
pairs can be viewed as a Bose gas in the strong-coupling
regime. Throughout this paper, we set h̄ = kB = 1, and the
system volume V is taken to be unity, for simplicity.

II. FORMULATION

A. Model odd-frequency Fermi gas

We consider a single-component Fermi gas with an odd-
frequency pairing interaction. Following Refs. [92,93], we
start from the partition function in the path-integral represen-
tation:

Z =
∫

Dψ̄Dψe−S[ψ̄,ψ] =
∏

k

∫
dψ̄kdψke−S[ψ̄,ψ]. (1)

Here, the Grassmann variable ψk and its conjugate ψ̄k

describe Fermi atoms. In Eq. (1), we have introduced the ab-
breviated notation k = (k, iωn), where ωn is the fermion Mat-
subara frequency. The action S[ψ̄, ψ] = S0 + S1 in Eq. (1)
consists of the kinetic term S0 and the pairing interaction term
S1, that are given by, respectively,

S0 =
∑

k

ψ̄k[−iωn + ξk]ψk, (2)

S1 = 1

2β

∑
q,k,k′

Vk+q/2,k′+q/2ψ̄k+qψ̄−kψ−k′ψk′+q. (3)

Here β = 1/T , and q = (q, iνn) with νn being the boson
Matsubara frequency. In Eq. (2), ξk = εk − μ = k2/(2m) − μ

is the kinetic energy of a Fermi atom, measured from the
Fermi chemical potential μ (where m is an atomic mass).
V (k, k′) = V (k, iωn, k′, iω′

n) in Eq. (3) is an odd-frequency
pairing interaction, where the dependence of the Matsubara
frequency (ωn and ω′

n) describes retardation effects of this
interaction. In this paper, we do not discuss the origin of this

r

t
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FIG. 1. Illustration of the space-time structure of a Cooper pair.
(a) Even-frequency superfluid state. (b) Odd-frequency superfluid
state. r and t are, respectively, the relative coordinate and the relative
time between two fermions (“A” and “B”). While the equal-time
pairing is dominant in the even-frequency Cooper pair, it vanishes
in the odd-frequency case.

interaction, but simply assume the following separable form:

Vk,k′ = −Uγ (k, iωn)γ (k′, iω′
n). (4)

Here, −U (< 0) is a coupling strength. (In Appendix A, we
briefly explain how this kind of interaction is obtained in the
case of phonon-mediated interaction.) When we use Eq. (4),
the symmetry of the superfluid order parameter 
(k, iωn) is
determined by the basis function γ (k, iωn) as


(k, iωn) = 
γ (k, iωn), (5)

where 
 is a constant. Keeping this in mind, we chose the
following odd-frequency basis function in this paper:

γ (k, iωn) = ωn

|ωn|

√
ω2

n + ξ 2
k√

ω2
n + ξ 2

k + �2
. (6)

As shown in Appendix A, � in Eq. (6) is related to the
frequency of the Einstein phonon in a phonon-mediated in-
teraction. In this sense, � may be regarded as a parameter to
tune retardation effects coming from the model interaction in
Eq. (4).

The resulting superfluid order parameter 
(k, iωn) in
Eq. (5) has the odd-frequency spin-triplet s-wave pairing sym-
metry [96]. That is, 
(k, iωn) is an odd function with respect
to ωn (see Fig. 2), and isotropic in momentum space.

Here, we comment on the reason for the choice of Eq. (6):
In superconductivity literature, the separable pairing interac-
tion in Eq. (4) is frequently used to describe an anisotropic
(unconventional) superconducting order parameter in momen-
tum space. (In this case, the frequency dependence of the
basis function is usually dropped.) For example, the dx2−y2 -

Λ= 0
Λ> 0

Δ

−Δ

Δ(k,iωn)

ξk=0

FIG. 2. Illustration of the odd-frequency superfluid order param-
eter 
(k, iωn) in Eq. (5) as a function of ωn, when ξk = 0.
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wave superconductivity discussed in high-Tc cuprates can be
described by setting γ (k) ∝ k2

x − k2
y . In this way, the basis

function can flexibly be chosen in terms of the momentum
dependence of the pairing state. On the other hand, one needs
to be careful in the odd-frequency case. For example, one
may think that the simpler basis function γ (k, iωn) = ωn is
more tractable than Eq. (6) as a model odd-frequency pairing
interaction. However, the diagonal component of the resulting
mean-field BCS Green’s function [43],

G(1,1)
odd (k, iωn) = − iωn + ξk

[1 + |
|2]ω2
n + ξ 2

k

, (7)

gives the following single-particle spectrum weight A(k, ω):

A(k, ω) = − 1

π
Im
[
G(1,1)

odd (k, iωn → ω + iδ)
]

= 1 +
√

1 + |
|2
2[1 + |
|2]

δ(ω − ξk)

+ 1 −
√

1 + |
|2
2[1 + |
|2]

δ(ω + ξk), (8)

where δ in the first line is an infinitesimally small positive
number. Equation (8) is unphysical, because the last term is
negative. In contrast, we will show in Sec. III that Eq. (6)
gives positive A(k, ω) [97]. [We show in Appendix A that
the positivity of A(k, ω) again breaks down when we drop the
factor ξ 2

k in Eq. (6).]
We introduce the Cooper-pair Bose field � as well as

its conjugate field �̄, by way of the Stratonovich-Hubbard
transformation [98,99]. Executing the fermion path integrals,
we have (for the derivation, see Appendix B)

Z ∝
∫

D�̄D�e−Seff [�̄,�]

=
∏

q

∫
dRe[�q]dIm[�q]e−Seff [�̄,�], (9)

where the effective action Seff is given by

Seff = −1

2
Tr ln[−Ĝ−1] +

∑
q

�̄q�q

2U
+ β

2

∑
k

ξk. (10)

Here,

Ĝ−1
kk′ =

⎛
⎝ [iωn − ξk]δk,k′ 1√

β
γ
(

k+k′
2 ,

iωn+iω′
n

2

)
�k−k′

1√
β
γ
(

k+k′
2 ,

iωn+iω′
n

2

)
�̄k′−k [iωn + ξk]δk,k′

⎞
⎠

(11)

is the inverse of the 2 × 2 matrix single-particle thermal
Green’s function [11,100–103].

B. Odd-frequency superfluid state at T = 0

Eagles and Leggett pointed out that the mean-field BCS
theory, which was originally invented for weak-coupling su-
perconductivity, is actually applicable to the whole BCS-BEC
crossover region (at least qualitatively), when we deal with the
BCS gap equation, together with the equation for the number
N of fermions, to self-consistently determine the superfluid
order parameter and the Fermi chemical potential. In this

paper, we extend this scheme to the odd-frequency Fermi
superfluid described by the effective action Seff in Eq. (10).

It is well known that the mean-field BCS theory corre-
sponds to the saddle-point approximation in the path-integral
formalism. In this approximation, the path integrals with re-
spect to the Cooper-pair fields �̄ and � in Eq. (9) are replaced
by the representative value at the saddle-point solution [104].
The resulting partition function (≡ ZSP) has the form

ZSP = e−{ β
∗


2U + β

2

∑
k ξk− 1

2 ln (− det [−Ĝ−1
SP ])}, (12)

where [Ĝ−1
SP ]kk′ = Ĝodd(k)−1δk,k′ with

Ĝodd(k) = 1

iωn − ξkτ3 + ( 0 
γ (k, iωn )

∗γ (k, iωn ) 0

) (13)

being the 2 × 2 matrix mean-field single-particle thermal
Green’s function in the odd-frequency superfluid state (where
τi=1,2,3 are the Pauli matrices acting on particle-hole space).
In obtaining ZSP in Eq. (12), we have chosen the Cooper-pair
fields at the saddle point as [92,93]

�q =
√

β
δq,0,

�̄q =
√

β
∗δq,0. (14)

The mean-field superfluid order parameter 
 in Eq. (14) is
determined from the saddle point condition:

∂�MF

∂
∗ = 0. (15)

Here,

�MF = −T ln ZSP

= |
|2
2U

+ 1

2

∑
k

ξk − 1

2β

∑
k

ln

× [ω2
n + ξ 2

k + |
|2γ (k, iωn)2
]

(16)

is just the mean-field thermodynamic potential. Substituting
Eq. (16) into Eq. (15), we obtain the BCS-type gap equation,

1 = U

β

∑
k,ωn

γ (k, iωn)2

ω2
n + ξ 2

k + |
|2γ (k, iωn)2

= U
∑

k

1

2Eodd(k,�)
tanh

(Eodd(k,�)

2T

)
, (17)

where

Eodd(k,�) =
√

ξ 2
k + �2 + |
|2 (18)

describes Bogoliubov single-particle excitations. We briefly
note that the gap Eq. (17) can also be obtained from the
(1, 2) component G(1,2)

odd of the 2 × 2 matrix Green’s function
in Eq. (13) as


γ (k, iωn) = 1

β

∑
k′

Vk,k′G(1,2)
odd (k′). (19)

As pointed out in Refs. [92,93], the choice in Eq. (14)
guarantees the expected thermodynamic behavior that the
superfluid phase becomes stable below Tc. In contrast, the
Hamiltonian formalism gives the opposite result that the sec-
ond equation in Eq. (14) is replaced by �̄q = −√

β
∗δq,0
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[92,93], which lead to the unphysical situation, as mentioned
previously.

We remove the ultraviolet divergence involved in the gap
Eq. (17) by the same prescription as that used in the BCS-BEC
crossover theory for even-frequency s-wave Fermi superfluids
[82,83,90]: We measure the interaction strength in terms of
the s-wave scattering length as in an assumed two-component
Fermi gas with a contact-type s-wave pairing interaction HI ≡
−Uδ(r1 − r2), which is related to −U as [83]

4πas

m
= − U

1 − U
∑

k
1

2εk

. (20)

We then rewrite the gap Eq. (17) as

1 = −4πas

m

∑
k

[
1

2Eodd(k,�)
tanh

(Eodd(k,�)

2T

)
− 1

2εk

]
.

(21)

In this scale, the weak-coupling (strong-coupling) regime is
described as (kFas)−1 � −1 [(kFas)−1 � +1], where kF is the
Fermi momentum.

In the BCS-Eagles-Leggett scheme [89,90], we solve the
gap Eq. (21) at T = 0, together with the equation for the
number N of Fermi atoms. The latter equation is obtained
from the (1, 1) component of the Green’s function in Eq. (13)
[105]:

N = 1

β

∑
k

G(1,1)
odd (k)

∣∣∣
T =0

= �2

|
|2 + �2

∑
k

�(−ξk)

+ |
|2
|
|2 + �2

∑
k

1

2

[
1 − ξk

Eodd(k,�)

]
, (22)

where �(−ξk) is the step function.

C. Pair wave function

To examine the space-time structure of the odd-frequency
Cooper pair, we consider the pair wave function at T = 0,
given by [106]

ϕodd(r, t ) = 〈ψ (r, t )ψ (0, 0)〉
= −i

∑
k

e−ik·rG<,(1,2)
odd (k,−t ), (23)

where the lesser Green’s function G<,(1,2)
odd (k, t ) is related to the

(1, 2) component of the thermal Green’s function Ĝ(k, iωn) in
Eq. (13) as [107]

G<,(1,2)
odd (k, t ) =

∫ ∞

−∞

dω

2π
e−iωtG<,(1,2)

odd (k, ω), (24)

G<,(1,2)
odd (k, ω) = − f (ω)

[
G(1,2)

odd (k, iωn → ω + iδ)|ωn>0

− G(1,2)
odd (k, iωn → ω − iδ)|ωn<0

]
. (25)

Here, f (ω) is the Fermi distribution function, which equals
the step function �(−ω) at T = 0.

To grasp the background physics of ϕodd(r, t ), it is helpful
to recall the pair wave function discussed in the ordinary
(even-frequency) spin-singlet s-wave pairing state given by
[106]

ϕeven(r) = 〈ψ↓(r)ψ↑(0)〉

= 
even

4π2r

∫ ∞

0
dk

k

Eeven(k)
sin(kr). (26)

The outline of the derivation is explained in Appendix C.
In Eq. (26), the field operator ψσ=↑,↓(r) describes fermions
with pseudospin σ =↑,↓, and Eeven(k) = √

ξeven(k)2 + 
2
even,

where ξeven(k) = εk − μeven is the kinetic energy, measured
from the Fermi chemical potential μeven. The s-wave super-
fluid order parameter 
even (which is taken to be real, for
simplicity), as well as μeven, are determined from the BCS-
Eagles-Leggett coupled equations [90]

1 = −4πas

m

∑
k

[
1

2Eeven(k)
− 1

2εk

]
, (27)

N =
∑

k

[
1 − ξeven(k)

Eeven(k)

]
. (28)

Deep inside the strong-coupling regime, where μeven 
−1/(2ma2

s ) < 0 and |μeven| � 
even [83,90], one finds

ϕeven(r)  m
even

4πr
e−r/as . (29)

Apart from the unimportant constant factor, Eq. (29) is just
the same form as the wave function of a two-body bound state
with the binding energy [83,88]

Ebind = 1

ma2
s

. (30)

In the weak-coupling BCS regime (where μeven  εF, with
εF being the Fermi energy), Eq. (26) is reduced to

ϕeven(r)  m
even

2π2r
K0

(
r

ξcoh

)
sin(kFr), (31)

where K0(x) is the zeroth modified Bessel function, and ξcoh =
vF/
even is the BCS coherence length [108] (where vF is the
Fermi velocity). Noting that K0(x)  √

π/(2x)exp(−x) for
x � 1, one finds that Eq. (31) physically describes a Cooper
pair whose spatial size is comparable to the coherence length
ξcoh. In this sense, ϕodd(r, t ) in Eq. (23) is a natural extension
of the equal-time pair wave function, to include effects of time
difference between two fermions involved in the Cooper pair.

Since the (1, 2) component G(1,2)
odd (k, iωn) of the odd-

frequency Green’s function in Eq. (13) is isotropic in
momentum space, one can rewrite ϕodd(r, t ) in Eq. (23) as

ϕodd(r, t ) = i

2π2r

∫ ∞

0
kdk sin(kr)

∫ ∞

−∞

dω

2π
[eiωt f (ω)

+ e−iωt f (−ω)]G(1,2)
odd (k, iωn → ω + iδ)|ωn>0.

(32)

In obtaining Eq. (32), we have used the symmetry property,

G(1,2)
odd (k, iωn → −ω − iδ)|ωn<0

= −G(1,2)
odd (k, iωn → ω + iδ)|ωn>0. (33)
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FIG. 3. Spatial variation of equal-time pair wave function
ϕeven(r) in Eq. (26) at T = 0. ρ0 is given in Eq. (44).

At t = 0, because the retarded Green’s function
G(1,2)

odd (k, iωn → ω + iδ) is analytic in the upper-half complex
plane, the ω integration in Eq. (32) vanishes by closing
the integral path in the upper-half plane. Thus, while the
equal-time pair wave function ϕeven(r) is nonzero in the
even-frequency case as shown in Fig. 3, one finds

ϕodd(r, t = 0) = 0 (34)

in the odd-frequency case.
For later convenience, we introduce the time-dependent

even-frequency pair wave function as

ϕeven(r, t ) = 〈ψ↓(r, t )ψ↑(0, 0)〉

= 
even

4π2r

∫ ∞

0
dk

k

Eeven(k)
sin(kr)e−iEeven (k)t . (35)

We summarize the derivation of Eq. (35) in Appendix C.

D. Superfluid phase transition temperature Tc

We next consider Tc within the framework of the NSR the-
ory [81]. In the path-integral formalism, this strong-coupling
theory corresponds to the Gaussian fluctuation theory with
respect to the auxiliary Bose fields �q and �̄q around �q =
�̄q = 0 [82,83]. Expanding the effective action Seff in Eq. (10)
with respect to these fields up to the second order, one obtains
the NSR partition function ZNSR as

ZNSR = e− β

2

∑
k ξk+ 1

2

∑
k ln(ω2

n+ξ 2
k )
∫

D�̄D�e
1

2U �̄q[1−U�(q)]�q

= e− β

2

∑
k ξk+ 1

2

∑
k ln(ω2

n+ξ 2
k )
∏

q

1

1 − U�(q)
, (36)

where we have dropped an unimportant constant factor. In
Eq. (36),

�(q) = 1

β

∑
k

γ (k, iωn + iνn/2)2G0

×
(

k + q
2
, iωn + iνn

)
G0

(
−k + q

2
,−iωn

)

= −
∑

k

1 − f (ξ−k+q/2) − f (ξk+q/2)

iνn − ξ−k+q/2 − ξk+q/2

+
∑

k

1

iνn − ξ−k+q/2 − ξk+q/2

∑
σ,σ ′=±1

σ ′�2

2
√

ξ 2
k + �2

×
f (ξσk+q/2) − f (σ ′

√
ξ 2

k + �2 + iνn/2)

ξσk+q/2 − σ ′
√

ξ 2
k + �2 − iνn/2

(37)

is the pair-correlation function describing fluctuations in the
Cooper channel, with G−1

0 (k, iωn) = iωn − ξk being the free
single-particle Green’s function. The resulting thermody-
namic potential �NSR ≡ −T ln ZNSR has the form

�NSR = 1

2

∑
k

ξk − 1

2β

∑
k

ln
(
ω2

n + ξ 2
k

)

+ 1

β

∑
q

ln[1 − U�(q)]. (38)

The NSR number equation is then obtained from the thermo-
dynamic identity N = −∂�NSR/∂μ, which gives

N=
∑

k

f (ξk)− 1

β

∑
q

∂

∂μ
ln

[
1+4πas

m

(
�(q)−

∑
k

1

2εk

)]
,

(39)

where we have removed the ultraviolet divergence involved
in �(q), by replacing the bare interaction U with the s-wave
scattering length as in Eq. (20).

We solve the Tc equation,

1 = −4πas

m

∑
k

⎛
⎜⎝ 1

2
√

ξ 2
k + �2

tanh

⎡
⎢⎣
√

ξ 2
k + �2

2T

⎤
⎥⎦− 1

2εk

⎞
⎟⎠

(40)

[which is obtained from the gap equation (21) with 
 = 0],
together with the NSR number equation (39), to consistently
determine Tc and μ(Tc).

III. GROUND-STATE PROPERTIES OF ODD-FREQUENCY
FERMI SUPERFLUID

In this section, we consider the odd-frequency Fermi
superfluid state at T = 0, within the framework of the BCS-
Eagles-Leggett theory explained in Sec. II B.

Figures 4(a) and 4(b), respectively, show the odd-
frequency superfluid order parameter |
| and the Fermi
chemical potential μ. When � = 0, because the basis function
is reduced to γ (k, iωn) = sgn(ωn), both the gap Eq. (21) and
the number Eq. (22) have the same form as Eqs. (27) and
(28), respectively, for the even-frequency s-wave superfluid
state. [Note that the basis function only appears as γ (k, iωn)2

in Eqs. (21) and (22).] The resulting |
| and μ thus exhibit
the same behavior as in the even-frequency s-wave case. That
is, the system is always in the superfluid state, irrespective
of the interaction strength. Particularly in the strong-coupling
regime [(kFas)−1 � +1], the magnitude of the superfluid or-
der parameter approaches [88] [see Fig. 4(c)]

|
| = εF

√
16

3πkFas
. (41)
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FIG. 4. (a) Calculated magnitude |
| of the odd-frequency su-
perfluid order parameter. (b) Fermi chemical potential μ at T = 0.
Panels (c) and (d), respectively, show |
| and μ as functions of the
interaction strength. In panel (d), Ebind is the binding energy of a
two-body bound state given in Eq. (30). We also plot the approximate
result given in Eqs. (41) and (45) in panel (c).

In addition, as shown in Fig. 4(d), the Fermi chemical poten-
tial μ in this regime becomes negative, to approach

μ = − 1
2 Ebind, (42)

where Ebind is the binding energy of a two-body bound state
given in Eq. (30). These results are just the same as those in the
even-frequency s-wave superfluid Fermi gas in the BCS-BEC
crossover region [51,81–88].

When � > 0, on the other hand, we see in Fig. 4(a) that
the superfluid state vanishes, when the pairing interaction
becomes weak to some extent. This is because of the suppres-
sion of the present odd-frequency pairing interaction in the
low-energy region. Indeed, when � > 0, the factor γ (k, iωn)2

in the numerator in the first line in the gap Eq. (17) becomes
small for small |ωn|, which physically means the weakening
of the pairing interaction around the Fermi level. In the weak-
coupling regime at T = 0 (where μ  εF and |
| � εF), we
approximate the second line in Eq. (17) to

1  Uρ0

∫ ωc

0
dξ

1√
ξ 2 + �2 + |
|2

 Uρ0 ln

(
2ωc√

�2 + |
|2

)
, (43)

where ωc (� �) is an energy cutoff, and

ρ0 = mkF

2π2
(44)

is the density of states in a single-component free Fermi gas
at the Fermi level. We then immediately find that the inter-
action strength needs to exceed the threshold value Ucρ0 ≡
[ln(2ωc/�)]−1, in order to obtain a nonzero 
. More quanti-
tatively, applying the same discussion to the renormalized gap

Eq. (21) at T = 0, one obtains

|
| = εF

√(
8

e2
e

π
2

1
kFas

)2

−
(

�

εF

)2

, (45)

which gives the threshold interaction strength (kFac
s )−1 as

(
kFac

s

)−1 = 2

π
ln

(
e2

8

�

εF

)
. (46)

As seen in Fig. 4(c), Eq. (45) well describes the behavior of
|
| around (kFac

s )−1 given in Eq. (46).
Here, we confirm that the present odd-frequency super-

fluid state satisfies the positivity of the single-particle spectral
weight A(k, ω). Explicitly calculating A(k, ω) from the (1, 1)
component of the single-particle thermal Green’s function
Ĝodd(k, iωn) in Eq. (13), we have

A(k, ω) = − 1

π
Im
[
G(1,1)

odd (k, iωn → ω + iδ)
]

= �2

|
|2 + �2
δ(ω − ξk) + |
|2

|
|2 + �2

×
(

1

2

[
1 + ξk

Eodd(k,�)

]
δ(ω − Eodd(k,�))

× +1

2

[
1 − ξk

Eodd(k,�)

]
δ[ω + Eodd(k,�)]

)
.

(47)

As shown in Figs. 5(a) and 5(b), Eq. (47) is always positive.
Equation (47) shows that, when μ > 0, single-particle ex-

citations are gapless, because of the dispersion ω = ξk =
k2/(2m) − μ. Indeed, one clearly sees in Fig. 5(a) that this
dispersion passes through ω = 0. Thus, the superfluid density
of states ρ(ω), which is related to A(k, ω) as

ρ(ω) =
∑

k

A(k, ω), (48)

also becomes gapless, as shown in Fig. 5(c).
In the strong-coupling regime, since the Fermi chemical

potential μ becomes negative [see Figs. 4(b) and 4(d)], the
dispersion ω = ξk = k2/(2m) + |μ| no longer passes through
ω = 0. Because of this, when (kFas)−1 = 1, gapped single-
particle excitations are obtained, as seen in Figs. 5(b) and 5(c).

Regarding the above-mentioned gapless single-particle ex-
citations, we note that the recent experimental proposal about
the realization of the bulk odd-frequency superconducting
state in CeRh0.5Ir0.5In5 [80] is based on the observation of
Korringa-law-like temperature dependence of the spin-lattice
relaxation rate T −1

1 below Tc. Since the Korringa law in the
normal state is well known to originate from the presence of
gapless single-particle excitations around the Fermi surface,
the observed anomaly implies the absence of single-particle
excitation gap in this superconducting state. Thus, although
our model is not directly related to this material, it is an in-
teresting future problem to examine to what extent this simple
model can explain the observed temperature dependence of
T −1

1 in CeRh0.5Ir0.5In5.
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FIG. 5. Calculated intensity of single-particle spectral weight
A(k, ω) in the odd-frequency superfluid state at T = 0 and �/εF =
0.1. (a) Weak-coupling regime [(kFas )−1 = −0.9]. (b) Strong-
coupling regime [(kFas )−1 = 1]. The intensity is normalized by ε−1

F .
(c) Superfluid density of states ρ(ω) in Eq. (48). ρ0 is given in
Eq. (44). In calculating A(k, ω), we have approximated the δ function
in Eq. (47) as δ(x)  (1/π )η/[x2 + η2] with η/εF = 10−2. We also
use the same prescription in Figs. 6 and 10.

IV. SPACE-TIME STRUCTURE OF THE ODD-FREQUENCY
PAIR WAVE FUNCTION

Figure 6 shows the space-time structure of the pair wave
function. We also show in Fig. 7 the detailed spatial variation
of this quantity at some values of the relative time t between
two fermions involved in a Cooper pair.

When the pairing interaction is weak [(kFas)−1 = −0.4 <

0], Fig. 6(a1) shows that the odd-frequency pair wave function
ϕodd(r, t ) spreads out in the temporal direction. We also find
from Fig. 7(a1) that |rϕodd(r, t )|2 has larger intensity for larger
value of the relative time t [at least within the temporal range
shown in Fig. 7(a1)]. This tendency is consistent with the fact
that ϕodd(r, t ) vanishes at t = 0 [see Eq. (34)].

As shown in Fig. 6(b1), the pair wave function ϕeven(r, t )
in the even-frequency superfluid state also spreads out in
the temporal direction when (kFas)−1 = −0.4; however, in
contrast to the odd-frequency case, |rϕeven(r, t )|2 has large
intensity around t = 0, as shown in Fig. 7(b1).

As the interaction strength increases, we see in Fig. 6 that,
in both the even- and odd-frequency cases, the pair wave func-
tion shrinks to gather around the origin of the space-time plane
(r = t = 0). In the strong-coupling regime when (kFas)−1 =
2, in spite of ϕodd(r, t = 0) = 0, |rϕodd(r, t )|2 has large inten-
sity around kFr = 1 at the relatively short relative time εFt =
0.1 (� 1), as shown in Fig. 7(a2). This tendency is more

|Δ|

FIG. 6. Calculated space-time structure of the pair wave function
at T = 0. The left and right panels show the odd-frequency case
[ϕodd(r, t ) in Eq. (23)] and the even-frequency case [ϕeven(r, t ) in
Eq. (35)], respectively. We set �/εF = 0.5.

remarkable in the even-frequency case shown in Fig. 7(b2),
where |rϕeven(r, t )|2 is almost dominated by the intensity at
t = 0. As mentioned previously, because the even-frequency
pair wave function at t = 0 is reduced to the wave function
of a two-body bound state when the pairing interaction is
very strong, this result indicates that the pair wave function
ϕeven(r, t ) may almost be viewed as the wave function of a
two-body bound state given in Eq. (29), when (kFas)−1 = 2.

Here, we comment on the spatial oscillation of the pair
wave function seen in the upper panels in Fig. 7: As found
from the factor sin(kFr) involved in Eq. (31), this oscillation

|Δ
|

FIG. 7. Spatial variation of |rϕodd(r, t )|2 (left panels) and
|rϕeven(r, t )|2 (right panels) at T = 0. The upper (lower) two panels
show the weak-coupling case (strong-coupling case) where μ > 0
(μ < 0). We set �/εF = 0.5.

063309-7



IWASAKI, KAWAMURA, MANABE, AND OHASHI PHYSICAL REVIEW A 109, 063309 (2024)

FIG. 8. Comparison of |rϕodd(r, t )|2 with |rϕeven(r, t )|2 at T = 0.
(a) We take �/εF = 0.5 and εFt = 0.8. When (kFas )−1 = 1 and 2,
results are magnified by the factor 5. (b) We take �/εF = 0.5 and
(kFas )−1 = 2.

originates from the existence of the Fermi surface. Thus, with
increasing the interaction strength, such oscillating behavior
of the pair wave function becomes obscure due to the decrease
of the Fermi chemical potential [see Fig. 4(b)], which may be
interpreted as the shrinkage of the Fermi-surface size. Then,
since the negative chemical potential realized in the strong-
coupling regime can be interpreted as the disappearance of
the Fermi surface, the oscillation of the pair wave function
also disappears in this regime, as seen in the lower panels in
Fig. 7.

Figure 8 compares the magnitude of the pair wave func-
tion in the odd-frequency superfluid state with that in the
even-frequency case. At εFt = 0.8 shown in Fig. 8(a), when
the pairing interaction is relatively weak [(kFas)−1 � 0], the
difference between the two is remarkable, especially around
kFr = 1. Their difference becomes small as the interaction
strength increases, as seen in Fig. 8(a).

We also show in Fig. 8(b) the temporal dependence
of the difference between these quantities in the strong-
coupling regime [(kFas)−1 = 2]. As analytically shown in
Appendix D, these quantities become close to each other when
t � 1/

√
|
|2 + μ2, which can be confirmed in this figure.

In the strong-coupling limit [(kFas)−1 → ∞], since |
| and
|μ| diverge, this condition is always satisfied except at t = 0.
Thus, in this limit, one finds

ϕodd(r, t )= − sgn(t )ϕeven(r, t ) (t �= 0). (49)

(For the derivation, see Appendix D.) That is, the magnitude
|ϕodd(r, t )| of the odd-frequency pair wave function in the
strong-coupling limit has the same space-time structure as the
even-frequency case, except at t = 0.

Since the even-frequency pair wave function in the strong-
coupling regime may be viewed as the wave function of a
two-body bound state, Fig. 8, as well as Eq. (49), make
us expect that, as in the even-frequency case, the superfluid
phase transition into the odd-frequency superfluid state may
also be described by the BEC of molecular bosons in the
strong-coupling regime, unless the absence of the equal-time
pairing and the sign change of ϕodd(r, t ) at t = 0 seriously
affect the superfluid instability. To confirm this expectation,
we show in Figs. 9(a) and 9(c) the calculated Tc within the
framework of the NSR theory explained in Sec. II D. We see
in these figures that, with increasing the interaction strength,

FIG. 9. Calculated (a) Tc and (b) μ(Tc ) as functions of � and the
interaction strength (kFas )−1, in a single-component Fermi gas with
an odd-frequency pairing interaction. The dashed line is the BEC
phase transition temperature TBEC = 0.137TF. The dotted line shows
the threshold interaction strength (kFac

s )−1 given in Eq. (52). Panels
(c) and (d), respectively, show detailed interaction dependence of Tc

and μ(Tc ). In panel (d), since the results for �/εF = 0.1 and 0.2 are
almost the same as that for �/εF = 0.4, we only show the results for
�/εF = 0, 0.4, and 1.

Tc always approaches the expected BEC phase transition tem-
perature TBEC of an ideal Bose gas with the molecular number
NB = N/2 and the molecular mass MB = 2m:

TBEC = 2π

2m

(
N

2ζ (3/2)

)2/3

= 0.137TF, (50)

where ζ (3/2) = 2.612 is the zeta function. This clearly in-
dicates that, as in the even-frequency case, odd-frequency
Cooper pairs also behave like “bosons” in this regime, in spite
of the absence of equal-time Cooper pairing.

Similarity between the even- and odd-frequency cases can
also be seen in Figs. 9(b) and 9(d): In the strong-coupling
regime, the Fermi chemical potential μ becomes negative and
the magnitude |μ| approaches half the binding energy Ebind of
a two-body bound state given in Eq. (30). The Fermi chem-
ical potential physically means the energy to add a particle
to the system. One finds from this behavior of μ that, as
in the even-frequency case, an odd-frequency Cooper pair in
the strong-coupling regime also has the binding energy Ebind

given in Eq. (30).
We point out that the above-mentioned bosonic character

comes from the structure of the NSR number Eq. (39): Since
|μ| � � in the strong-coupling regime, the basis function in
Eq. (6) can be approximated as γ (k, iωn)  sgn(ωn) there.
Then the pair-correlation function in Eq. (37), as well as the
resulting NSR number Eq. (39), have the same forms as those
in the ordinary (even-frequency) s-wave superfluid Fermi gas
discussed in BCS-BEC physics [51,81–88]. Thus, as is well
known in the standard NSR theory [81], the number Eq. (39)
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in the strong-coupling regime is reduced to

N

2
=
∑

q

nB

(
q2

2MB
− μB

)
, (51)

where nB(x) is the Bose distribution function, and μB =
2μ + Ebind plays the role of the Bose chemical potential.
Equation (51) immediately gives TBEC in Eq. (50), when μ =
−Ebind/2, being consistent with the strong-coupling behavior
of Tc and μ(Tc) shown in Fig. 9 [109].

To conclude, odd-frequency Cooper pairs also behave like
molecular bosons in the strong-coupling regime. Although
this result is the same as the case of the ordinary (even-
frequency) s-wave superfluid Fermi gas in the BCS-BEC
crossover region [51,81–88], the odd-frequency pair wave
function ϕodd(r, t ) itself is not completely the same as the
even-frequency pair wave function ϕeven(r, t ) in this regime,
as shown in Eq. (49). This means that the sign change of the
odd-frequency pair wave function, as well as the absence of
equal-time pairing (that are different from the even-frequency
case), are not crucial for the odd-frequency Cooper pair to
possess bosonic character, at least in considering the super-
fluid phase transition temperature.

Before ending this section, we discuss the behavior of
Tc in the weak-coupling regime: When � = 0, which gives
γ (k, iωn) = sgn(ωn), the Tc Eq. (40) and the number Eq. (39)
coincide with those in the ordinary NSR theory for the even-
frequency s-wave superfluid Fermi gas. Thus, the system
always experiences the superfluid instability at Tc > 0, irre-
spective of the value of (kFas)−1 [see Figs. 9(a) and 9(c)].
On the other hand, when � > 0, as expected from the zero-
temperature result shown in Fig. 4, Tc vanishes, when the
interaction strength becomes weaker than the threshold value,

(
kFac

s

)−1 = 2

π
ln

(
e2

8

�

μ

)
, (52)

which is obtained by simply setting Tc = 0 in the Tc Eq. (40)
[110].

To quickly grasp how � affects Tc, it is convenient to
approximately deal with the gap Eq. (19) in the weak-coupling
regime at Tc as

1 = UTc

∑
k,ωn

1

ωn(Tc)2 + ξ 2
k + �2

 Uρ0Tc

∑
ωn

∫ ∞

−∞
dξ

1

ωn(Tc)2 + ξ 2 + �2

= πUρ0Tc

∑
ωn

1√
ωn(Tc)2 + �2

, (53)

where the density of states ρ0 is given in Eq. (44). Writing the
superfluid phase transition temperature at � = 0 as Tc0, we
rewrite the Tc Eq. (53) as

ln

(
Tc

Tc0

)
= Tc

∑
ωn

[
1√

ωn(Tc)2 + �2
− 1

|ωn(Tc)|

]
. (54)

Expanding the right-hand side in Eq. (54) up to O(�2) by
assuming � � Tc0, one has, after summing up the Matsubara

frequencies,

Tc = Tc0

[
1 − 7ζ (3)

8π2

(
�

Tc0

)2
]
, (55)

where we have approximated the left-hand side in Eq. (54) as
ln(Tc/Tc0)  (Tc/Tc0) − 1.

V. SUMMARY

To summarize, we have discussed pairing properties of
an odd-frequency superfluid Fermi gas. This superfluid has
the unique property that the Cooper pairs are formed be-
tween fermions at different times. In this paper, we examined
whether or not such odd-frequency Cooper pairs still behave
like molecular bosons in the strong-coupling regime, where
this picture is known to be valid for the even-frequency s-wave
superfluid system. For this purpose, we proposed a model odd-
frequency pairing interaction that satisfies the positivity of the
single-particle excitation spectrum. To avoid the well-known
puzzle that the odd-frequency superfluid state unphysically
becomes stable above Tc in the Hamiltonian formalism, we
employed the recently proposed prescription using the path-
integral formalism [92,93].

We calculated the space-time structure of the pair wave
function ϕodd(r, t ) in the odd-frequency superfluid state at
T = 0, within the framework of the strong-coupling theory
developed by Eagles and Leggett. From the comparison with
the pair wave function ϕeven(r, t ) in the even-frequency s-wave
superfluid state, we found that, while ϕodd(r, t ) has different
space-time structure from ϕeven(r, t ) in the sense that the
former always vanishes at t = 0 and changes its sign at this
time, the magnitude |ϕodd(r, t )| becomes close to ϕeven(r, t ) in
the strong-coupling regime when |t | � 1/

√
|
|2 + μ2. Par-

ticularly in the strong-coupling limit (where |
| and |μ|
diverge), one obtains |ϕodd(r, t )| = ϕeven(r, t ) except at t = 0.
Since the even-frequency pair wave function in the strong-
coupling regime is dominated by the equal-time component,
which is just the same as the wave function of a two-body
bound molecule, this coincidence makes us expect that odd-
frequency Cooper pairs may also have bosonic character.

To confirm this expectation, we calculated the super-
fluid phase transition temperature Tc, by extending the NSR
strong-coupling theory for the even-frequency s-wave Fermi
superfluid to the odd-frequency case. The calculated Tc in the
strong-coupling regime was found to approach the expected
BEC phase transition temperature TBEC in an ideal molecu-
lar Bose gas, which confirms that the odd-frequency Cooper
pairs indeed behave like bosons there. This indicates that,
although odd-frequency superfluids do not have equal-time
pairing and the odd-frequency wave function does not coin-
cide with the even-frequency one, the odd-frequency Cooper
pair still possesses bosonic character when the condition
|ϕodd(r, t �= 0)|  ϕeven(r, t �= 0) is satisfied in the strong-
coupling regime.

The above conclusion indicates that, considering a two-
component Fermi gas with the even-frequency pairing inter-
action given in Eq. (4) where the basis function γ (k, iωn)
is replaced by |γ (k, iωn)|, one reproduces the same results
obtained in this paper. Thus, it would be an interesting future
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problem to explore a phenomenon which is sensitive to the
sign change of ϕodd(r, t ), in order to highlight the character of
the odd-frequency pairing state.

Although we have only considered the specific interaction
in Eqs. (4) and (6) in this paper, our model is still expected
to capture universal low-energy properties of odd-frequency
Fermi superfluids where the low-frequency behavior of the
superfluid order parameter behaves as 
(k, iωn) ∝ ωn. For
example, such linear-ωn behavior of the odd-frequency su-
perfluid order parameter in the low-frequency region can be
realized in an electron-phonon model, where the increase of
Tc with decreasing the frequency of the Einstein phonon,
which just corresponds to the decrease of � in our model,
is predicted [63]. This behavior of Tc is consistent with our
results in the weak-coupling regime, shown in Fig. 9(a). In
addition, it has been shown in a two-band Hubbard model that
Tc in the strong-coupling regime of the odd-frequency pairing
state agrees well with the ordinary BEC phase transition tem-
perature in a molecular Bose gas [66], which also agrees with
our result. On the other hand, while the model interaction in
Eq. (4) gives a nonzero constant value of the superfluid order
parameter in the high-frequency limit [see Eqs. (5) and (6)],
the superfluid order parameter vanishes in this limit in the
above-mentioned electron-phonon case [63]. Thus, one needs
to carefully check model dependence for superfluid properties
that are sensitive to detailed high-frequency behavior of the
superfluid order parameter. It remains as a future problem to
clarify how detailed high-frequency structure of the pairing
interaction affects physical properties of odd-frequency Fermi
superfluids.

In this paper, we simply assumed a model odd-frequency
pairing interaction in order to examine the character of Cooper
pairs in the strong-coupling regime. Thus, another crucial
future problem is to explore a more fundamental model that
gives the effective interaction assumed in this paper. Since var-
ious odd-frequency pairing mechanisms have recently been
proposed in both metallic superconductivity [53–80] and ul-
tracold Fermi gases [41–43], it is also an interesting problem
to examine how the present model is related to these pro-
posals. We also note that, although we have presented an
example of the interaction that gives the required positive
single-particle spectral weight, clarifying the general condi-
tion for the odd-frequency pairing interaction to satisfy this
requirement still remains to be solved.

For the superfluid state, we have only examined the cases
at Tc and the T = 0 in this paper. Regarding this, we note
that the Korringa-law-like temperature dependence of the
spin-lattice relaxation rate T −1

1 has recently been observed
in heavy fermion superconductor CeRh0.5Ir0.5In5 [80]. Based
on this observation, Ref. [80] proposed the realization of the
odd-frequency superconducting state with a gapless super-
conducting density of states in this material. (Note that the
Korringa law in the normal state originates from the existence
of gapless single-particle excitations around the Fermi level.)
Since the odd-frequency superfluid state discussed in this
paper gives gapless single-particle excitations (see Fig. 5), the
extension of our theory to the superfluid phase below Tc would
enable us to examine to what extent the observed T -linear
behavior of T −1

1 can be explained in our model. Since odd-
frequency superfluids have recently been discussed in both

condensed-matter physics and cold atom physics, our results
would contribute to the further development of these active
research fields.
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APPENDIX A: SEPARABLE ODD-FREQUENCY
PAIRING INTERACTION

Here, we present an example that gives a separable pairing
interaction. When a Fermi-Fermi interaction is mediated by
the Einstein phonon with the frequency �E, the interaction
Vk,k′ appearing in the action S1 in Eq. (3) is given by [63]

Vk,k′ = g2D(k − k′), (A1)

where g is a fermion-phonon coupling constant, and

D(q) = − �2
E

ν2
n + �2

E

(A2)

is the free phonon Green’s function [111]. When we write
Eq. (A1) as

V (k, k′) = g2

2
[D(k − k′) + D(k + k′)]

+ g2

2
[D(k − k′) − D(k + k′)]

≡ V+(k, k′) + V−(k, k′), (A3)

the odd-frequency Cooper channel is given by the latter part
V−(k, k′) = (g2/2)[D(k − k′) − D(k + k′)] [63]. Only retain-
ing this, one reaches

V (k, k′) = −2g2

�2
E

ωnω
′
n[

1 + (ωn−ω′
n

�E

)2][
1 + (ωn+ω′

n
�E

)2] . (A4)

Expanding the denominator in Eq. (A4) up to O[(ωn/�E)2]
and O[(ω′

n/�E)2], one can rewrite Eq. (A4) into the separable
form as

V (k, k′)  −2g2

�2
E

ωnω
′
n

1 + 2(ωn/�E)2 + 2(ω′
n/�E)2

 −g2

2

ωn√
ω2

n + (�E/2)2

ω′
n√

ω′2
n + (�E/2)2

≡ −g2

2
γ̃ (iωn)γ̃ (iω′

n). (A5)

We briefly note that, setting � = �E/2 and ξk = 0 in
Eq. (6), we find that γ̃ (iωn) = γ (k, iωn). This implies that �

plays a similar role to the frequency of the Einstein phonon.
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FIG. 10. Calculated single-particle spectral weight A(k, ω) in
Eq. (A6). We set μ/εF = 1, �/εF = 0.1, and |
|/εF = 0.2.

The basis function γ̃ (iωn) is essentially the same as Eq. (4)
where ξk is ignored. Regarding this, we note that this simpler
version of the basis function, however, does not satisfy the
positivity of the single-particle spectral weight. Indeed, when
we ignore ξk in Eq. (4), the resulting spectral weight,

A(k, ω) = − 1

π
Im

⎡
⎣ ω + iδ + ξk

(ω + iδ)2 − ξ 2
k − |
|2 (ω+iδ)2

(ω+iδ)2−�2

⎤
⎦,

(A6)

has a negative branch around ω = 0, as shown in Fig. 10.

APPENDIX B: STRATONOVICH-HUBBARD
TRANSFORMATION

We explain how to derive Eqs. (9) and (10). We introduce
the Cooper-pair Bose field � as well as its conjugate field �̄,
by way of the Stratonovich-Hubbard transformation [98,99].
The partition function in Eq. (1) is then transformed as

Z ∝
∫

D�̄D�

∫
Dψ̄Dψe−S[ψ̄,ψ,�̄,�], (B1)

where D�̄D� is given in Eq. (9), and the action
S[ψ̄, ψ, �̄,�] has the form

S[ψ̄, ψ, �̄,�] = S0 − 1

2

∑
q

[
�̄q�q

U
− ρ̄q�q − ρq�̄q

]
,

(B2)

ρq =
∑

k

1√
β

γ

(
k + q

2
, iωn + iνm

2

)
ψ−kψk+q, (B3)

ρ̄q =
∑

k

∑
k

1√
β

γ

(
k + q

2
, iωn + iνm

2

)
ψ̄k+qψ̄−k . (B4)

Introducing the two-component Nambu fields,

�̂k ≡
(

ψk

ψ̄−k

)
, (B5)

�̂
†
k ≡ (

ψ̄k, ψ−k
)
, (B6)

we rewrite Eq. (B2) as [112,113]

S = 1

2

∑
k

�̂
†
k

[−Ĝ−1
kk′
]
�̂k′ +

∑
q

�̄q�q

2U
+ β

2

∑
k

ξk. (B7)

Here, Ĝ−1
kk′ is the inverse of the 2 × 2 matrix single-particle

thermal Green’s function given in Eq. (11). Carrying out

the fermion path integrals in Eq. (B1), one obtains Eqs. (9)
and (10).

APPENDIX C: EVEN-FREQUENCY PAIR
WAVE FUNCTION

We derive Eqs. (26) and (35). We assume a two-component
Fermi gas described by the standard BCS Hamiltonian:

HBCS =
∫

dr

( ∑
σ=↑,↓

ψ†
σ (r)

[
−∇2

2m
− μeven

]
ψσ (r)

− Uψ
†
↑(r)ψ†

↓(r)ψ↓(r)ψ↑(r)

)
, (C1)

where the field operator ψσ=↑,↓(r) describes fermions with
pseudospin σ =↑,↓. The corresponding 2 × 2 matrix mean-
field BCS single-particle thermal Green’s function is given by

Ĝeven(k, iωn) = 1

iωn − ξeven(k)τ3 + 
evenτ1
. (C2)

Here, ξeven(k) = εk − μeven is the kinetic energy, measured
from the Fermi chemical potential μeven. The s-wave super-
fluid order parameter 
even (which is taken to be real, for
simplicity), as well as μeven, are determined from the BCS-
Eagles-Leggett coupled equations given in Eqs. (27) and (28).

The equal-time component ϕeven(r) of the even-frequency
wave function, which is given in the first line in Eq. (26), is
related to the lesser Green’s function G<,(1,2)

even (k, ω) as

ϕeven(r) = −i
∑

k

∫ ∞

−∞

dω

2π
e−ik·rG<,(1,2)

even (k, ω). (C3)

Here, G<,(1,2)
even (k, ω) is obtained from Ĝeven(k, iωn) in Eq. (C2)

as

G<,(1,2)
even (k, ω) = − f (ω)

[
G(1,2)

even (k, iωn → ω + iδ)|ωn>0

− G(1,2)
even (k, iωn → ω − iδ)|ωn<0

]
. (C4)

Substituting Eqs. (C2) and (C4) into Eq. (C3), and executing
the ω integration in Eq. (C3), one reaches the second line in
Eq. (26) at T = 0.

The time-dependent even-frequency pair wave function
given in the first line in Eq. (35) is related to the lesser Green’s
function as

ϕeven(r, t ) = −i
∑

k

e−ik·rG<,(1,2)
even (k,−t ), (C5)

where

G<,(1,2)
even (k, t ) =

∫ ∞

−∞

dω

2π
e−iωtG<,(1,2)

even (k, ω). (C6)

Substituting Eqs. (C2) and (C4) into Eq. (C6), and carrying
out the ω integration in Eq. (C6), we obtain, at T = 0,

G<,(1,2)
even (k, t ) = i
even

2Eeven(k)
eiEeven (k)t . (C7)

Then, the substitution of Eq. (C7) into Eq. (C5) gives the
second line in Eq. (35).

063309-11



IWASAKI, KAWAMURA, MANABE, AND OHASHI PHYSICAL REVIEW A 109, 063309 (2024)

APPENDIX D: ODD-FREQUENCY PAIR WAVE FUNCTION
IN THE STRONG-COUPLING LIMIT

We derive the relation between the pair wave functions in
the odd- and the even-frequency pairing states in the strong-
coupling regime (kFas)−1 � 1. In this regime, because of
μ < 0 and |μ| � �, the basis function in Eq. (6) can be
approximated to

γ (k, iωn)  sgn(ωn). (D1)

Then, the (1, 2) component of the thermal Green’s function in
Eq. (13) is reduced to

G(1,2)
odd (k, iωn) = sgn(ωn)




ω2
n + Eodd(k,� = 0)2

, (D2)

where Eodd(k,�) is given in Eq. (18). Substituting this into
Eq. (25), we obtain

G<,(1,2)
odd (k, ω) = f (ω)

[ |
|
(ω + iδ)2 − Eodd(k,� = 0)2

+ |
|
(ω − iδ)2 − Eodd(k,� = 0)2

]
. (D3)

Thus, the lesser Green’s function in the time domain is given
by

G<,(1,2)
odd (k, t )

=
∫ ∞

−∞

dω

2π
e−iωt f (ω)

[ |
|
(ω + iδ)2 − Eodd(k,� = 0)2

+ |
|
(ω − iδ)2 − Eodd(k,� = 0)2

]
. (D4)

At t = 0, Eq. (D4) is evaluated as, by changing the variable
ω as −ω in the last term,

G<,(1,2)
odd (k, t = 0) =

∫ ∞

−∞

dω

2π

|
|
(ω + iδ)2 − Eodd(k,� = 0)2

= 0. (D5)

In obtaining the last expression, we have closed the inte-
gral path in the upper-half complex plane, and have used
the analytic property of the retarded Green’s function in the
upper-half plane.

When t �= 0, one can perform the ω integration in Eq. (D4),
by choosing the closed path C1 (C2) shown in Fig. 11 when t <

0 (t > 0). Evaluating residues at ω = ±Eodd(k,� = 0) ± iδ
and iωn, we obtain

G<,(1,2)
odd (k, t �= 0)

= sgn(t )
i|
|

2Eodd(k,� = 0)
{ f [−Eodd(k,�=0)]eiEodd (k,�=0)t

− f [Eodd(k,� = 0)]e−iEodd (k,�=0)t }

− sgn(t )
2i|
|

β

∞∑
n=0

1

ω2
n + Eodd(k,� = 0)2

e−|ωnt |

= sgn(t )
i|
|

2Eodd(k,� = 0)
eiEodd (k,�=0)t

+ sgn(t )
i|
|

πEodd(k,� = 0)
I (t ). (D6)

ω

ω
εodd(k)+iδ

εodd(k)−iδ−εodd(k)−iδ

−εodd(k)+iδ

FIG. 11. Complex path to evaluate the ω integral in Eq. (D4). C1

(C2) is chosen when t < 0 (t > 0).

Here, we have set T = 0 in the last expression, and

I (t ) = −
∫ ∞

0
dω

Eodd(k,� = 0)

ω2 + Eodd(k,� = 0)2
e−ω|t |

= SI[Eodd(k,� = 0)|t |] cos[Eodd(k,� = 0)|t |]
− CI[Eodd(k,� = 0)|t |] sin[Eodd(k,� = 0)|t |], (D7)

where

SI(x) = −
∫ ∞

x
dy

sin(y)

y
, (D8)

CI(x) = −
∫ ∞

x
dy

cos(y)

y
(D9)

are the sine integral and cosine integral, respectively.
In the strong-coupling regime, since |
| � � and |μ| �

�, we can safely ignore � in the gap Eq. (21), as well as in
the number Eq. (22). The resulting expressions have the same
forms as the corresponding Eqs. (27) and (28) in the even-
frequency case, which immediately concludes |
| = 
even

and μ = μeven. Then, Eq. (D6) can be rewritten as, by using
Eq. (C7),

G<,(1,2)
odd (k, t �= 0)

= sgn(t )

[
G<,(1,2)

even (k, t �= 0) + i|
|I (t )

πEodd(k,� = 0)

]
.

(D10)

When the pairing interaction is extremely strong, because |μ|
and |
| eventually diverge, one may take Eodd(k,� = 0)|t | �
1 in Eq. (D7), when t �= 0. Then, using the asymptotic formula

SI(x) cos(x) − CI(x) sin(x)  −1

x
(x � 1), (D11)

one finds

I (t �= 0)  1

Eodd(k,� = 0)|t | → 0, (D12)

which leads to

G<,(1,2)
odd (k, t �= 0) = sgn(t )G<,(1,2)

even (k, t �= 0). (D13)
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Thus, the pair wave functions ϕodd(r, t ) in Eq. (23) and
ϕeven(r, t ) in Eq. (35), which is related to G<,(1,2)

even (k, t �= 0)
as Eq. (C5), in the strong-coupling limit are related to each
other as

ϕodd(r, t ) = −sgn(t )ϕeven(r, t ). (D14)

We find from Eq. (D12) that |ϕodd(r, t )| becomes
close to |ϕeven(r, t )|, when t � 1/Eodd(k,� = 0). Since
Eodd(k,� = 0) �

√
|
|2 + μ2 in the strong-coupling regime

[where μ < 0], this condition may be written as

|t | � 1√
|
|2 + μ2

. (D15)
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