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We study the dynamical fermionization of strongly interacting one-dimensional bosons in Tonks-Girardeau
limit by solving the time-dependent many-boson Schrödinger equation numerically exactly. We establish that
the one-body momentum distribution approaches the ideal Fermi gas distribution at the time of dynamical
fermionization. The analysis is further complemented by the measures on the two-body level. The dynamical
fermionization in the two-body level should be inferred as the presence of a distinct correlation hole along the
diagonal of two-body correlation. Investigation of two-body momentum distribution for the strongly interacting
bosons clearly exhibits a pattern along the diagonal which is not extinguished at the time of fermionization.
Two-body local and nonlocal correlation also clearly distinguish the fermionized bosons from noninteracting
fermions. The magnitude of distinguishablity between the two systems is further discussed employing suitable
measures of information theory, i.e., the well-known Kullback-Leibler relative entropy and the Jensen-Shannon
divergence entropy. We also observe very rich structure in the higher-body density for strongly correlated bosons,
whereas noninteracting fermions do not possess any higher-order correlation beyond two-body.
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I. INTRODUCTION

The one-dimensional (1D) gas of impenetrable bosons
termed as Tonks-Girardeau (TG) gas corresponds to infinitely
strong repulsive bosons in the Lieb-Liniger (LL) model [1,2].
The bosons interact through a contact potential. The physi-
cal properties of 1D bosons in the TG limit coincide with
those of ideal Fermi gas in the same external potential. The
properties determined by the square of the wave function such
as the density profile and density-density correlation become
identical with those of noninteracting fermions. It leads to the
interesting manifestation of fermionization when the strongly
interacting bosons escape their spatial overlap [3–8]. How-
ever, one-body density matrix and the momentum distribution
are typically different from those of Fermi gas due to strong
phase correlation originated from the bosonic statistics at the
TG limit.

The dynamics of harmonically confined TG gas exhibits
the more interesting scenario of “dynamical fermionization”
during expansion on sudden release of the trap—the momen-
tum distribution of TG gas evolves from bosonic to fermionic
character. Some aspects of dynamical evolution of the TG
gas have been theoretically studied [9–12]. Experimentally,
optical confinement offers quasi-1D geometry and dynamical
fermionization has recently been observed in the measure of
asymptotic momentum distribution [13].

Despite a well-established understanding of dynamical
fermionization, the topic still remains challenging as the work
on higher-body density is highly limited [14]. The major

existing calculations are based on the one-body level only.
The aim of this work is to extend the calculation beyond one
body in real as well as in momentum space and to understand
whether fermionized bosons can really be distinguished from
ideal Fermi gas. We try to resolve how one can infer the sig-
nature of dynamical fermionization in the higher-body level.

The dynamical evolution of quasi-1D harmonically trapped
strongly interacting bosons in the TG limit is investigated
in this work utilizing an ab initio many-body technique.
We solve the many-bosons Schrödinger equation by us-
ing the multiconfigurational time-dependent Hartree method
for indistinguishable particles (MCTDH-X), which calculates
numerically exact many-body wave function [15–21]. Mea-
sures of many-body densities and correlation functions are of
paramount interest to understand many-body physics. In such
a strongly interacting regime we need very high orbitals to
obtain the convergence in the many-body wave function. In
the present work, dynamical evolution of N = 5 fermionized
bosons is studied utilizing M = 24 orbitals in the computation
of many-body wave function.

Our work is outlined as follows: (1) to explore the dynami-
cal evolution of the fermionized bosons through the measures
of x-space, k-space density and correlation in momentum
space beyond one body, and (2) to apply information theoretic
measures of relative entropy like nonsymmetric Kullback-
Leibler, symmetric Kullback-Leibler, and the Jensen-Shannon
divergence entropy for both one-body and two-body densities.
The main aim is to justify that when one-body measures
of density, correlation, and relative entropies configure the
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dynamical fermionization, the corresponding measures on
the two-body level are able to distinguish the noninteracting
fermions and strongly interacting bosons at the time of fermion-
ization determined from one-body measures.

Our observations are as follows: (1) As expected, dynamics
of one-body densities in x space are identical between strongly
interacting bosons and those of noninteracting fermions. (2)
One-body k-space density exhibits that strongly interacting
bosons attain fermionic character at a particular time, known
as time for dynamical fermionization. (3) Measures of differ-
ent relative entropies using one-body k density asymptotically
approach to a constant value very close to zero at the time of
fermionization. (4) Dynamics of the two-body x-space densi-
ties also exhibit the identical evolution for the two systems and
cannot extract any additional physics. (5) However, two-body
k-space density of strongly interacting bosons dynamically
tends to approach the fermionic two-body k-space density, but
remains distinctly different even at the time of fermionization.
(6) Measures of local and nonlocal two-body correlation in
the momentum space quantitatively estimate the difference
between the two systems. (7) Measures of relative entropies
utilizing two-body density in k space also clearly establish the
distinct mutual information between the fermionized bosons
and fermions on the two-body level. (8) We additionally an-
alyze higher-body coherence. Fermions do not possess any
higher-order correlation, whereas strongly interacting bosons
exhibit rich structure in the three-body and four-body coher-
ence.

All the above observations made from one-body measures
uniquely confirm that the strongly interacting bosons at the
TG limit dynamically acquire fermionic character at the time
of dynamical fermionization. However, they can be distin-
guished on the basis of the corresponding two-body measures.
Two-body correlation measures in k space are the key quan-
tities to distinguish how the ferminozed bosons differ from
ideal fermions qualitatively, whereas information theoretic
measures of relative entropies quantitatively distinguish the
two systems.

The paper is organized in the following way. Section II
briefly describes the theoretical framework. We present dy-
namical measures in one-, two-, and higher-body levels in
Sec. III, and a conclusion is made in Sec. IV.

II. THEORETICAL FRAMEWORK

In this section we introduce a brief description of
the multiconfigurational time-dependent Hartree for bosons
(MCTDHB), which is used to explore the dynamics. We also
introduce the basic measures which are utilized to understand
the many-body dynamics.

A. Many-body Hamiltonian wave function

The dynamical evolution of N bosons is governed by the
time-dependent Schrödinger equation

H |ψ (t )〉 = i
∂

∂t
|ψ (t )〉. (1)

The full many-body Hamiltonian is

Ĥ (x1, x2, . . . xN ) =
N∑

i=1

ĥ(xi ) +
N∑

i< j=1

Ŵ (xi − x j ). (2)

We used a dimensionless unit by dividing the Hamiltonian by
h̄2

mL2 , where m is the mass of a boson and L is the length scale.

In addition, h(x) = − 1
2

∂2

∂x2 + V (x) is the one-body Hamil-
tonian. V (x) is the trapping potential, which is a harmonic
potential for the present work. The interparticle interaction po-
tential is W (xi − x j ) = λδ(xi − x j ), where λ is the interaction
strength.

In order to compute the time evolution of the many-body
Schrödinger equation we use the MCTDHB, which employs
variational time-adaptive orbitals in the expansion of the
many-boson wave function. With an increase in the number
of orbitals, it converges to the exact many-body Schrödinger
results. In the MCTDHB method, time-dependent orbitals are
used in the expansion of the field operator

�̂(x) =
M∑

j=1

b̂ j (t )φ j (x, t ). (3)

Here, {φ j (x, t )} is a complete orthonormal set of orbitals.
b̂ j annihilates a boson in φ j . This is in contrast with the
full many-body Hamiltonian using time-independent orbitals,
which require a large Fock space for convergence even for
a few bosons. Introducing time-dependent orbitals, a faith-
ful convergence can be achieved with a truncated number
of orbitals. The orbitals are determined from the time-
dependent variational principle [22–25]. When N bosons are
distributed over M time-adaptive orbitals, the time-dependent
many-boson function is taken as a linear combination of time-
dependent permanents |n̄; t〉,

|ψ (t )〉 =
∑

n̄

Cn̄(t )|n̄; t〉. (4)

In Eq. (4), the {Cn̄(t )} are the time-dependent expan-
sion coefficients. The vector �n = (n1, n2, . . . , nM ) represents
the occupation of the orbitals and n1 + n2 + · · · + nM = N ,
which preserves the total number of particles. In the second
quantization representation, the permanents are given as

|n̄; t〉 =
M∏

i=1

(
[b†

i (t )]ni

√
ni!

)
|vac〉. (5)

In Eq. (4), the summation runs over all possible configurations
and in the limit of M → ∞, the set of permanents spans
the complete Hilbert space and the expansion becomes exact.
However, allowing time-dependent permanents, we use much
shorter expansion, which leads to a significant computational
advantage.

It is to be noted that both the coefficients {Cn̄(t )} and
the orbitals {φk (x, t )} which comprise the permanents are
independent parameters and are determined by the time-
dependent variational principle. For the equations of motion
governing the time evolution of {Cn̄(t )} and {φk (x, t )}, we
follow the variational principle based on the Lagrangian
formulation [22]. Substituting the many-body ansatz into
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the functional action of the time-dependent many-body
Schrödinger equation leads to

S[{Cn̄(t )}, {φk (x, t )}] =
∫

dt

⎧⎨
⎩〈�(t )|Ĥ − i

∂

∂t
|�(t )〉

−
M∑

k, j=1

μk j (t )[〈φk|φ j〉 − δk j]

⎫⎬
⎭. (6)

Next, stationarity of the action with respect to the indepen-
dent variations of {Cn̄(t )} and {φ j (x, t )} are required. {μk j (t )}
are time-dependent Lagrange multipliers which guarantee the
orthonormality of the orbitals during time propagation.

It is to be noted that the use of optimized time-dependent
orbitals leads to very fast convergence in the simulation
compared to the many-body Schrödinger equation with
time-independent orbitals, and a given degree of accuracy
is reached with much shorter expansion [26,27]. We also
emphasize that MCTDHB is more accurate than exact diago-
nalization, which uses the finite basis and is not optimized. In
contrast, in MCTDHB, as we use a time-adaptive many-body
basis set, it can dynamically follow the building correlation
due to interparticle interaction [17,18,28,29]. It is already
established as a very efficient many-body method and used
for different trap geometry and range of interparticle interac-
tion [30–33]. The MCTDHB method and the algorithm have
been cast into a software package [34,35].

B. Quantities of interest

1. One-body and higher-order densities

(i) The reduced one-body density matrix in coordinate
space is defined as

ρ (1)(x′
1|x1; t ) = N

∫
dx2 dx3...dxN ψ∗(x′

1, x2, . . . , xN ; t )

× ψ (x1, x2, . . . , xN ; t ). (7)

Its diagonal gives the one-body density ρ(x, t ), defined as

ρ(x; t ) = ρ (1)(x′
1 = x|x1 = x; t ). (8)

(ii) The pth-order reduced density matrix in coordinate space
is defined by

ρ (p)(x′
1, . . . , x′

p|x1, . . . , xp; t )

= N!

(N − p)!

∫
dxp+1...dxNψ∗(x′

1, . . . , x′
p, xp+1, . . . , xN ; t )

× ψ (x1, . . . , xp, xp+1 . . . , xN ; t ). (9)

The diagonal of p-body density can be represented as

ρ (p)(x1, . . . , xp; t ) = 〈ψ (t )|ψ̂†(x1) . . . ψ̂†(xp)ψ̂ (xp)

× . . . ψ̂ (x1)|ψ (t )〉. (10)

It provides the p-particle density distribution at time t .
To calculate the density in momentum space, one needs

to follow the prescription provided in Ref. [36]. Introduc-
ing p D-dimensional Fourier transform to ri and r′

i , one

arrives at

ρ (p)(k1, ..., kp|k′
1, ..., k′

p; t )

=
∑

i

n(p)
i (t )α(p)

i (k1, ..., kp, t )α(p)
i

∗
(k′

1, ..., k′
p, t ), (11)

where n(p)
i (t ) is the ith eigenvalue of the pth-order reduced

density matrix and α
(p)
i (k1, ..., kp, t ) the corresponding eigen-

function. The eigenfunctions are known as natural p functions
and the eigenvalues as natural occupations.

2. Glauber correlation function

The normalized pth-order Glauber correlation function
would be the most important quantity to measure the spatial
coherence. It is defined as

g(p)(x′
1, . . . , x′

p, x1, . . . , xp; t )

= ρ (p)(x1, . . . , xp|x′
1, . . . , x′

p; t )√



p
i=1ρ

(1)(xi|xi; t )ρ (1)(x′
i|x′

i; t )
. (12)

The diagonal of g(p)(x′
1, . . . , x′

p, x1, . . . , xp; t ) gives a measure
of pth-order coherence and is calculated as

g(p)(x1, . . . , xp; t ) = ρ (p)(x1, . . . , xp; t )



p
i=1|ρ (1)(xi )| . (13)

If |g(p)(x1, . . . , xp; t )| = 1, the system is fully coherent,
otherwise the state is only partially coherent. When
g(p)(x1, . . . , xp; t ) > 1, the detection probabilities at positions
x1, . . . , xp are correlated and g(p)(x1, . . . , xp; t ) < 1 are anti-
correlated. Equation (13) is further utilized to calculate the
local two-particle correlation g(2)(0, 0) and nonlocal two-
particle correlation g(2)(0, x).

The pth-order correlation function in momentum space is
given by

g(p)(k′
1, . . . , k′

p, k1, . . . , kp; t )

= ρ (p)(k1, . . . , kp|k′
1, . . . , k′

p; t )√



p
i=1ρ

(1)(ki|ki; t )ρ (1)(k′
i |k′

i ; t )
. (14)

The diagonal of g(p)(k′
1, . . . , k′

p, k1, . . . , kp; t ) measures the
pth-order coherence in the momentum space. For values
g(p)(k1, . . . , kp; t ) > 1, the detection probabilities at posi-
tions k1, . . . , kp are correlated, and g(p)(k1, . . . , kp; t ) < 1
correspond to loss of coherence and are anticorrelated. Equa-
tion (14) is further utilized to calculate the local two-particle
correlation g(2)(0, 0) and nonlocal two-particle correlation
g(2)(0, k).

3. Information distance measures

Shannon entropy and Fisher information are considered
as the key measures to exhibit higher-order characteristics
in position and momentum space density distribution and
have been extensively utilized in atomic systems [37–43].
However, to measure the difference between two probabil-
ity distributions over the same variable, a measure called
Kullback-Leibler (KL) relative entropy is the ideal quan-
tity [44–46]. Relative entropy provides mutual information
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between two probability distributions of the same order and
defined in the same space. KL relative entropy in x space is
measured as

K (t ) =
∫

ρ
(1)
1 (x, t ) ln

ρ
(1)
1 (x, t )

ρ
(1)
2 (x, t )

dx, (15)

where ρ
(1)
1 and ρ

(1)
2 are the one-body densities for two dif-

ferent systems described in the same space and they are
calculated using ρ (1)(x, t ) = 〈ψ (t )|ψ̂†(x)ψ̂ (x)|ψ (t )〉.

Thus, the measure of K can be interpreted as a measure
of deviation of ρ

(1)
1 from ρ

(1)
2 , i.e., to estimate how the two

systems are identical or close or far apart. Thus, for any dis-
tributions ρ

(1)
1 and ρ

(1)
2 , K � 0. However, it is a nonsymmetric

measure as it depends on which distribution is considered
as “reference” and which is considered as “comparison” dis-
tribution. The symmetrized Kullback distance SK is defined
as [47]

SK (t ) =
∫

ρ
(1)
1 (x, t ) ln

ρ
(1)
1 (x, t )

ρ
(1)
2 (x, t )

dx

+
∫

ρ
(1)
2 (x, t ) ln

ρ
(1)
2 (x, t )

ρ
(1)
1 (x, t )

dx. (16)

The physical meaning of SK distance is very clear. SK is zero
for two identical species and approaches to a large value as the
difference between the one-body densities of two systems ρ

(1)
1

and ρ
(1)
2 increases. Another symmetrized measure of relative

entropy is the Jensen-Shannon divergence entropy as [48,49]

J (t ) = −
∫ (

ρ
(1)
1 (x, t ) + ρ

(1)
2 (x, t )

2

)

× ln

(
ρ

(1)
1 (x, t ) + ρ

(1)
2 (x, t )

2

)
dx

+ 1

2

∫
ρ

(1)
1 (x, t ) ln ρ

(1)
1 (x, t ) dx

+ 1

2

∫
ρ

(1)
2 (x, t ) ln ρ

(1)
2 (x, t ) dx. (17)

Both the measures of SK and J are symmetrized and compare
two probability distributions regardless of which distribution
is considered as the reference and which is considered as the
comparison distribution. For two indistinguishable densities K
and SK should settle to zero, whereas J should settle to a small
constant value. In contrast, for two distinguishable densities,
K , SK , and J can be significantly high. The corresponding
definitions of K , SK , and J measures in k space are

K (t ) =
∫

ρ
(1)
1 (k, t ) ln

ρ
(1)
1 (k, t )

ρ
(1)
2 (k, t )

dk (18)

SK (t ) =
∫

ρ
(1)
1 (k, t ) ln

ρ
(1)
1 (k, t )

ρ
(1)
2 (k, t )

dk

+
∫

ρ
(1)
2 (k, t ) ln

ρ
(1)
2 (k, t )

ρ
(1)
1 (k, t )

dk (19)

J (t ) = −
∫ (

ρ
(1)
1 (k, t ) + ρ

(1)
2 (k, t )

2

)

× ln

(
ρ

(1)
1 (k, t ) + ρ

(1)
2 (k, t )

2

)
dk

+ 1

2

∫
ρ

(1)
1 (k, t ) ln ρ

(1)
1 (k, t ) dk

+ 1

2

∫
ρ

(1)
2 (k, t ) ln ρ

(1)
2 (k, t ) dk, (20)

where one-body density in k space ρ (1)(k, t ) is calculated
using ρ (1)(k, t ) = 〈ψ (t )|ψ̂†(k)ψ̂ (k)|ψ (t )〉.

However, it is also interesting to have measures of the
above three distributions using two-body density in x space
ρ (2)(x1, x2, t ) = 〈ψ (t )|ψ̂†(x1)ψ̂†(x2)ψ̂ (x1)ψ̂ (x2)|ψ (t )〉.

The corresponding measures of K , SK , and J in x space are
defined through

K (t ) =
∫

ρ
(2)
1 (x1, x2, t ) ln

ρ
(2)
1 (x1, x2, t )

ρ
(2)
2 (x1, x2, t )

dx1 dx2, (21)

where ρ
(2)
1 and ρ

(2)
2 correspond to two-body densities of the

two different systems but described in the same space. It will
facilitate to understand whether the two systems are close
in the measure of two-body perspective. The corresponding
definitions of SK and J in x space are as follows:

SK (t ) =
∫

ρ
(2)
1 (x1, x2, t ) ln

ρ
(2)
1 (x1, x2, t )

ρ
(2)
2 (x1, x2, t )

dx1dx2

+
∫

ρ
(2)
2 (x1, x2, t ) ln

ρ
(2)
2 (x1, x2, t )

ρ
(2)
1 (x1, x2, t )

dx1 dx2 (22)

J (t ) = −
∫ (

ρ
(2)
1 (x1, x2, t ) + ρ

(2)
2 (x1, x2, t )

2

)

× ln

(
ρ

(2)
1 (x1, x2, t ) + ρ

(2)
2 (x1, x2, t )

2

)
dx1 dx2

+ 1

2

∫
ρ

(2)
1 (x1, x2, t ) ln ρ

(2)
1 (x1, x2, t ) dx1 dx2

+ 1

2

∫
ρ

(2)
2 (x1, x2, t ) ln ρ

(2)
2 (x1, x2, t ) dx1 dx2. (23)

Defining two-body density in k space as ρ (2)(k1, k2, t ) =
〈ψ (t )|ψ̂†(k1)ψ̂†(k2)ψ̂ (k1)ψ̂ (k2)|ψ (t )〉, we can have the mea-
sures of S, SK , and J in momentum space from the two-body
perspective. They are calculated as

K (t ) =
∫

ρ
(2)
1 (k1, k2, t ) ln

ρ
(2)
1 (k1, k2, t )

ρ
(2)
2 (k1, k2, t )

dk1 dk2 (24)

SK (t ) =
∫

ρ
(2)
1 (k1, k2, t ) ln

ρ
(2)
1 (k1, k2, t )

ρ
(2)
2 (k1, k2, t )

dk1dk2

+
∫

ρ
(2)
2 (k1, k2, t ) ln

ρ
(2)
2 (k1, k2, t )

ρ
(2)
1 (k1, k2, t )

dk1 dk2 (25)
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J (t ) = −
∫ (

ρ
(2)
1 (k1, k2, t ) + ρ

(2)
2 (k1, k2, t )

2

)

× ln

(
ρ

(2)
1 (k1, k2, t ) + ρ

(2)
2 (k1, k2, t )

2

)
dk1 dk2

+ 1

2

∫
ρ

(2)
1 (k1, k2, t ) ln ρ

(2)
1 (k1, k2, t ) dk1 dk2

+ 1

2

∫
ρ

(2)
2 (k1, k2, t ) ln ρ

(2)
2 (k1, k2, t ) dk1 dk2. (26)

III. RESULTS OF EXPANSION DYNAMICS

A. Measures on one-body level

We choose N = 5 strongly interacting bosons with λ = 25,
in the harmonic oscillator trap V (x) = 1

2 x2. We use MCT-
DHB for bosons and for the noninteracting fermions we
use multiconfigurational time-dependent Hartree for fermions
(MCTDHF) implemented in the MCTDH-X software pack-
age [35]. The computation is done with M = 24 orbitals for
strongly interacting bosons, and the convergence is assured
as the last orbital occupation is insignificant. For noninter-
acting fermions, computation is done with M = 5 orbitals,
where each orbital has an exactly equal contribution of 20%
population. The initial state is prepared at the ground state
in the harmonic oscillator and the 1D expansion is studied
on sudden removal of the trap. In Fig. 1, we plot the mo-
mentum distribution of the expanding bosons at various times
and compared with the fermionic limit. The initial bosonic
distribution gradually develops fermionic character and finally
settles to five humps at time t = 8.0, which is chosen as
the time for dynamical fermionization. Figure 1 can also be

FIG. 1. Momentum distribution of expanding strongly interact-
ing bosons at different times as indicated on the panels. Computation
is done for N = 5 strongly interacting bosons with interaction
strength λ = 25 and using M = 24 orbitals. Comparison is made for
the dynamics of N = 5 noninteracting fermions, and computation is
made with M = 5 orbitals.

FIG. 2. The time evolution of the density profile during the ex-
pansion of five strongly interacting bosons initially trapped in a
harmonic oscillator (HO) potential and suddenly released. The top
panel corresponds to real space, x density, and the bottom panel cor-
responds to momentum space, k density. Computation is done with
M = 24 orbitals and chosen interaction strength λ = 25. When the
x density exhibits the expansion with distinct many-body features, k
density exhibits the asymptotic approach to fermionic limit.

compared with Fig. 1 of Ref. [9]. We extend simulation till
the time t = 10.0 (up to t = 10.0, we are able to present
fully converged results) and observe that fermionic properties
of the interacting bosons are maintained. In Fig. 2, we plot
the time-evolving density both in the real space as well as
in the momentum space. The expansion in x space clearly
exhibits the propagation of five independent jets, signify-
ing expansion of five strongly interacting bosons, whereas
the momentum density exhibits gradual development of five
humps which settle at time t = 8.0 and remain unchanged till
time t = 10.0.

Figure 3 depicts a comparison of dynamical evolution of
reduced one-body density in x space ρ (1)(x, x′) between the
strongly interacting bosons (left panel) and noninteracting
fermions (right panel), exhibiting identical expansion dynam-
ics. Initially at (t = 0), the density is clustered at the center
due to the harmonic trap, but becomes flatter and broader
with an increase in time. The density gradually acquires mod-
ulations and the number of humps tries to saturate to the
number of bosons. At t = 8.0, we observe the emergence of
five distinct humps. The hump at the center is the brightest
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FIG. 3. Snapshots of the time evolution of reduced one-body
density in the x space [ρ (1)(x, x′)] during the expansion of N = 5
strongly interacting bosons with interaction strength λ = 25 are
presented (left panel). Computation is done with M = 24 orbitals.
Comparison is made for the dynamics of noninteracting fermions in
the right panel, and computation is made with M = 5 orbitals. The
dynamical evolution of the two systems is identical in x space.

where the potential was initially zero, the two outer humps are
less pronounced due to the initial nonzero confining potential,
and the two outermost humps are least pronounced which are
away from the center. It is clearly seen that both strongly
interacting bosons and noninteracting fermions exhibit identi-
cal expansion dynamics in x space. We additionally note that
the density’s maxima in the TG regime are distinct but not
isolated, and the five bright spots are interconnected. Next,
we study the expansion dynamics through reduced one-body
density in k space, i.e., ρ (1)(k, k′), which evaluates the time for
dynamical fermionization. Figure 4 describes the momentum
distribution of the expanding gas with five bosons at different
times (t = 0, 1, 2, 3, 5, 6, 8). Initially at t = 0, the den-
sity is in cluster form at the center of the trap; with time it
gradually develops peaks, the peaks become prominent, and
finally become identical with the fermionic density distribu-
tion (last panel on the right side) at t = 8.0. We observe
dynamical fermionization occurs as the momentum distribu-
tion approaches ideal Fermi distribution at time t = 8.0. It
is not possible to distinguish the fermionized bosons and the

FIG. 4. Snapshots of the time evolution of reduced one-body
density in the k space [ρ (1)(k, k′)] during the expansion of N = 5
strongly interacting bosons with interaction strength λ = 25 are
presented for different times. Computation is done with M = 24
orbitals. Comparison is made with fermionic momentum density
distribution (last panel on the right side), and computation is made
with M = 5 orbitals. At time t = 8.0, strongly interacting bosons
attain the fermionic density distribution.

ideal fermions from the measure of one-body k density. We
conclude t = 8.0 is the time for dynamical fermionization for
the present system.

We calculate the measures of relative entropies K, SK , and
J in the x space using Eqs. (15), (16), and (17), respectively.
However, as shown in Fig. 3, as the fermionized bosons and
noninteracting fermions exhibit identical one-body expansion
dynamics in real space, the corresponding relative entropy
measures are identically zero all throughout the dynamical
evolution. The corresponding measures in momentum space
as determined by Eqs. (18)–(20) are plotted in Fig. 5 till
time t = 10.0. All the measures have the same trend and
conclude the same physics. K and SK are very close and J lies
below. We find initially that the values are significant, which
infers that for the two systems, strongly interacting bosons and
fermions are different. With time, all three measures gradually
decrease, which signifies that the strongly interacting bosons
gradually attain the fermionic characteristics. Finally, at the
time of fermionization (t = 8.0), they asymptotically settle to
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FIG. 5. Dynamics of relative entropy measures K , SK , and J in
momentum space as determined by Eqs. (18), (19), and (20) respec-
tively. The corresponding one-body momentum density is utilized
to evaluate the entropy measures. All the measures exhibit how the
strongly interacting bosons asymptotically approach the fermioniza-
tion limit at time t = 8.0 when all the relative entropy measures reach
a very small value.

a very small but nonzero constant value, which signifies that
the density of the two systems becomes indistinguishable. The
limiting value is not zero due to logarithmic terms present
in the integration. A very minute difference can contribute
significantly. We have investigated carefully the time zone
[8, 10] and we observe the relative entropy measures settle to
the limiting value only.

All the measures based on the dynamics of one-body
density support the well-accepted fact that at the time of
fermionization the strongly correlated bosons asymptotically
achieve fermionization. The one-body momentum densities of
the two systems become indistinguishable. However, it needs
to be examined whether the same conclusion can be made
from the measures using two-body densities.

B. Measures on two-body level

We discuss dynamics of the reduced two-body density in
x space ρ (2)(x, x′) in Fig. 6. Comparison between strongly
interacting bosons and noninteracting fermions are presented
at the same time scale as of one-body density (Fig. 3). The
left panel corresponds to the strongly interacting bosons and
the right panel corresponds to the noninteracting fermions.
Initially, the atoms are clustered near the center (x = x′ = 0)
for both the cases of interacting bosons and noninteracting
fermions. With time, ρ (2) gradually spreads out to the off-
diagonal (x 
= x′). The diagonal (x � x′) is gradually depleted
and a so-called “correlation hole” forms on the diagonal.
Thus, the bosons gradually overcome their spatial overlap;
the probability of finding two bosons at the same position
tends toward zero. With time, the correlation hole spreads and
finally converges in the fermionization limit at time t = 8.0.
Off-diagonal spreading also converges in the fermionization
time. Similar to the one-body density, the maxima which are
formed across the off-diagonal are distinct but not isolated.
We infer that the correlation hole along the diagonal and
the confined spreading at the time of fermionization are the
unique signatures of the two-body density of a dynamically

FIG. 6. Snapshots of the time evolution of reduced two-body
density in x space [ρ (2)(x, x′)] during the expansion of N = 5
strongly interacting bosons with interaction strength λ = 25 are
presented (left panel). Computation is done with M = 24 orbitals.
Comparison is made with dynamics of expansion for noninteracting
fermions with M = 5 orbitals (right panel). Identical evolution of the
two systems is observed.

evolved fermionized state. The dynamics exhibited by the
noninteracting fermions is exactly identical to that of inter-
acting bosons.

In Fig. 7, we plot the reduced two-body density in k space
ρ (2)(k, k′) for the same time points as chosen for Fig. 4.
Initially, at time t = 0, we observe the density in the clustered
state at the center. With time ρ (2) spreads out to the off-
diagonal and the diagonal is depleted. However, no distinct
correlation hole is created, and the strongly interacting bosons
try to make a diagonal gap, but some internal structure along
the diagonal exist. ρ (2)(k, k′) remains localized near k � 3.5,
because of the finite energy. The well-defined bright spot
indicates the localization of the bosons in momentum space.
With further time evolution the internal structure along the di-
agonal is greatly reduced but not completely extinguished like
ideal fermionic two-body reduced momentum distribution.
We infer that the distinct correlation hole and the complete
extinction of diagonal correlation are the unique signatures
of fermionization at the two-body level. Thus, we are unable
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FIG. 7. Snapshots of the time evolution of the reduced two-
body momentum density [ρ (2)(k, k′)] during the expansion of N = 5
strongly interacting bosons with interaction strength λ = 25 and
orbitals M = 25 are presented for different times. The corresponding
fermionic distribution computed with M = 5 is presented in the last
panel on the right side. The strongly interacting bosons, which were
initially at the center of the trap, gradually develop a very weak cor-
relation hole along the diagonal. However, at the time of dynamical
fermionization, the correlation width and intensity strongly differ
from the distinct correlation hole in the fermionic distribution.

to locate the signature of dynamical fermionization in the
two-body level.

To understand qualitatively how close the strongly in-
teracting bosons feature the fermionic properties in the
two-body level, we utilize the information distance measures.
The measures utilizing two-body densities in x space from
Eqs. (21)–(23) reduce to zero as the fermionized bosons and
noninteracting fermions exhibit indistinguishable expansion
dynamics as shown in Fig. 6. The corresponding measures
utilizing two-body momentum density from Eqs. (24)–(26)
are plotted in Fig. 8. The initial large value in all the rel-
ative entropy measures clearly distinguishes that a strongly
interacting boson’s density is completely different from that
of fermionic two-body density. With the increase in time, the
entropy measures continuously fall, which signifies that the
two-body density of bosons try to achieve fermionic two-
body density. At the time of fermionization (t = 8.0), all the

FIG. 8. Dynamics of relative entropy measures between the
strongly interacting bosons and the ideal fermions using two-body
momentum density in Eqs. (24)–(26). The initial large value clearly
signifies how the two systems are quite far from each other. With
time all three measures gradually decrease as the strongly interacting
bosons try to acquire fermionic distribution. However, unlike the
observation made in Fig. 5, K , SK , and J smoothly decrease.

measures have significant value far above zero, leading to in-
fer that dynamically fermionized bosons have distinguishable
density from that of noninteracting fermions in the two-body
level. It signifies that, although at the time of fermionization
the one-body density of strongly interacting bosons becomes
identical to that of ideal fermions, their corresponding two-
body density differs.

We also summarize some quantitative measures at the time
of fermionization. The one-body k entropy is evaluated by
S1B

k = ∫
dkρ (1)(k, t ) ln[ρ (1)(k, t )] and the two-body k entropy

is evaluated by S2B
k = ∫

dk1dk2ρ
(2)(k1, k2; t ) ln[ρ (2)(k1, k2; t )].

At the time of fermionization (t = 8.0), S1B
k = 1.830 for

strongly interacting bosons, which is closely comparable with
1.819 for noninteracting fermions. The corresponding relative
entropy measures in the one-body level are K = 0.007, SK =
0.014, and J = 0.001. In contrast, for two-body k entropy
for interacting bosons, S2B

k = 93.985; this is significantly dif-
ferent from 10.523, which is the two-body k entropy for
noninteracting fermions. The corresponding relative entropy
measures are K = 0.919, SK = 1.850, and J = 0.260, which
clearly signify that there is no signature of dynamical fermion-
ization on the two-body aspects.

To estimate further the difference between the strongly
interacting bosons and the fermions, we calculate the lo-
cal two-body correlation function in both x and k space.
From Fig. 6, it is clearly seen that the two-body correla-
tion is completely extinguished at x = x′ = 0 all throughout
the dynamics for both the fermionized bosons and nonin-
teracting fermions, which leads to g(2)(x = 0, x′ = 0) = 0
as calculated from Eq. (13). However, in the k space, the
local two-body correlation g(2)(k = 0, k′ = 0) would contain
significant quantitative information about the close prox-
imity of the two systems in the entire dynamics. From
Eq. (14) we calculate g(2)(k = 0, k′ = 0) for the fermionized
bosons and plot it in Fig. 9. It is expected that for fermions
g(2)(0, 0) is uniquely zero, which is the typical feature of
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FIG. 9. The time evolution of the local two-body correlation
g(2)(0, 0) for the strongly interacting bosons in momentum space.
g(2)(0, 0) = 0 corresponds to fermionization limit, which infers
the existence of a distinct correlation hole; two-body correlation is
completely extinguished. Strongly interacting bosons initially have
strong local correlation; it dies with time but does not reach zero at
the time of fermionization.

fermionization on the two-body level. For strongly interact-
ing bosons it starts from g(2)(0, 0) = 1.0, and then after a
small increase, it smoothly decreases. However, at the time
of fermionization (determined from one-body measures), it
reaches to g(2) = 0.4 but does not settle and smoothly de-
creases. It indicates that for strongly interacting bosons the
local two-body correlation is not completely extinguished,
which helps to identify strongly interacting bosons from non-
interacting fermions. The corresponding two-body nonlocal
correlation g(2)(0, k) is plotted in Fig. 10. Strongly interacting
bosons reach to the no-correlation limit with some initial
characteristic oscillation. However, the fermions attain the
no-correlation limit sharply and do not exhibit any resolvable
dynamical structure.

FIG. 10. The time evolution of two-body nonlocal correlation
g(2)(0, k) for the strongly interacting bosons. g(2)(0, k) → 1 implies
the no-correlation limit, which is achieved at the characteristic time
of fermionization. We also observe some peculiar oscillation around
the no-correlation zone for the strongly interacting bosons.

FIG. 11. Snapshots of the dynamics of three-body density
ρ (3)(x, x′) (left column) and ρ (4)(x, x′) (right column) for N = 5
strongly interacting bosons. See the text for details.

C. Higher-order coherence

Figures 11 and 12 depict the higher-order densities
ρ (p)(p = 3, 4) in x and k space for the strongly interacting
bosons; the noninteracting fermions do not exhibit any higher-
order correlation beyond two-body. The ρ (p) provides the
probability of detecting particles at x and x′ when the re-
maining p − 2 particles are fixed at some reference positions.
For fermionized bosons, the diagonal of the high-order p-
body densities ρ (p)(x, x) vanishes as the so-called correlation
hole results from the strong interaction strength that mimics
the Pauli principle, preventing finding two bosons at the same
position. The maxima exhibit a well-defined peaked structure
which indicates the localization of the atoms in position space.
The maxima along the antidiagonal x = −x′ infers that the
bosons maximize the distance between each other, whereas
the maxima along the subdiagonal infers that the bosons min-
imize the potential energy. The additional correlation holes
appear at the fixed values of the remaining p − 2 coordinates
of ρ (p), preventing finding other bosons at these positions.

In Fig. 11, we plot three-body density ρ (3)(x, x′) (keeping
the third particle at the fixed reference point x3 = 0) at the left
column and four-body density ρ (4)(x, x′) (keeping the third
and the fourth particle at the fixed reference points x3 = 0 and
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FIG. 12. Snapshots of the dynamics of three-body density
ρ (3)(k, k′) (left column) and ρ (4)(k, k′) for N = 5 strongly interacting
bosons. See the text for details.

x4 = 0.47) at the right column. Initially both three-body and
four-body densities are localized at the center. With time, the
maxima is developed along the antidiagonal as well as along
the subdiagonal. Additional correlation holes also appear at
the fixed reference points as the probability of finding other
bosons at these positions is zero. The three-body correla-
tion structure exhibits further delocalization as expected, and
finally converges at the time of dynamical fermionization.
The corresponding three-body and four-body densities in the

momentum space are plotted in Fig. 12. Like Fig. 11, it also
exhibits a rich dynamical structure.

IV. CONCLUSION

For the strongly interacting TG limit, the wave function
of the interacting bosons in one dimension maps to that of
noninteracting fermions. The properties of the two systems
which are determined by the amplitude of the wave function
are identical, whereas the measurement in the momentum
space exhibits dynamical fermionization. This conclusion is
established on the basis of one-body analysis. In this work
we extend the measure to higher-order densities and cor-
relation function using numerically exact solution of the
time-dependent many-boson Schrödinger equation. We es-
tablish all the existing physics and additionally include the
measures of three different kinds of relative entropies which
utilize the one-body in the momentum space. We clearly find
that all the measures on the one-body level unambiguously es-
tablish the onset of fermionization in the dynamical expansion
of strongly interacting bosons. However, the measures beyond
the one-body level are able to distinguish strongly interact-
ing bosons from noninteracting fermions in the dynamics.
To understand how the two systems reach close proximity
at the onset of fermionization, we extend all the measures
in the two-body level. The two-body momentum distribution
clearly distinguish the two systems in the dynamical evo-
lution. The measures of relative entropies using two-body
momentum density also quantitatively exhibit the distinction
between the two systems. The two-body local and nonlocal
correlations also conclude the same physics. Additionally, we
find that the interacting bosons exhibit very rich structure in
the higher-body densities, whereas for the fermions three- and
higher-body correlations are ideally zero. We also provide
quantitative estimates of different measurable quantities for
both the one- and two-body level, which can be validated in
the recent experiments of the quasi-1D setup.
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