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Quantum walks have gained significant attention over the past decades, mainly because of their variety of
implementations and applications. Atomic quantum walks are typically subject to spontaneous emissions arising
from the control fields. We investigate spontaneous emission in an atom-optics kicked-rotor quantum walk. Here,
spontaneous emission occurs naturally due to the driving by the kicks, and it is generally viewed as a nuisance in
the experiment. We find, however, that spontaneous emission may induce asymmetries in an otherwise symmetric
quantum walk. Our results underscore the utility of spontaneous emission and the application of the asymmetric
evolution in the walker’s space, i.e., for the construction of a quantum walk ratchet or for Parrondo-like quantum
games. This highlights the potential for reinterpreting seemingly adverse effects as beneficial under certain
conditions, thus broadening the scope of quantum walks and their applications.
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I. INTRODUCTION

Over the past two decades, quantum walks (QWs) have
gained considerable attention owing to their potential to out-
perform classical algorithms in a range of computational tasks
[1–3]. The distinct characteristics of QWs stem from quantum
interference phenomena. For instance, QWs typically have
characteristic peaks that exhibit ballistic expansion [1,2], as
opposed to the classical random walks that are governed by
stochastic processes normally showing a diffusive expansion
with a central maximum in the distribution [4]. A quantum-
to-classical transition, as will become relevant below, would
correspond in this framework to a transition from a distribu-
tion with ballistic peaks toward a more normally distributed
shape with diffusive expansion. QWs can be broadly divided
into two primary types: discrete-time and continuous-time
QWs [1]. Notably, the discrete-time variant introduces an
additional coin degree of freedom, which dictates the direction
of the walker in the subsequent step, entangling its evolution
with the coin degree of freedom.

In preceding studies, we have investigated a distinctive
model, describing a discrete-time QW, employing a Bose-
Einstein condensate (BEC), consisting of 87Rb atoms, with an
additional spin-1/2 degree of freedom [5–9]. This approach
markedly differs from various other experimental investiga-
tions [10–26], distinguishing itself by realizing the QW to
occur within quantized momentum space, where the steps of
the walk are implemented by periodic pulses applied to the
condensate. This process is meticulously described by the
atom-optics kicked-rotor (AOKR) model [27–29], governed
by the following Hamiltonian:

Ĥ = p̂2

2
+ k cos(θ̂ )

∞∑
j=−∞

δ(t − jτ ). (1)
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p̂ and θ̂ are the momentum and angular position operators.
The angle corresponds to θ = x mod 2π and typically cor-
responds to the position operator in a ring geometry. In the
experimental realization [6,7,9], this geometry is effectively
implemented by a periodic standing-wave potential. The pa-
rameters k and τ represent the laser kick strength and time
interval between successive pulses. Considering that exper-
iments occur in a periodic potential, Bloch’s theorem may
be applied [28]. In our dimensionless variables, the momen-
tum separates into p = n + β, with an integer part n and a
dimensionless quasimomentum β ∈ [0, 1). The experimental
system’s quasi-momentum distribution, primarily determined
by the BEC’s initial temperature, has typically a width of a
few percent in the Brillouin zone.

The evolution over one time period, τ , can be described by
the Floquet operator,

Û = e−iτ p̂2/2e−ikσz cos(θ̂ ), (2)

that consists of a free evolution part (left factor) and a kick
operator (right factor). For AOKR QWs, the free evolution
between subsequent kicks has a duration of a full Talbot time
[6,7,9,30], which corresponds to τ = τT = 4π in our dimen-
sionless variables [28,31]. Without further nuisance, the free
evolution operator is thus equal to unity.

A kick typically possesses a finite pulse duration τp it-
self. Numerically, this is handled by dividing the kick into
h subkicks [31]. Each subkick is characterized by 1

h of the
full kicking strength and is followed by a free evolution over
1
h of the total pulse duration. The parameter h, balancing
computational time and approximation accuracy, is chosen
based on numerical efficiency; h = 10 has been deemed suf-
ficient for reaching convergence within our parameter regime.

Ûkick =
∏

h

e−i p̂2

2
τp
h e−i k

h cos(θ̂ )σz . (3)
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In this work, the primary concern is spontaneous emission
(SE) occurring when the kick potential is on [7,27,28,31–44],
rather than effects arising from the finite pulse width. Since
a finite pulse width effectively introduces reflective walls in
momentum space [27], we set a sufficiently small duration
for τp to ensure minimal perturbation to momentum-space
distributions from this effect.

In resonance conditions, i.e., τ = 4π , atoms exhibit bal-
listic movement in momentum space. This means that
momentum increases linearly with the number of kicks, re-
vealing the typical signature of a QW [27,28,31,45]. Two
internal (spin) states of the atoms are participating in the
dynamics. One is moving to the left, while the second one
is moving to the right in momentum space [7,9,30], mirrored
by the Pauli matrix σz in Eqs. (2) and (3). A spin rotation by a
so-called coin matrix mixes those two states in each step of the
QW [7,9,30]. In the absence of external perturbations, both
internal states would undergo identical evolution due to the
kicks. To put it another way, their motion would be symmetric
in the walker’s space under the influence of the AOKR’s
evolution operator. This inherent symmetry is broken by an
adequate choice of the initial state, achieved by setting specific
initial conditions in the walker’s space. To establish this initial
ratchet state, we link at least two adjacent momentum classes
with a relative phase of eiπ/2

|ψR〉 = 1√
J

∑
j

ei jπ/2 |n = j〉 ⊗ |l〉 , (4)

where |l〉 represents the preparation of the ratchet state in
either of the two initial states |l = 1〉 or |l = 2〉, respectively.
In what follows, we always assume an initialization in state
|l = 2〉. A relative phase shift, as presented in Eq. (4), can be
introduced experimentally by the application of conveniently
timed Bragg pulses [7,9,46]. The mean momentum transfer
is determined by the sign of the kick potential, which varies
between the two internal states [30]. Notably, as the parameter
J in Eq. (4) increases, the dispersion due to directed kicking
decreases. With J � 3, we observe an evolution that most
closely mirrors an ideal QW [8,46]. Unless specified differ-
ently, our analyses will be based on an initial state with J = 3:

|ψR〉 = 1√
3

(−i |n = −1〉 + |n = 0〉 + i |n = 1〉) ⊗ |2〉 .

(5)

The final distribution then also depends heavily on the choice
of the coin. This coin operation is executed using a Rabi
coupling between the atom’s two internal states, enabled by
resonant microwave pulses, effecting a unitary rotation of
these states [7,30,47]. The QWs presented in Refs. [6,7,9] are
characterized by a series of unitary operations, as given by

Û t
step = [ÛQ̂2]t ÛQ̂1. (6)

Here, t ∈ N represents the steps of the walk applied to the
initial state. The final momentum distribution’s key attributes,
like symmetry and form within the walker space, hinge on the
specific selection of the initial coin Q̂1 and the coin during the
walk protocol Q̂2. We find an asymmetry that emerges due to
specific combinations of the coin matrix and a nonresonant
evolution of the walk due to the effects of SE. Here, we are

especially interested in this asymmetry and in its use. SE is
a quantum effect that naturally appears in driven systems.
During the application of the laser pulse, the optical electron
in one of the atoms is excited to the energetically higher state
and spontaneously collapses into an energetically lower state.
This effect is to some extent always present in AOKR exper-
iments [27–29] and is typically treated as a nuisance. In this
paper, however, we will demonstrate the utility of SE-induced
asymmetry for the construction of a QW ratchet [48].

Quantum walks in momentum space are experimentally
observed for up to about T = 15 steps; see Refs. [6,7,9].
Since the asymptotic behavior is only of little interest due to
effective dissipation in the experiment [7,46], we will focus
our analysis on the experimentally pertinent timescales of up
to maximally 20 steps in the walk. An analytical approach for
arbitrary step numbers but without SE is found in Ref. [49].

The shape of the momentum distribution itself will pri-
marily depend on the choice of the coin. Since we intend
to analyze the behavior of QWs under the effect of SE, we
start in Sec. II with a quick analysis of the coin parameters.
Section III is then devoted to the introduction of SE to the
system and identifying a candidate coin for engineering a QW
ratchet. The key section, Sec. IV, deals with the optimization
of the QW ratchet. Experimental implications are discussed in
Sec. V, while Sec. VI summarizes our results.

II. GLOBAL BEHAVIOR OF SYMMETRY

In a recent study, we analyzed discrepancies between ex-
perimental data on QWs in momentum space [6,7,9] and the
corresponding theory. These discrepancies arise from light-
shift-induced effects on energy levels, which effectively led
to the use of a distinct, unintended coin during the walk.
This effective coin matrix, when paired with a confined (only
two momentum classes with J = 2) initial state in momentum
space, revealed an unusual behavior, leaving a considerable
portion of the probability distribution near the origin n = 0
that vanishes for an initial state with J � 3 [8]. Such obser-
vations suggest that the phase selections within a balanced
coin matrix in the quantum-walk protocol can significantly
influence key aspects of the final momentum distribution. In
the following, we discuss the impact of the choice of the coin
parameters on the symmetry of the walk.

A. Choice of coin

The most general form of the balanced coin matrix for the
two-state system with a pseudospin degree of freedom of the
atom is written with three Bloch angles χ , γ , and α and reads

M̂

(
χ = π

4
, γ , α

)

=
(

eiα cos
(
χ = π

4

)
e−iγ sin

(
χ = π

4

)
−eiγ sin

(
χ = π

4

)
e−iα cos

(
χ = π

4

))

= 1√
2

(
eiα e−iγ

−eiγ e−iα

)
. (7)

Here, χ = π
4 determines the coin to be balanced, meaning

that both internal states are weighted equally, even though
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FIG. 1. Shown are the momentum distributions after T = 20
steps in the evolution. The walks are evolved with the Ŵ coin and
the ĜH coin, respectively.

with different phases. Since we are only interested in balanced
QWs, we effectively have two free Bloch angles γ and α in the
coin.

In the following analysis, all walks will be initialized by
the so-called Ŷ coin [8], choosing in Eq. (6)

Q̂1 = Ŷ = M̂

(
π

4
,
π

2
, 0

)
= 1√

2

(
1 i
i 1

)
. (8)

The Q̂2 coin in the walk protocol is then executed by the Ŵ
coin or the ĜH coin [8]:

Ŵ = M̂
(π

4
, 0, 0

)
= 1√

2

(
1 1

−1 1

)
, (9)

ĜH = 1√
2

(
1 1
1 −1

)
=̂ i√

2

(
1 1
1 −1

)
(10)

= M̂

(
π

4
,

3π

2
,
π

2

)
. (11)

Here, the equivalence in Eq. (10) is written, because both
coins result in the same walk since a global phase does not
induce any change. As discussed in detail in Ref. [8], a walk
that evolves under the ĜH coin, without any additional distor-
tions, displays markedly different characteristics than a walk
evolved under the Ŵ coin. Notably, there is a pronounced peak
near zero momentum, as illustrated in Fig. 1.

In the following, we will introduce a quantity to charac-
terize the different regimes of symmetry within the parameter
regime spanned by the Bloch angles α and γ .

B. Mapping out parameter space

We are particularly interested in asymmetries evolving in
the QW, necessitating the definition of an asymmetry observ-
able S. Similarly to Ref. [50], the value S is determined by
taking the probability to the right of the inversion point at
momentum n = 0 and subtracting the probability to the left
of it. In the context of Parrondo games, two losing strate-
gies combined result in a winning strategy. Using the AOKR
framework for Parrondo-like quantum games [50], the sign
of the variable S defines the winning or the losing strategy,
respectively. In our context, the same measure is subsequently

employed as a quantification of symmetry

S =
∑

n>0,l=1,2

|ψ l
n|2 −

∑
n<0,l=1,2

|ψ l
n|2. (12)

Here, |ψ l
n|2 denotes the amount of probability associated with

momentum class n summing over both internal levels l = 1, 2.
In what follows, we will present arguments to shape some

intuition and provide qualitative insight into the overall behav-
ior of the observable S(γ , α).

1. Symmetric coin configurations

For special relations between γ and α additional sym-
metries can be found in the coin itself. Empirically, this
additional symmetry in the coin induces more symmetrical
behavior in the walk. Let us discuss two cases.

For the first case consider γ = α, γ = α ± 2π :

M̂

(
χ = π

4
, γ , α = γ

)
= 1√

2

(
eiα e−iα

−eiα e−iα

)
≡ 1√

2

(
φ ρ

−φ ρ

)
. (13)

For the second case consider γ = α ± π :

M̂

(
χ = π

4
, γ , α = γ ± π

)
= 1√

2

(
eiα −e−iα

eiα e−iα

)
≡ 1√

2

(
φ −ρ

φ ρ

)
. (14)

In this setup, we consistently have two pairs of identical
phases in the coin. Generally, this condition is not fulfilled.
In subsequent computations for each time step, the internal
states are mixed in a comparable manner. It appears plausible
that when the states are mixed with similar phases along the
protocol, they also evolve in a more balanced way, however
systematically in opposite directions. This seems to induce
overall a more balanced walk.

In Fig. 2, the walk evolves for T = 15 time steps, and
the symmetry indicator S(γ , α) is plotted as a function
of the free Bloch angles. Dominant red or blue stripes within
the plot mark regions where the QW skews left or right.
Intersecting white lines between these areas with S = 0 align
qualitatively with the anticipated lines in parameter space
γ = α and γ = α ± π , which possess the coin’s additional
symmetry from Eqs. (13) and (14), respectively. Not all walks
corresponding to S = 0 in Fig. 2 perfectly match predictions,
seemingly distorted by high-asymmetry zones, indicating a
more intricate dynamic than the rudimentary theory suggests.
Still, the theory capably predicts the qualitative behavior of
where the balanced walks are found in parameter space due to
coin phase symmetry, aiding in understanding for the system.
Also, the empirical lines with S = 0 get closer to the predicted
lines for a higher number of time steps, as has been numeri-
cally verified.

In Fig. 2, the blue and red dots are coin types that are
identical up to a global phase to Ŵ and ĜH from Eqs. (9) and
(10), respectively. Those points lie on the white lines predicted
by our argument from above.

S indicates the direction of evolution for the walk, but not
the walk’s shape. This means that walks may be balanced, as
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FIG. 2. Shown is a color map of the symmetry indicator S(γ , α)
in dependency of the free Bloch angles α and γ , evaluated after T =
15 steps in the evolution. The blue and red dots reproduce the walk
with the ĜH coin and the Ŵ coin, respectively, as shown in Fig. 1.
The white lines map out the coin configurations where an additional
symmetry is found, investigated in detail in Sec. II B 1.

quantified by S, but their shape does not necessarily exhibit
an inversion point, underscoring the rarity of true symmetry.
Indeed, only two classes of walks exhibit a concrete inversion
point.

One class is defined by the ĜH -coin walk, presented in
Fig. 1. It is replicated across parameter combinations on the
coin-symmetry lines, with half-integer multiples of π for γ

and α, indicated by blue full dots in Fig. 2. Conversely, the
Ŵ -coin walk is echoed with integer Bloch angle multiples of
π , shown by red full dots in Fig. 2. All these walks possess
coins that are exclusively real or complex, respectively. When
initialized by the Ŷ coin, they maintain the initial rotation of π

between the internal states. All other cases introduce both real
and imaginary phase components, thus lifting this initial rota-
tion, which then appears unfavorable for a mirror-symmetric
walk evolution. Thus, other configurations are either balanced
without a mirror axis or are distinctly asymmetric.

2. Asymmetric coin configurations

In Fig. 2, the asymmetric regions manifest as broad di-
agonal stripes, echoing the observations from Sec. II B 1. To
investigate the deep asymmetric regime, a broader relation-
ship between α and γ can be expressed as γ = α + ζ , where
ζ is arbitrary but constant, giving the coin matrix

M̂

(
χ = π

4
, γ = α + ζ , α

)
= 1√

2

(
ei(α) e−i(α+ζ )

−eiα+ζ e−iα

)
≡ 1√

2

(
φ ρe−iζ

−φeiζ ρ

)
.

(15)

Empirically, we can conclude from Fig. 2 that the walk
evolves asymmetrically to the left for 0 < ζ < π . Thus,
eiζ lives on the right half of the complex unit circle with
RE(eiζ ) > 0 and e−iζ lives on the left half of the complex unit

circle with RE(e−iζ ) < 0. In comparison, the walk evolves
asymmetrically to the right for −π < ζ < 0. In this case,
again, eiζ lives on the left part of the complex unit circle
and e−iζ on the respective right half. So, if the two ζ -related
phase angles are effectively interchanged, then the direction in
which the walk is skewed is also switched. If this additional
ζ -related phase vanishes, then we recover the scenario from
Sec. II B 1.

Looking at the parameter scan from Fig. 2, we also find
spots in the asymmetric parameter areas, which are exception-
ally asymmetric. In the C = (α, γ ) coordinate frame, we find
that these spots are located at

C+
1 = (α = 1/2 π, γ = 0) → ζ = −π/2 (16)

C+
2 = (α = 3/2 π, γ = π ) → ζ = −π/2 (17)

C−
1 = (α = 1/2π, γ = π ) → ζ = +π/2 (18)

C−
2 = (α = 3/2π, γ = 2π ) → ζ = +π/2. (19)

Here, the upper index notes that the asymmetry is to the
right (+) or to the left (-), respectively. These four points
have in common that they are fully complex on the diagonal
and fully real on the off-diagonal elements. With a respective
irrelevant phase factor of i, this characteristic is similar to
the initialization by the Ŷ coin, which is the same for all
walks. This effectively lifts the initial rotation of π between
the internal states provided by the Ŷ coin and causes the walk
to be highly asymmetric. Thus, the emergence of both highly
symmetric and highly asymmetric behavior is determined by
the rotation between the phases of the coin during the walk,
Q̂2, in reference to the phases of the initial coin, Q̂1, see
Eq. (6). Specifically, it depends on whether this relative phase
rotation is maximal, i.e., π , in the symmetric case, or effec-
tively lifted in the asymmetric case, on the off-diagonal of the
coin matrix.

While the results of the section may be interesting for
designing Parrondo-like games [50], we are in the following
interested in how SE affects the symmetry of the QW.

III. SPONTANEOUS EMISSION

So far, our focus has been on asymmetries in the coherent
QW stemming from the selection of the coin matrix. However,
noise-induced asymmetries garner particular attention, given
their potential utility in crafting a QW ratchet [48]. The QW
ratchet described in this study is particularly noteworthy as
it is induced by SE. Typically, SE is associated with merely
causing decoherence [6], but in this case it contributes to the
creation of a QW ratchet. This phenomenon represents a shift
in perspective, where what is usually considered a nuisance
becomes advantageous.

A. Spontaneous emission in the AOKR

In the context of AOKR dynamics a SE event can be
interpreted as an event in which the atomic optical electron
goes into an excited state during the application of the laser
pulse and then spontaneously falls into either the energetically
lower |1〉 or |2〉 state. All excitations are assumed to be far
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FIG. 3. Level scheme of the AOKR quantum walk with the two
internal levels |1〉 and |2〉. The excited state |e〉 is used to impart the
kicks to the atoms by an off-resonant standing wave of laser light.
ωL denotes the frequency of the kicking laser. δ and � denote the
detunings of the two possible transitions with respect to the laser
frequency.

away from an internal electronic resonance, in contrast to
Refs. [44,51]. During the spontaneous de-excitation a photon
is emitted, inducing also a shift of the atomic quasimomentum
[28,31]. For the AOKR we effectively solve a quantum-optical
Lindblad master equation [52] of the following form:

d ρ̂

dt
= −i[Ĥ, ρ̂] + D̂(ρ̂), (20)

where ρ̂ is the reduced density operator including the walker’s
and the coin space. The master equation accounts for a
Hamiltonian part and a jump part described by the dissipation
operator D̂(ρ̂ ). We arrive at the following effective Hamilto-
nian, for which a detailed derivation can be found in chapter 5
of Refs. [52] and [43] for nonresonant internal transitions:

Ĥ = 1

1 + μ2

4δ2

�2
1

8δ
[cos(2kLx̂) + 1]|1〉〈1|

− 1

1 + μ2

4�2

�2
2

8�
[cos(2kLx̂) + 1]|2〉〈2|. (21)

Let μ denote the SE event rate, defined as

μ = μ1 + μ2 = k1

τpτSE|δ| + k2

τpτSE|�| , (22)

where δ and � are the respective detunings from the res-
onance, shown in Fig. 3. Given that the detuning is small
compared to the laser frequency, the approximation k1 = k2 =
k is valid [7,53]. Consequently, we have δ = −�, and thus we
find μ1 = μ2 for the SE rates in Eq. (22). Also, τp is the pulse
duration, and τSE represents the lifetime of the transition.

We solve the master equation (20) by the quantum
trajectory method described, e.g., in Refs. [31,43,54]. A mod-
ified walk protocol is implemented that accounts for the
Hamiltonian part and also for the dissipative part in Eq. (20)
as a statistical event happening with probability pSE. A picture
of the overall dynamics of the system can be obtained by
taking an average over a sufficiently large number of trajec-
tories. Implementing the quantum trajectories, any SE event
is effectively modeled by two actions, on the (i) internal and
(ii) external degree of freedom [31], respectively: (i) a

projection onto one of the internal states by application of
the projection operators P̂|1〉 and P̂|2〉, and (ii) accompanied
by a shift in quasimomentum βSE induced by the recoil of the
emitted photon [31]. The projection operators on the internal
states are

P̂|1〉 = 1

N (A|ψ|1〉〉 ⊗ |1〉〈1| + B|ψ|2〉〉 ⊗ |1〉〈2|), (23)

P̂|2〉 = 1

N (C|ψ|1〉〉 ⊗ |2〉〈1| + D|ψ|2〉〉 ⊗ |2〉〈2|). (24)

Here, N serves as a normalization factor and A, B,C, D are
detuning-dependent weights. For our analysis, A, B,C, D can
be realistically approximated as 1/2, see Ref. [43].

With the inclusion of SE, the kick’s evaluation be-
comes more complex [28,31,34,37–39,43]. For each of the
h subkicks from Eq. (3), we determine, based on an event
probability pevent = pSE

h , whether an SE event transpires. If
it does, with a 50-50 chance we decide the projection onto
either P̂|1〉 or P̂|2〉 internal states, and the quasimomentum shift
is randomly selected from βSE ∈ uniform(−0.5, 0.5). In the
event’s presence, the partial kick is expressed as

ÛSE = P̂|i〉e−i ( p̂+βSE )2

2
τp
h e−i k

h cos(θ̂ )σz , (25)

with |i〉 being |1〉 or |2〉, with a probability of 1/2. The Pauli
matrix σz encodes that one internal state is moving left, the
other one right due to the kick. Our approach concurrently
accounts for the kick’s finite duration and the potential of
multiple events during a single pulse duration. For 87Rb quan-
tum walks [6,7,9], the Talbot time is 103 μs, equivalent to 4π

in our units. In AOKR experiments, the typical pulse width
is of the order of 100 ns, but much shorter pulses should
be possible, see, e.g., Refs. [55,56]. We use here throughout
τp = 0.005, corresponding to a pulse duration of a few tens of
nanoseconds. This minimizes the impact of possible perturba-
tions due to the finite pulse width [31,57–59] for longer walks
of more than a few tens of steps.

The total kick is then again written as a product of h partial
kicks, where for each partial kick we decide by probability
pSE/h whether an event occurs or not:

ÛSE−kick =
∏

h

ÛSE. (26)

The shift in quasimomentum enters in the free evolution be-
tween subsequent kicks with a duration of a full Talbot period
in the same way,

ÛSE−free = e−i ( p̂+βSE )2

2 τT . (27)

Since the shift in quasimomentum comes from a uniform dis-
tribution and the Talbot period is with a duration of τT = 4π

relatively large compared to the duration of the pulse itself,
the shift in quasimomentum is of a much greater significance
here than during the kick pulse in Eq. (25) [28,31]. Indeed,
the free evolution between subsequent pulses with the long
duration τT = 4π but off-resonant shift in quasimomentum
due to SE can lead to strongly nonballistic (nonresonant)
diffusive evolution [6,52] that effectively destroys the QW.
Mainly, this effect limits the regime of event rates pSE in
which SE-induced effects will be observable, which will be
discussed in more detail in the following analysis.
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FIG. 4. Two different walk protocols evaluated after T = 15
steps in the evolution with increasing SE. Both protocols are initial-
ized by the Ŷ coin. The left row is then evolved under the ĜH coin,
while the right row is evolved under the Ŵ coin. From top to bottom
SE rates increase. The number in the upper right corner in each plot
indicates the symmetry of the evolution S. The ĜH walk develops a
strong asymmetry while the Ŵ walk becomes only slightly asymmet-
ric. It might be suspected that the weak asymmetry in the Ŵ protocol
is due to numerical fluctuations. However, it appears to be relatively
robust. The distributions present an average over 10 000 realizations,
with the given probabilities of pSE per kick.

B. Spontaneous emissions during quantum walk

From Fig. 4, we observe that the walk under the Ŵ coin,
with increasing SE rates, becomes more classical and exhibits
mild asymmetry. This can be read off S, which is shown in the
top right corner of each subplot, where the distribution itself is
calculated by the quantum trajectory method. Conversely, the
walk under the ĜH coin displays a quite pronounced asymme-
try, always a magnitude larger when compared to the Ŵ walk.
For high event probabilities, the ballistic peaks for positive
momentum classes are noticeably damped by SE. However,

the peaks for negative momentum classes are less affected.
As SE rates increase, the resonant peaks tend to vanish and
a more Gaussian-like distribution is observed, indicating a
quantum-to-classical transition. This transition will be ana-
lyzed in detail in Sec. IV B. Consequently, the asymmetry
effect blurs out for too large pSE.

With rising SE rates, the diagonal structures within the free
Bloch angles parameter domain blur, as illustrated in Fig. 5.
In this parameter landscape, the Ŵ walk (red dot) maintains
a position where even at high SE rates, there is only a small
deviation from the initial parameter scan from Fig. 2, resulting
in minor asymmetries, also consistent with Fig. 4. In contrast,
the ĜH walk (blue dot) evolves strong asymmetries as it lies
in a region dominated by the pronounced asymmetry. This is
because, due to increasing SE rates, the asymmetric regions,
governed by C±

i , shift toward larger values of γ . This shift
now situates the ĜH coin within the asymmetric region. This
finding opens a route to design an open QW ratchet.

Within the parameter space of γ and α, SE introduces two
key alterations: a transition from a strong stripe to a more
faint pattern, followed by a drift of the asymmetric regions
to larger values of γ . The walk exhibiting an asymmetry then
depends on the coin’s initial position within this parameter
space. The effects are counteracting each other. The shift in
γ situates the ĜH walk in a region of higher asymmetry vs
the fainting amplitude of asymmetry as a consequence of the
off-resonant walk. Thus, depending on the choice of coin, an
asymmetric evolution of the walk can be constructed with a
corresponding SE rate. In other words, for given windows
of pSE, the initially symmetric QW can be engineered to be
maximally asymmetric.

Numerically, SE are implemented by two distinct effects,
see previous Sec. III A: (i) the projection onto an individual
internal state with a 50:50 probability, and (ii) the shift in
quasimomentum. We studied each of these effects separately
for a better understanding. Focusing solely on the projection
with resonant quasimomentum, we observe a shift in the stripe
pattern seen in Fig. 2 toward higher values of γ . This shift be-
comes pronounced at SE rates of approximately 20%, though
it is also present at lower rates in a diminished form. The Ŷ
coin is located at (0,0), which, within this scenario, represents
a particularity since the white line with S = 0 always extrapo-
lates to the origin (0,0). Hence, this point is not affected by the
shift. The other coin, ĜH , is positioned at (3/2π, 1/2π ) and
finds itself in a region with S 
= 0 due to the shifting of the
stripes. Adding (ii) the shift in quasimomentum present in the
numerical model of SE, the overall image becomes noticeably
noisier. This is attributed to the new, shifted quasimomentum
being drawn from a broad random distribution, hiding the
effect of the projection. Unfortunately, with both SE-induced
effects present, the clarity of the stripe shift in Fig. 5 is com-
promised. The combination of these effects leads to a washing
out of the data for pSE � 15%–20%, which motivates the
further study of pSE � 10%. In other words, the regime where
we find a QW ratchet is for nonvanishing pSE smaller than
some threshold value of about 15%–20%, above which the
QW becomes almost classical in shape and evolution. Overall,
we can say that the SE-induced shift of quasimomentum,
making it in particular nonresonant, together with the right
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FIG. 5. Scan of the symmetry S(γ , α) of the QW, evaluated after
T = 15 steps in the walk. The walk is initialized by the Ŷ coin
and then evolved under M̂(χ = π

4 , γ , α). From top to bottom SE
rates are increased. The red dot at (γ = 0, α = 0) marks the more
symmetric walk evolved under the Ŵ coin, while the blue dot at
(γ = 1.5π, α = 0.5π ) marks the asymmetric walk evolved under
the ĜH coin (compare to Fig. 2). It appears that the ĜH walk lives in
a more unstable area in parameter space with respect to the symmetry
of the evolution under the influence of SE, causing an initially sym-
metric walk to evolve asymmetrically under the introduction of SE.
Each pixel is calculated as an average over 1000 event trajectories.

choice of the coin induces the asymmetry in the QW effected
by SE.

IV. OPTIMIZING THE QW RATCHET

The SE-induced asymmetry observed for the ĜH walk is
intriguing since it may be used for the construction of a
ratchet. This section analyzes in detail such an engineering
of an AOKR ratchet in the quantum as well as the classical
regime.

Previous AOKR ratchets were so-called Hamiltonian ratch-
ets [60–62], where the symmetry is only broken by the initial
conditions, while the evolution remains coherent. This raises
curiosity about the optimal parameter choice to maximize the
asymmetry of the ĜH walk and thereby enhance the efficacy
of an SE-induced ratchet. For our analysis we will only con-
sider the walk of the ĜH coin, since unperturbed it has an
inversion point. Therefore, it is a symmetric walk without SE
that turns asymmetric only when perturbed by SE. Thus, our
AOKR system is a suitable candidate for a purely SE-induced
ratchet.

A. Initial state dependence

Any AOKR QW [6–9,30,45,46] is built on a coherent
Hamiltonian ratchet and hence on the localization of the
initial conditions within the kicking potential [28,46,60,61].
The width of the initial state in momentum space and thus
the amount of momentum classes included in the initial state
J , as in Eq. (4), holds significant relevance for the shape
of the distribution [46]. As discussed in Ref. [8], a broader
initial state considerably diminishes the portion of the dis-
tribution proximal to n = 0 for the ĜH walk. Consequently,
a broader initial state implies diminished central probabil-
ity, which is instead prevalent in the tails, amplifying the
asymmetry.

The walk we are analyzing exhibits perfect symmetry for
pSE = 0. At elevated SE probabilities, the walk reverts to a
classical random walk due to strong phase decoherence. This
suggests the existence of an optimal SE probability that max-
imizes the asymmetric walk evolution. The argument holds
within the region in which the walk is not yet dominated by
classical dynamics, which would be the case around pSE =
10% and below. Our hypothesis is supported by Fig. 6(a),
which shows the dependency of the symmetry observable S
on pSE and on J . We find that the curve of the symmetry indi-
cator S(pSE, J ) improves with increasing momentum classes
J in the initial state and maximizes for T = 15 at pSE ≈ 0.1.
However, from Fig. 4 we know that the regime up to which the
resonant tails of the distribution are still visible lies roughly
around pSE ≈ 0.05, which would be the regime in which a
ratchet that exhibits quantum resonance [27,28,31] might be
well observable.

The best improvement on the asymmetry comes when in-
creasing from an initial state constructed with J = 2 to J = 3,
see Eq. (4). This observation seems to align with the results
from Ref. [8], since for J = 3 the part of the momentum
distribution located around n = 0 significantly decreases and
is thus found in the tails, contributing more to the asymmetry.
A similar argument can be made when increasing from J = 3
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FIG. 6. Dependency of the symmetry observable S(pSE ) on the
probability per kick pSE for a SE event. (a) S(pSE ) for the ĜH walk
observed after T = 15 steps with an initial state of increasing width,
as described by Eq. (4) and denoted by J . (b) S(pSE ) with increasing
numbers of time steps t . Here, the initial state is conducted by
J = 3 momentum classes. The red curves show the system for three
momentum classes in the initial state and observed at t = 15 steps in
the evolution, as also discussed in Fig. 1. The black curves represent
S(pSE, t ) for fixed pSE = 1%, 5%, 10%, 15%. These curves are
shown in (c) with their corresponding power-law fits with exponents
a = 1 for pSE = 1% for the entire time range and crossover from
a = 1 toward a = 0.5 for pSE = 5% . . . 15%. With increasing pSE,
the quantum regime with a = 1 (straight line fits) becomes shorter
and shorter with respect to the crossover part (dotted lines). The
curves and their respective fits are also shown in an inset on a
double logarithmic scale. Data is obtained from averages over 10 000
trajectories modeling SE [43,52].

to J = 4. For broader initial states the improvement becomes
less significant. The better the localization in angular θ space,
the better the walks evolve with minimal dispersion. In our
simulations, we have typically chosen J = 3 since it seems

a good tradeoff between experimental feasibility and the am-
plitude of asymmetry. Also note that the asymmetries do not
fully revert to zero, even far in the classical regime.

B. Time dependence of the asymmetry

Figure 6(b) shows the time evolution of the asymme-
try parameter S(pSE, t ) over experimentally accessible QW
timescales. Notably, the red curve therein represents the state
at t = 15, as previously elaborated. The black curves delineate
the asymmetry’s temporal evolution, S(pSE, t ), for the specific
pSE values where the walk still shows quantum features. The
measurement of S is connected to the speed of the expansion
of the walks, which clearly depends on pSE. The signature
of QWs is their ballistic expansion, which would correspond
to an exponent of a = 1 for a power-law fit of S(t ) ∝ t a.
Conversely, a classical walk showcases a diffusive expansion,
signified by a = 1/2. As Fig. 6(c) suggests, at a marginal
pSE = 1%, the expansion remains entirely within the quan-
tum regime, exhibiting a = 1. As pSE increases, we discern
a progression from a purely quantum expansion (a = 1) to
one that is more classical with a diminished exponent a. No-
tably, at elevated pSE values, the trend predominantly aligns
with classical behavior, approaching an exponent of 1/2. Also
note that for progressing time steps t the maximal observable
asymmetry is visible at smaller values of pSE. This effect is
mainly caused by the off-resonant quasimomenta in the free
evolution between subsequent pulses, see the discussion at the
end of Sec. III A.

For event probabilities far in the classical regime, the walk
exhibits an asymmetry that initially grows fast and then reverts
due to strong decoherence as time proceeds. This is especially
present in the black curve in Fig. 6, corresponding to an
event probability of pSE = 15%. In this case, not discussed
in further detail, the off-resonant quasimomenta dominate
the dynamics, and asymmetries effectively decline as time
proceeds.

Essentially, all this demonstrates a transition from quantum
to classical behavior. Augmented decoherence—either due to
pronounced pSE values or a combination of moderate pSE with
extended durations—renders the walk diffusive. Three distinct
regimes emerge, identified by the best parameters from a
power-law fitting: (1) the pure quantum regime, evident at
pSE = 1%; (2) an intermediate regime exhibiting a quantum-
to-classical transition as t increases, seen at pSE = 5%, 10%;
and (3) a predominantly classical regime, as evident for pSE =
15% and above. This observation is in agreement with Fig. 4,
where we identified the diminishing resonant tails in the mo-
mentum distribution for pSE = 15%.

V. EXPERIMENTAL CONSTRAINTS

Typical experiments start with a Bose-Einstein condensate
centered around n = 0, but with a distribution in quasimomen-
tum of finite width [7,9,55]. Between the pulses and during the
pulse itself, this nonzero quasimomentum causes nonresonant
phase effects [28,31]. Thus, similar to the influence of SE,
quantum resonances are perturbed by nonresonant β´s. While
up to this point the initial quasimomentum was chosen to be
vanishing βinit = 0, now we consider for our simulations a
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FIG. 7. S as a function of the free Bloch angles α and γ un-
der increasing width of the initial quasimomentum distribution. S
is evaluated after T = 15 steps in the evolution of the walks. The
quasimomentum is drawn from a Gaussian distribution with width
βFWHM. Each point in the parameter scan is averaged over 1000
trajectories. The red dot at (γ = 0, α = 0) and the blue dot at
(γ = 1.5π, α = 0.5π ) mark the parameters corresponding to the Ŵ
walk and the ĜH walk, respectively.

Gaussian distribution of width βFWHM modeling experimental
reality [7,9,28,55].

Similarly to the introduction of SE from Sec. III B, a finite
quasimomentum distribution causes the asymmetric areas to
bulk around the points of high asymmetry C±

i , as demon-
strated in Figs. 7(a) and 7(b). A similar deviation from the
original stripe pattern has been noted in Sec. III B. For broader
quasimomentum distributions, see Fig. 7(b), the asymmetries
become weaker and the walks become more diffusive. How-
ever, in contrast to the perturbations caused by SE, there is
no additional shift of the asymmetric regions to higher γ .
Thus, the walks calculated by the ĜH coin and the Ŵ coin do
not evolve new strong asymmetries. Overall they just become
more “classical”-like in the sense that they show a diffusive

FIG. 8. Time dependence of the symmetry observable S. Consid-
ered are the combined effects of finite quasimomentum in the initial
state with βFWHM = 0.01 and SE. The individual curves showcase
several different values of pSE = 1%, 5%, 10%, 15%. The straight
lines mark out the regime that results in an exponent of a = 1 in a
power-law fit, while the dotted areas mark the regime with a < 1.
The curves are evaluated as an average of 200 initial quasimomenta,
each realized with 1000 SE trajectories for the unraveling of the
master equation.

instead of a ballistic evolution. Thus, the shift noticed in the
asymmetric regions of Fig. 5 seems to be an effect unknown to
other typical forms of perturbations in the AOKR framework.

However, the qualitative behavior of S(γ , α) under the
influence of a nonresonant quasimomentum distribution is
similar to the nonresonant evolution found under the influence
of SE.

It has been numerically verified that the walk does indeed
demonstrate no significant asymmetries over the range of 20
time steps under the influence of solely finite quasimomentum
and without SE. In Fig. 8, we see the time dependence of S
for several different values of pSE, similar to Fig. 6(c), how-
ever with additional quasimomentum of βFWHM = 0.01. The
figure indicates that the effect survives also with an additional
quasimomentum, which would be present in an experimental
setup. Again, we observe, qualitatively similar to Fig. 6(c), the
quantum-to-classical transition with three different regimes,
corresponding to (1) a pure quantum mechanical regime, (2) a
regime that starts ballistic and then evolves a diffusive motion
as decoherence increases over time, and (3) the predomi-
nantly classical regime. For higher event probabilities pSE �
10%, we systematically find that the transition settles in for
shorter times, which would also be expected due to higher
dispersion in the system arising from the finite initial quasi-
momentum distribution. This additional dispersion slightly
shifts the borders of the regime (2) with respect to the case
of Fig. 6. It is worth mentioning that for a hypothetical future
experiment, too-large pulse durations for τp would effectively
induce barriers in momentum space [27,57,63]. However, a
QW conducted with a 87Rb BEC has already been found to
be observable on the discussed timescales of up to 20 time
steps [6–9].

VI. CONCLUSION

Our study sheds light on the intricate interplay between
symmetry and the pivotal role of the choice of the coin and
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the impact it has on the system’s overall dynamics. The intro-
duction of SE has proven instrumental as a mechanism that
introduces asymmetry into an initially symmetric QW for the
construction of a QW ratchet.

Typically, SE-induced effects are detrimental. However,
SE manifests indeed beneficially under certain conditions
[31,35,38,41,42,44]. Our observations on the temporal behav-
ior of the symmetry observable S chart a distinct transition
from quantum to classical behavior depending on the strength
of the introduced SE. Evidence for this is found by a
power-law fit to S(t ), thereby observing a transition from
a ballistic to a sub-ballistic expansion, corresponding to
a transition from a QW to a classical random walk. The
observed asymmetry is an interference effect arising from
specific choices of the coin matrix and the nonresonant
free evolution due to the shifts in quasimomentum induced
by SE.

Our findings have proven to be robust under the influ-
ence of finite initial quasimomentum, which would be present
in any experimental setup due to finite temperature. The
resilience of the observed effects under this perturbation

underscores the feasibility for the experimental realization of
an SE-induced QW ratchet.

Overall, this investigation offers a more nuanced
understanding of the dynamics of the AOKR QW and
the influence of SE on its dynamics. By delineating the
unexpected utility of SE for an AOKR ratchet and highlighting
the robustness of our system against quasimomentum, our
work provides stimuli for potential future experiments along
the line of Refs. [6,7,9,50].
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