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Two-dimensional non-Hermitian fermionic superfluidity with spin imbalance
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The two-body loss associated with inelastic interactions between fermions plays a significant role in realistic
many-body systems. Here we study a two-component non-Hermitian Bardeen-Cooper-Schrieffer superfluidity
with spin imbalance and two-body loss characterized by a complex-valued s-wave interaction in a square lattice.
At the mean-field level, we map out the zero-temperature phase diagram and observe a dissipation-induced
transition from superfluid to normal phase as well as a distinctive revival of the superfluid state in the weakly
interacting regime applicable to both spin-balanced and spin-imbalanced systems. In the spin-imbalanced
case, we find that the effective density of states involving weight functions reduces the regions in k space
contributing to pairing, hence leading to a pronounced expansion of the normal phase on the phase diagram.
Additionally, we analyze the order parameter, condensate energy, quasiparticle spectra, momentum distribution,
and compressibility to characterize the presenting phases and phase transitions.
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I. INTRODUCTION

In the realm of quantum mechanics, Hermiticity stands as
a fundamental postulate in the description of closed quan-
tum systems. It ensures real-valued energy expectations and
unitary time evolutions. However, a physical system under
realistic conditions is usually coupled with the environment,
so the formalism of a Hermitian Hamiltonian becomes com-
promised. To address this challenge, theories employing the
Lindblad equation instead of the Schrödinger equation have
been developed to describe the evolution of open quantum
systems [1,2]. Alternatively, a non-Hermitian Hamiltonian is
considered as a simple yet powerful approximation, which can
successfully capture many essential features of open quantum
systems provided the contribution from terms involving jump
operators are negligible. Over the past several decades, the
study of non-Hermitian Hamiltonians has aroused a great deal
of interest from both experimental and theoretical communi-
ties [1–18] and has revealed rich exotic phenomena such as
exceptional points [12,13], the quantum Zeno effect [7,15],
and quantum critical phenomena [16,17]. One notable area
of interest is the investigation of non-Hermitian Hamiltonians
with parity-time-reversal symmetry [19], which have been re-
alized and intensively studied in a variety of physical systems,
including microcavities [8], waveguides [9], optical systems
[17], cold atoms [18], and trapped ions [13,14]. While much
knowledge of single-particle behavior has been gained from
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these pioneering works, less attention has been paid to non-
Hermitian many-body systems.

Two of the most fascinating and profound phenom-
ena of many-body physics are fermionic superconductivity
and superfluidity [20–32]. Despite being discovered more
than a century ago, they remain on the very frontier of
research in multidisciplinary fields of physics, including
condensed-matter physics, nuclear physics, astrophysics, and
ultracold-atom physics [33]. In diverse systems, fermions of
different spins or pseudospins can pair with each other under
effectively attractive interactions, and the pairs will behave
collectively at low enough temperature to form a macroscopic
quantum state and sustain coherent transport. Most existing
theories of such a mechanism consider only elastic inter-
actions between fermions, with the many-body Hamiltonian
being inherently Hermitian. However, in many experimen-
tal setups, the interactions can possess inelastic channels as
fermions are scattered out of the considered Hilbert space. For
example, in ultracold quantum gases, two fermionic atoms at
designated hyperfine levels, considered as pseudospins, can
undergo inelastic scattering to two other hyperfine levels and
become dark to lasers or get lost from the trap. In both cases,
the inelastic processes result in a loss of particles, rendering
the system open. To study fermionic superfluid under inelastic
interactions, a non-Hermitian many-body Hamiltonian with a
complex-valued interaction is adopted and analyzed within
a mean-field approach for both a three-dimensional lattice
model [29] and a continuum system [31]. Later, the discus-
sion is also extended to one-dimensional gases with p-wave
interaction to account for the relatively high loss rate [32].
Restricted within balanced-spin populations and at zero tem-
perature, a revival of superfluidity is observed for all cases.
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Here we consider a two-dimensional (2D) fermionic sys-
tem on a square lattice with an s-wave complex-valued
interaction. By allowing an imbalance of spin populations,
we calculate the ground state of the system at zero temper-
ature within a mean-field approach and map out the phase
diagram showing the competition between superfluid and
normal phases. In the weak-interaction regime, we uncover
a dissipation-induced superfluid to normal phase transition
and a remarkable revival of superfluid state. In addition, the
inclusion of spin imbalance modifies the density of states
(DOS) and reduces the pairing effect, leading to an expanded
normal phase. The physical properties of such phases and
phase transitions can be characterized by measurements of
quasiparticle spectra, momentum distribution of particles, and
compressibility, which are calculated and discussed.

The remainder of this paper is organized as follows. In
Sec. II we introduce the effective non-Hermitian Hamiltonian
and derive the thermodynamical potential under mean-field
approximation. In Sec. III we focus on the zero-temperature
limit and map out the phase diagram by analyzing the con-
densate energy and superfluid order parameter. In Sec. IV we
present the quasiparticle spectra, momentum distribution, and
compressibility to characterize the phases and phase transi-
tions. We summarize in Sec. V.

II. MODEL HAMILTONIAN
AND MEAN-FIELD APPROACH

We consider a two-component Fermi system in a 2D square
lattice with lattice constant d , where particles with opposite
pseudospins attractively interact via an s-wave contact inter-
action [29]. The Hamiltonian is written as

Ĥ =
∑
kσ

ξk,σ c†
k,σ

ck,σ

− U

N

∑
kk′q

c†
k+q/2,↑c†

−k+q/2,↓c−k′+q/2,↓ck′+q/2,↑. (1)

Here ck,σ and c†
k,σ are the annihilation and creation fermionic

operators, respectively, with the 2D dispersion relation εk =
−2t[cos(kxd ) + cos(kyd )] and hopping strength t , ξk,σ =
εk − μσ is the shifted dispersion by the spin-dependent chem-
ical potential μσ , and N denotes the number of lattice sites.
The interaction U = U1 + i γ

2 is assumed to be complex, in-
corporating the interaction strength U1 and the two-body
loss rate γ . Adopting the extended Bardeen-Cooper-Schrieffer
(BCS) theory for non-Hermitian systems, we consider a mean-
field pairing order parameter with center-of-mass momentum
q, defined as

� = −U

N

∑
k

L〈c−k+q/2,↓ck+q/2,↑〉R = �0eiq·r,

�̃ = −U

N

∑
k

L〈c†
k+q/2,↑c†

−k+q/2,↓〉R = �0e−iq·r. (2)

Note that � and �̃ are not complex conjugate to each other
given that �0 is generally a complex number. The mean-field

Hamiltonian is expressed as

ĤMF = N

U
��̃ +

∑
k

(ξk+q/2,↑c†
k+q/2,↑ck+q/2,↑

+ ξ−k+q/2,↓c†
−k+q/2,↓c−k+q/2,↓)

+
∑

k

(�c†
k+q/2,↑c†

−k+q/2,↓ + �̃c−k+q/2,↓ck+q/2,↑),

(3)

which can be diagonalized as

ĤMF =
∑

k

(Ekq,+α
†
k+q/2,↑αk+q/2,↑

−Ekq,−α
†
−k+q/2,↓α−k+q/2,↓)

+
∑

k

(ξ−k+q/2,↓ + Ekq,−) + N

U
��̃ (4)

with the aid of the Bogoliubov transformation(
αk+q/2,↑
ᾱ−k+q/2,↓

)
=

(
ukq −vkq
v̄kq ukq

)(
ck+q/2,↑

c†
−k+q/2,↓

)
, (5)

where α and ᾱ are quasiparticle operators. The coefficients
within the transformation are

ukq =
√

Ekq + ξq,+
2Ekq

,

vkq =
√

Ekq − ξq,+
2Ekq

√
�

�̃
,

v̄kq =
√

Ekq − ξq,+
2Ekq

√
�̃

�
, (6)

where Ekq =
√

ξ 2
q,+ + ��̃ and ξq,+ = (ξk+q/2,↑ +

ξ−k+q/2,↓)/2. The eigenenergies of the quasiparticles are
Ekq,± = (ξk+q/2,↑ − ξ−k+q/2,↓)/2 ± Ekq. Considering the
static properties of quasiparticles α†α = 0 or 1, we reach the
grand partition function

ZMF =
∏

k

[(1 + e−βEkq,+ )(1 + eβEkq,− )

×e−β(ξ−k+q/2,↓+Ekq,− )]e−β(N/U )��̃, (7)

where β = 1/kBT denotes the inverse temperature. The ther-
modynamic potential obtained from 	MF = − 1

β
lnZMF then

reads

	MF = − 1

β

∑
k

ln(1 + e−βEkq,+ )(1 + eβEkq,− )

+
∑

k

(ξ−k+q/2,↓ + Ekq,−) + N

U
��̃. (8)

In the following discussion, we focus on the most represen-
tative case of zero center-of-mass momentum, corresponding
to the conventional BCS superfluid phase. The general case
of a finite center-of-mass momentum, known as the Fulde-
Ferrell-Larkin-Ovchinnikov (FFLO) phase, is suggested to
exist only within a limited parameter space of interaction
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strength and particle filling such that the energy cost of the
spatially varying order parameter can be compensated by the
gain of condensation energy [34,35]. The presence of dissi-
pation tends to reduce the condensation energy and hence is
unfavorable to the existence of the FFLO state. By assigning
q = 0 we get

	MF = − 1

β

∑
k

ln(1 + e−βEk,+ )(1 + eβEk,− )

+
∑

k

(ξ−k,↓ + Ek,−) + N

U
�2

0, (9)

where Ek,± = ξk,↑−ξ−k,↓
2 ±

√
( ξk,↑+ξ−k,↓

2 )2 + �2
0 = − δμ

2 ±√
(εk − μ̄)2 + �2

0. Here δμ = μ↑ − μ↓ and μ̄ =
(μ↑ + μ↓)/2 are the difference and average of chemical
potentials of the two spin states, respectively. Owing to the
time-reversal symmetry between the two spin states, we
consider only the case of a non-negative δμ.

III. ZERO-TEMPERATURE PHASE DIAGRAM

At zero temperature, we can further simplify the ther-
modynamic potential by reducing the Fermi function to the
Heaviside step function

	MF =
∑

k

[Ek,+�(−Ek,+) − Ek,−�(Ek,−)

+ξ−k,↓ + Ek,−] + N

U
�2

0. (10)

In our numerical calculations, we adopt the hopping integral
t and lattice constant d as units of energy and length, respec-
tively.

To derive the zero-temperature phase diagram, we
obtain the gap equation from the stationary condition
∂Seff/∂�|�=�0 = 0, yielding

N

U
=

∑
k

1

2Ek
[�(−Ek,−) − �(−Ek,+)]. (11)

For definiteness, we consider the case of half filling with the
average chemical potential μ̄ = 0, so that the total number
of particles is equal to the number of lattice sites. The order
parameters are obtained by solving the gap equation (11) for
different choices of interaction strength U1 and dissipation γ .
To distinguish different phases, we resort to the condensate
energy, defined as the energy difference between the super-
fluid state and the normal state as �E ≡ 	MF(�0) − 	MF(0).
A solution with finite order parameters and Re(�E ) < 0 sig-
nifies the ground state of the system as a superfluid state (SF).
Conversely, Re(�E ) > 0 suggests a stable normal state as the
ground state, while the finite superfluid order parameter is
identified as a metastable superfluid phase (MSF). If Eq. (11)
does not have any finite-value solution for the order parameter,
the system is in the normal phase [denoted by N in Fig. 1(a)].

Based on these criteria, we map out the zero-temperature
phase diagrams on the U1-γ plane and elucidate the intricate
interplay between the interaction strength, dissipation, and
chemical potential difference, as depicted in Fig. 1. Specif-
ically, Fig. 1(a) illustrates the scenario for δμ/t = 0, where

FIG. 1. Zero-temperature phase diagram by varying the interac-
tion strength U1 and the dissipation γ with the chemical potential
difference: (a) δμ/t = 0, (b) δμ/t = 2, and (c) δμ/t = 4. The blue,
red, and gray regions denote stable superfluid, metastable superfluid,
and normal states, respectively.

three phases can be identified. In the regime of sufficiently
strong attractive interaction, fermions form tightly bound bi-
atomic molecules, which couple with each other coherently to
support a superfluid state denoted by the blue region. At inter-
mediate interaction strengths, the system transits from the SF
to the MSF state, marked in red, as dissipation increases. The
most striking feature is the revival of the superfluid state in
the weakly interacting regime. When the dissipation is small,
fermions with different spins pair with each other to host
superfluidity. With increasing dissipation, the system suffers
severe particle loss via inelastic collision when one particle
hops to a neighboring site occupied by another particle. This
process drives the system into the normal phase, denoted by
gray in the phase diagram. However, when the dissipation is
further increased, particle hopping between neighboring sites
is suppressed such that an on-site tightly bound molecule is
formed to inhibit two-body loss from inelastic collisions, thus
prompting the system to reenter the MSF phase. The stark
phenomenon that strong dissipation inhibits two-body loss
has been observed in several experimental works [36,37] and
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can be interpreted as a manifestation of the quantum Zeno
effect (QZE) [7,38]. The conventional QZE is defined as the
suppression of decay rate by frequent applications of measure-
ment. The concept of the QZE has also been generalized to the
case of continuous measurement, and an equivalence condi-
tion between continuous and discrete measurements has been
established [39]. In the present problem, the strong on-site
dissipation serves as a continuous measurement to suppress
the coherent particle tunneling and inhibit particle loss. The
revival of superfluidity attributed to the QZE in a lattice has
also been observed in continuum models [31,32].

Another characteristic feature of this phase diagram is that
the transition between the (metastable) superfluid state and
the normal state does not belong to the universality class of a
conventional U(1) gauge symmetry-breaking phase transition.
On the contrary, it is associated with the spontaneous break-
ing of parity–particle-hole (CP) symmetry at the exceptional
points where the order parameters are purely imaginary and
the effective Hamiltonian cannot be diagonalized. In general,
this phase transition cannot even be classified as a first- or
second-order phase transition based on Ehrenfest’s classifica-
tion since it is rooted in the appearance of exceptional points
and is typical in a non-Hermitian system.

In the case of spin-imbalanced populations, the Heaviside
functions in Eq. (11) act as weight functions for the order
parameter and lead to an effective DOS which restricts the
regions in k space for pairing. As a consequence, the region
of the normal state expands and the disappearance and restora-
tion of superfluidity occurs in a narrower parameter window of
U1 upon elevating the chemical potential difference δμ. These
can be seen in Fig. 1 for different chemical differences δμ.
In particular, by comparing Figs. 1(b) and 1(c) we find that
the superfluid will become unstable with increasing chemical
potential difference, even when the attraction is extremely
strong.

To gain deep insights into the phase diagram, we present
the order parameter �0/t and the condensate energy as func-
tions of dissipation γ with δμ = 0 in Fig. 2, choosing three
typical interaction strengths U1 indicated by vertical black
dotted lines in Fig. 1(a). As shown in Fig. 2(ai), in the regime
of weak interaction, the superfluid state is destroyed with
increasing dissipation, leading to the system being in the
normal state. Nevertheless, as dissipation is further enhanced,
the superfluid state begins to recover and the order parameter
increases and converges to �0 = U/2 in the strong dissipation
limit. In this limit, the coherent process of hopping between
nearest-neighbor sites is greatly suppressed due to the QZE,
resulting in the localization of fermion pairs and the formation
of molecules. This suggests that the physical property of the
system is dominantly determined by the on-site interaction,
which is consistent with the asymptotic value of the order
parameter. In Fig. 2(aii) we observe that the condensate en-
ergy is negative in the weak-dissipation regime but becomes
positive and approaches �E = 16t/π2 − U/4 in the strong-
dissipation regime, indicative of a stable and a metastable
superfluid state in these two regimes, respectively.

When the interaction strength is intermediate, a stronger
pairing effect can overcome the detrimental mechanisms of
particle loss via inelastic collision and pair dissociation by
inter-site hopping such that the normal state disappears and

FIG. 2. Plots of the real parts (red circles) and imaginary parts
(blue diamonds) of (i) order parameter �0/t and (ii) condensate
energy �E/t (right column) as functions of dissipation γ /t at
zero temperature. The adopted interaction strengths are (a) U1/t =
1.5, (b) U1/t = 4, and (c) U1/t = 8, corresponding to the verti-
cal black dotted lines in Fig. 1(a), respectively. The black dashed
lines represent the asymptotic behaviors in the strong dissipa-
tion limit, i.e., �0(γ /t → +∞) = U/2 and �E (γ /t → +∞) =
16t/π 2 − U/4. The inset shows a close-up of weak interaction in
the range of weak dissipation.

the superfluid state persists across the range of dissipation,
as shown in Fig. 2(b). In the strong-interaction region with
U1/t = 8 illustrated in Fig. 2(c), the interaction strength ex-
ceeds the critical value U c

1 = 64t/π2 and the real part of the
condensate energy converges to Re(�E ) → (16/π2 − 2)t <

0 from below in the large-γ limit. In addition, the tightly
bound molecules in the strong-attraction regime can avoid
decoherence caused by dissipation. Therefore, the superfluid
remains stable for arbitrary dissipation.

IV. QUASIPARTICLE SPECTRA, MOMENTUM
DISTRIBUTION, AND COMPRESSIBILITY

To gain a better understanding of the revival of super-
fluidity in the weak-interaction regime, we calculate the
quasiparticle energy spectra Ek,± in different phases with
δμ = 0 and present the results in Fig. 3. From top to bottom,
the plots show the cases labeled by stars in Fig. 1(a). The
real and imaginary parts of quasiparticle spectra characterize
the quasiparticle excitation energy and lifetime, respectively.
Figures 3(ai) and 3(ci) reveal that the energy bands are al-
ways gapped in both SF and MSF phases. However, the
two bands touch to form exceptional lines at the transition
point, as demonstrated in Fig. 3(b). The spectra with unbroken
CP symmetry are purely imaginary between the exceptional
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FIG. 3. (i) Real parts and (ii) imaginary parts of quasiparticle en-
ergy spectra Ek,± with δμ = 0. The order parameters are (a) �0/t =
0.188 + 0.033i (stable superfluid state), (b) �0/t = 3.193i (phase
transition point), and (c) �0/t = 0.668 + 5.434i (metastable super-
fluid state), as marked by stars in Fig. 1(a).

lines, while they become anticonjugate complex inside the
exceptional lines, where CP symmetry is spontaneously bro-
ken. This indicates that quasiparticles can be stimulated by
a nonzero excitation energy and will be dissipated in SF
[Fig. 3(a)] and MSF [Fig. 3(c)] phases. However, at the transi-
tion point [Fig. 3(b)], an infinitesimally small energy suffices
to excite quasiparticles, allowing them to remain in an excited
state. Moreover, as depicted in Figs. 3(c), strong dissipations
significantly reduce the band width and enlarge the energy
gap, which is consistent with our expectation of the localiza-
tion of on-site molecules due to the QZE and the enhancement
of the order parameter.

We also explore the zero-temperature momentum distri-
bution for δμ = 0, given by nk,↑ = nk,↓ = (1 − ξk/Ek )/2.
The momentum distributions for three characteristic sets of
parameters, corresponding to those in Fig. 3, are presented in
Fig. 4. In the SF phase with weak dissipation, as shown in
Fig. 4(a), the momentum distribution exhibits a Fermi-Dirac-
like behavior, albeit slightly deformed in the vicinity of the
Fermi surface due to an interplay between the weak attraction
and weak dissipation. In contrast, the MSF phase with strong
dissipation, illustrated in Fig. 4(c), displays a nearly uniform
momentum distribution. This observation provides additional
evidence of the localization of particles and the formation of
bosonic molecules at individual sites. At the critical point,
particles tend to congregate on the exceptional lines due to
its low energy and long lifetime. This leads to the divergence
of momentum distribution, as depicted in Fig. 4(b).

The pronounced rearrangement of divergent behavior of
the momentum distribution on the exceptional lines leaves a

FIG. 4. Momentum distribution of quasiparticles. All parameters
are the same as in the corresponding panels in Fig. 3.

distinctive imprint on the isothermal electronic compressibil-
ity, which is directly linked to quasiparticle energy spectra
and momentum distribution. The compressibility is defined as
κ = −(L2/N2

0 )∂2	/∂μ2, where N0 is the total particle num-
ber and L represents the characteristic length of the system.
Under the conditions of zero temperature and half filling, the
compressibility can be further expressed as

κ = L2

N2

∑
k

�2
0

E3
k

�(Ek,+). (12)

In Fig. 5 we present the compressibility as a function of
dissipation with the interaction strength fixed at U1/t = 1.5
for various chemical potential differences. As dissipation γ

increases, there exist discontinuities at phase transition points
in compressibility, which can be used to detect the phase
transition from the superfluid state to the normal state. We
emphasize that although the discontinuity in compressibil-
ity is similar to what one would observe in a conventional
superfluid-normal phase transition, here the true nature of the
transition originates from the exceptional points and hence
cannot be simply classified as a second-order phase transition.
When we continue to increase γ to the strong dissipation
regime, the compressibility decreases continuously. This ten-
dency can be understood by noticing that a strong enough
dissipation can localize particles due to the QZE such that
the superfluid becomes incompressible. Notably, as the chem-
ical potential difference is increased, the parameter range
associated with the normal state is further expanded since
the effective DOS will suppress pairing. This qualitative ob-
servation is in good agreement with our analysis before. In
experiments on atomic quantum gases, the measurement of
isothermal compressibility can be conducted by measuring
particle density fluctuations in a grand canonical ensemble via
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FIG. 5. Plot of compressibility against dissipation. The curves
are obtained when the interaction strength is fixed at U1/t = 1.5 and
the chemical potential differences are δμ/t = 0 (red dotted line),
δμ/t = 0.2 (blue dotted line), and δμ = 1 (yellow dotted line). The
discontinuities in compressibility signify the superfluid to normal
phase transition.

the thermodynamical formula κ = L2(〈N2
0 〉 − 〈N0〉2)/T 〈N0〉2

[40,41], where 〈N0〉 is the average number of particles.

V. CONCLUSION

We have investigated the zero-temperature phase diagram
and fundamental properties of a two-component fermionic

system in two-dimensional square lattices, considering spin-
imbalanced populations and inelastic two-body loss charac-
terized by an s-wave complex-valued interaction. Within a
mean-field approximation, we mapped out the phase diagram
by solving the gap equation and calculating the condensate en-
ergy. Notably, in the weak-interaction regime, we uncovered
a dissipation-induced superfluid to normal phase transition
and a remarkable revival of the superfluid state attributed
to the quantum Zeno effect. In addition, the introduction of
spin-imbalanced populations can modify the density of states
and hence suppresses the pairing effect and favors the normal
phase in a larger parameter regime on the phase diagram.
Finally, we calculated quasiparticle spectra, the momentum
distribution of particles, and compressibility as characteristic
physical properties of such phases and phase transitions. As
an outlook, we point out that our analysis of s-wave superfluid
can be extended to investigate the stability of the p- or d-wave
superfluid state, in which cases the two-body loss of inelas-
tic collision is more prominent. It would also be interesting
to study the possibility of other exotic pairing phases, such
as the finite center-of-mass momentum pairing state and the
breached paired phase. To get a closer connection to realis-
tic experimental conditions, it is desirable to incorporate the
effect of quantum jump terms via the Lindblad equation.
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