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Nonuniversal equation of state of a quasi-two-dimensional Bose gas in dimensional crossover
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The equation of state (EOS) for a pure two-dimensional (2D) Bose gas exhibits a logarithmic dependence
on the s-wave scattering length [L. Salasnich, Phys. Rev. Lett. 118, 130402 (2017)]. The pronounced disparity
between the EOS of a 2D Bose gas and its three-dimensional (3D) counterpart underscores the significance of
exploring the dimensional crossover between these two distinct dimensions. In this paper, we are motivated to
deduce nonuniversal corrections to the EOS for an optically trapped Bose gas along the dimensional crossover
from 3D to 2D, incorporating the finite-range effects of the interatomic potential. Employing the framework
of effective field theory, we derive the analytical expressions for both the ground-state energy and quantum
depletion. The introduction of the lattice induces a transition from a 3D to a quasi-2D regime. In particular, we
systematically analyze the asymptotic behaviors of both the 2D and 3D aspects of the model system, with a
specific focus on the nonuniversal effects on the EOS arising from finite-range interactions. The nonuniversal
effects proposed in this paper along the dimensional crossover represent a significant stride toward unraveling
the intricate interplay between dimensionality and quantum fluctuations.
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I. INTRODUCTION

The equation of state (EOS), representing a functional re-
lationship among system variables, stands as a fundamental
concept in elucidating quantum many-body systems. The uni-
versality of an EOS holds particular significance, enabling the
description of diverse physical systems through a shared EOS.
A paradigmatic illustration is the universal Lee-Huang-Yang
(LHY) correction applied to the EOS of weakly interacting
bosonic systems [1,2]. In more details, a single parameter,
the s-wave scattering length as, adeptly characterizes both the
two-body problem and, consequently, the many-body physics.

In contrast, nonuniversal effects [3] in the EOS are re-
ferred to the physical quantities that depend on parameters
other than as. Recently, there has been a significant surge of
interest in investigating these nonuniversal effects within the
context of ultracold atomic gases. This heightened interest is
motivated by the tuning capabilities of as, achieved through
the use of magnetic [4] and optical [5] Feshbach resonances.
Consequently, the finite-range parameter re, representing the
next-to-leading-order term in the interaction potential, cannot
be disregarded. The nonuniversal effects induced by this pa-
rameter naturally arise.

Along this research line, the exploration of nonuniversal
effects stemming from the finite range of the interatomic po-
tential [6–8] in ultracold atomic gases has garnered extensive
attention. At the mean-field level, the nonuniversal corrections
yield a modified Gross-Pitaevskii equation [9–12] govern-
ing the behavior of the nonuniform condensate. Extending
beyond mean-field considerations, the thermodynamics in-
duced by the finite-range interaction is derived up to the
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Gaussian level for both a pure two-dimensional (2D) [13]
and three-dimensional (3D) [14,15] uniform Bose gas. No-
tably, the nontrivial case of a 3D Fermi gas is examined
in Refs. [16–18]. The existing contrast in nonuniversal ef-
fects between pure 2D [13] and 3D [6,15] scenarios adds
significant depth to the study of systems existing between
these distinct dimensions—a dimensional crossover, holding
paramount fundamental interest. This paper specifically aims
to delve into the nonuniversal effects along the dimensional
crossover from 3D to 2D in an optically trapped Bose gas.

The dimensional crossover serves as a conduit for explor-
ing diverse behaviors among systems of distinct dimensions
[19–27]. Existing facilities now allow for the tight confine-
ment of trapped bosons in one direction, creating quasi-2D
Bose gases. These gases exhibit kinematic 2D behavior,
frozen in the confined direction [28–33], introducing a new
length scale a2D, which competes with the 3D scattering
length a3D [28,34]. Furthermore, optically trapped Bose gases
provide enhanced experimental control, offering tunable inter-
atomic interactions, adjustable tunneling amplitudes between
adjacent sites, atom filling fractions, and lattice dimension-
ality [35–40]. Specifically, under a one-dimensional (1D)
optical lattice, Bose gases undergo a dimensional crossover
from 3D to quasi-2D, a phenomenon demonstrated both
experimentally and theoretically [37,41,42]. Given the ca-
pability to manipulate a 1D optical lattice and implement
effective finite-range interactions, an intriguing avenue of
inquiry involves examining how finite-range interaction influ-
ences a Bose gas confined within a 1D optical lattice.

In this paper, employing effective field theory within the
one-loop approximation, we obtain analytical expressions for
the ground-state energy and quantum depletion of a 1D opti-
cally trapped Bose gas with finite-range effective interaction
at zero temperature. Exploiting the 3D to quasi-2D crossover
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induced by the introduction of the optical lattice, we scrutinize
the impact of nonuniversal effects due to finite-range effec-
tive interaction in the asymptotic 2D regime. Our findings in
the quasi-2D regime, incorporating finite-range interactions,
exhibit a resemblance to the results observed in a homoge-
neous 2D Bose gas in Refs. [13,15]. When the finite-range
interaction diminishes, our results are consistent with those
presented in Refs. [36,43,44]. Thus, our results of the EOS
provide a substantial bridge for understanding the pronounced
disparity between the logarithmic dependence of the EOS on
finite-range parameters in the 2D case and its 3D counterpart.
We also remark that the strategy of realizing dimensional
crossover from full 3D to quasi-low-dimensional can go be-
yond the scope of the current paper and be extended into
other physical systems in the context of the ultracold quantum
gas, e.g., the dipolar Bose-Einstein condensate (BEC) system
[45,46], Bose-Bose mixture [47], or quantum droplet [48,49].

The paper is structured as follows. In Sec. II, we present
the Hamiltonian of the model system and outline the basic
framework of the path-integral formalism. In Sec. III, the
analytical expressions of the ground-state energy and quantum
depletion are calculated using the effective field theory within
the one-loop approximation. Section IV offers a comprehen-

sive examination of the influence of dimensional crossover on
ground-state properties induced by a 1D optical lattice. The
nonuniversal effects in the dimensional crossover regimes are
discussed. Section V summarizes our paper, and we also con-
sider the conditions for the potential experimental realization
of our scenario.

II. MODEL SYSTEM AND HAMILTONIAN

In this paper, we consider a 3D BEC, accounting for the
finite-range effects of the interatomic potential in the follow-
ing geometry: in the x direction, the BEC is trapped in an
optical lattice, while in the y and z directions, the atoms are
free. Such a physical system can be well described within the
framework of the path-integral formalism. In more details, our
starting point is the grand-canonical partition function of a 3D
interacting dilute Bose gas in the presence of a 1D optical
lattice [50]

Z =
∫

D[ψ∗, ψ] exp

{
−S[ψ∗, ψ]

h̄

}
(1)

with the action functional S[ψ∗, ψ] in Eq. (1) reading [13–15]

S =
∫ h̄β

0
dτ

∫
d3rψ∗(r, τ )

[
h̄

∂

∂τ
− h̄2∇2

2m
− μ + Vopt(r)

]
ψ (r, τ ) + g0

2
|ψ (r, τ )|4 − g2

2
|ψ (r, τ )|2∇2|ψ (r, τ )|2. (2)

In Eq. (2), ψ (r, τ ), describing the atomic bosons, represents
the complex field in both space r and imaginary time τ .
Here, β ≡ 1/(kBT ), where kB is the Boltzmann constant and
T is the temperature. Additionally, μ denotes the chemical
potential. The parameters g0 and g2 correspond to the effective
two-body coupling constants in the presence of a 1D optical
lattice. These constants are associated with the two-body s-
wave scattering length [51–53] and the s-wave effective range
[14,54], respectively.

The Vopt(r) represents the 1D optical lattice, reading [21]

Vopt(r) = sER sin2(qBx). (3)

In Eq. (3), the s denotes the intensity of a laser beam and
ER = h̄2q2

B/2m is the recoil energy, with h̄qB being the Bragg
momentum and m the atomic mass. The lattice period is fixed
by qB = π/d with d being the lattice spacing. Atoms are free
in the y-z plane.

Before delving into the exploration of nonuniversal ef-
fects along the dimensional crossover from 3D to quasi-2D
based on Eq. (1), we initially provide a brief overview of
key features of a BEC with finite-range effective interaction
in uniform space, corresponding to Eq. (2) with Vopt = 0. It
is worth noting that the nonuniversal equation of state for the
uniform Bose gas with finite-range effects has been previously
derived in both pure uniform 3D and 2D cases using effective
field theory [13,14].

Introducing an additional optical lattice (Vopt �= 0) to the
aforementioned BEC in uniform space introduces hierarchical
access to new energy and length scales, consequently inducing
a dimensional crossover from 3D to low-dimensional [36]. In

more details, by controlling the depths of the optical lattice
Vopt(r), dimensional crossovers to lower dimensions are an-
ticipated to occur in the following manner: a 3D Bose gas
transitions to quasi-2D when the energetic constraint to freeze
x-direction excitations is reached.

It is important to note that the tight confinement in the di-
rection of the optical lattice significantly influences the value
of the effective coupling constant in Eq. (2). Specifically, in
the presence of the optical lattice, both the s-wave coupling
constant g0 and the finite-range coupling constant g2 gen-
erally exhibit dependence on density and lattice parameters.
This stands in marked contrast to a free 3D Bose gas, where
g3D

0 = 4π h̄2a3D/m and g3D
2 = 2π h̄2a3Dre/m, with a3D and re

representing the 3D scattering length and the finite-range
constant, respectively. For the sake of formulation clarity,
however, we will use g0 and g2 for notational convenience
while temporarily setting aside their specific expressions to
derive general formulations for the ground-state energy and
quantum depletion. Finally, we remark that the effects of
confinement-induced resonance (CIR) [55,56] on the coupling
constant are not considered here. The key physics of CIR can
be captured through the language of Feshbach resonance [57],
where the scattering open channel and closed channels are
represented by the ground-state transverse mode and other
transverse modes along the tight-confinement dimensions, re-
spectively. Under the tight-binding approximation assumed in
this paper, ultracold atoms are frozen in the states of the lowest
Bloch band and cannot be excited into the other transverse
modes. Therefore, the effect of CIR on the coupling constant
can be safely ignored as the closed channels are absent.

063304-2



NONUNIVERSAL EQUATION OF STATE OF A … PHYSICAL REVIEW A 109, 063304 (2024)

III. NONUNIVERSAL EQUATION OF STATE OF THE
MODEL SYSTEM

In what follows, we focus on the situation where the optical
lattice is strong enough to create many separated wells, giving
rise to an array of condensates, while maintaining full coher-
ence through quantum tunneling. With this assumption, one
can refer to n0 as the condensate density and safely neglect the
Mott insulator phase transition. Under these conditions [36],
it becomes possible to investigate the nonuniversal EOS of the
model system using effective field theory.

In this paper, we restrict ourselves to the case where
the laser intensity s is sufficiently large that the chem-
ical potential μ is small compared to the interwell bar-
riers, thus we only consider the lowest Bloch band
[22]. In the tight-binding approximation, the conden-
sate of the lowest Bloch band can be written in terms
of the Wannier function as φkx (x) = ∑

l eildkx w(x − ld ),
where w(x) = d1/2 exp[−x2/2σ 2]/π1/4σ 1/2 with d/σ �
πs1/4 exp(−1/4

√
s).

We proceed to expand the bosonic complex field of the
action in Eq. (2) as follows:

ψ (r, τ ) =
∑
k,n

ψk,nφkx (x)e−i(kyy+kzz)eiωnτ , (4)

with ωn = 2πn/h̄β being the bosonic Matsubara frequencies
and n being integers. By plugging Eq. (4) into Eq. (2), we can
rewrite the action of the model system with the following form
(see Appendix A for the detailed derivation):

S[ψ∗
k,n, ψk,n]

h̄βV

=
∑
k,n

ψ∗
k,n

( − ih̄ωn + ε0
k − μ

)
ψk,n

+
∑

k,k′,q
n,n′,m

(
ge

2
+ g2q̃2

2

)
ψ∗

k+q,n+mψ∗
k′−q,n′−mψk′,n′ψk,n,

(5)

where V is the volume of the system and ε0
k =

2t (1 − cos kxd ) + h̄2k2
⊥/2m represents the energy dis-

persion of the noninteracting model with t = −(1/d )∫ d
0 dxw(x)(−h̄2∂2

x /2m + Vopt)w(x − d ) being the tunneling
rate along the x direction between neighboring wells.

The functional (5) can be utilized to calculate the nonuni-
versal EOS of an optically trapped Bose gas with finite-range
interaction. Comparing this functional to the one character-
izing a Bose gas without optical confinement [13,14], two
significant differences arise with the introduction of an optical
lattice: First, the kinetic-energy term along the x direction
[denoted as ε0

k in functional (5)] no longer assumes the clas-
sical quadratic form present in the radial direction. Instead,
it exhibits a periodic band structure. In the limit of 4t 

μ, the system maintains an anisotropic 3D behavior with
ε0

k = h̄2k2
x /2m∗ + h̄2(k2

y + k2
z )/2m and m∗ = h̄2/2td2 being

the effective mass associated with the band. Conversely, for
4t � μ, the system undergoes a dimensional crossover to
a 2D regime when the energetic restriction to freeze ax-
ial excitations is reached with ε0

k � h̄2k2
⊥/2m. Second, the

s-wave interaction coupling constant g0 is renormalized to
ge = g0d/

√
2πσ due to the presence of the optical lattice.

Remarkably, regularization of the s-wave finite-range inter-
action coupling constant, influenced by restricted kinematics,
introduces a new dimensional crossover from 3D to 2D in
the context of interaction energy. In more details, the s-wave
finite-range interaction coupling constant in the last term of
the functional (5) can be rewritten as

g2q̃2

2
= 2g2m

h̄2 ×
[

h̄2

2m
t1(1 − cos kxd ) + h̄2k2

⊥
2m(

√
8πσ/d )

]
,

(6)

with h̄2t1/2m = (1/d )
∫ d

0 dxw2(x)[h̄2∂2
x /2m]w2(x − d ).

Consequently, from accessing one extreme of h̄2t1/2m/μ to
the other in Eq. (6), two distinctive regimes related to the
s-wave finite-range interaction coupling constant are further
identified and another dimensional crossover emerges.

By applying the Gaussian (one-loop) approximation to the
action (5) by writing ψk,n = ψ0,n + η(k, iωn) and proceeding
in the standard fashion [13,14], one can obtain the Gaussian
contribution of quantum fluctuation to the action (5) as fol-
lows:

Seg = 1

2

∑
Q

(η̃∗(Q), η̃(−Q))M(Q)

(
η̃(Q)

η̃∗(−Q)

)
, (7)

where Q = (k, iωn) is the 3 + 1 vector denoting the momenta
k and bosonic Matsubara frequencies ωn, and the inverse
fluctuation propagator M(Q) reads

M = β

⎛
⎝−ih̄ωn+ε0

k−μ+
{

2ge+ 2g2m
h̄2

[
h̄2t1(1−cos kxd )

m + h̄2k2
⊥

2m(
√

2πσ/d )

]}
n0,

{
ge + 2g2m

h̄2

[
h̄2t1(1−cos kxd )

m + h̄2k2
⊥

2m(
√

2πσ/d )

]}
n0{

ge + 2g2m
h̄2

[
h̄2(1−cos kxd )

m t1 + h̄2k2
⊥

2m(
√

2πσ/d )

]}
n0, ih̄ωn+ε0

k−μ+
{

2ge+ 2g2m
h̄2

[
h̄2t1(1−cos kxd )

m + h̄2k2
⊥

2m(
√

2πσ/d )

]}
n0

⎞
⎠. (8)

Before proceeding with further calculations, we double
check whether Eq. (8) can be simplified into the existing
previous results when either the optical lattice, Vopt, vanishes,
or the finite-range interaction, g2, vanishes, or both. In more
details, in the limit of g2 = 0 and Vopt = 0, Eq. (8) should
recover the corresponding one in Ref. [14] [refer to Eq. (9) in
Ref. [14]]. Next, in the limit of g2 �= 0 and Vopt = 0, our result
in Eq. (8) should align with the corresponding one in Ref. [58]

[see Eq. (15) in Ref. [58]]. Then, in the limit of g2 = 0 and
Vopt �= 0, our result for Eq. (8) should be consistent with the
corresponding one in Ref. [36].

We proceed to integrate over the bosonic fields of action
(5) and obtain the Gaussian grand potential:

�g = 1

2β

∑
Q

ln det[M(Q)] =
∑

k

(
Ek

2
+ 1

β
ln(1 − e−βEk )

)
,

(9)
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with Ek being the excitation energy of an optically trapped
Bose gas, reading

Ek =
√√√√ε0

k

[
h̄2k2

⊥
2m/

(
1 + 4mμ

h̄2
g2

g0

) + h̄2(1 − cos kxd )

h̄2/[2(t + 2g2n0t1)]
+ 2μ

]
,

(10)

with the chemical potential being μ = gen0.
In this paper, our focus lies on the nonuniversal EOS of

the model system at zero temperature. To determine this, the
ground-state energy of the model system, which can be cal-
culated from the zero-temperature grand potential �(0) using
the thermodynamic formula Eg = �(0) + V μn0, is as follows
(detailed calculation can be found in Appendix B):

Eg

V
= 1

2
gen2

0 + 1

2V

∑
k �=0

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Ek −
√√√√[

h̄2k2
⊥

2m
+ 2t (1 − cos kxd )

][
h̄2k2

⊥
2m/(1 + 4mμ

h̄2
g2

g0
)

+ h̄2(1 − cos kxd )

h̄2/[2(t + 2g2n0t1)]

]

− gen0

√
h̄2k2

⊥
2m + 2t (1 − cos kxd )√

h̄2k2
⊥

2m/
(

1+ 4mμ

h̄2
g2
g0

) + h̄2(1−cos kxd )
h̄2/[2(t+2g2n0t1 )]

+ (gen0)2
√

h̄2k2
⊥

2m + 2t (1 − cos kxd )

2

(
h̄2k2

⊥
2m/

(
1+ 4mμ

h̄2
g2
g0

) + h̄2(1−cos kxd )
h̄2/[2(t+2g2n0t1 )]

)3/2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (11)

In Eq. (11), the first term on the right side of the equality
sign represents the mean-field contribution, while all the sub-
sequent terms correspond to the corrections beyond the mean
field due to quantum fluctuations. It is noteworthy that the last
two terms in Eq. (11) are introduced to circumvent ultraviolet
divergence by employing an appropriate renormalization of
the coupling constant [36,59]. In the continuum limit, we can
systematically replace the summation in Eq. (11) with an inte-
gral and derive the analytical expression for the ground-state
energy of the model system as follows:

Eg

V
= 1

2
gen2

0 + m(gen0)2

(2π )2h̄2d
f (x), (12)

where the scaling function f (x) in terms of the variable x =
2t/gen0 is defined as

f (x) = 1

2

∫ π

−π

dk′
x

∫ ∞

0
dk

{
−
√

(k + xγ )
√

kλ + (x + 2t2)γ

+
√

(k + xγ )

2(kλ + (x + 2t2)γ )3/2
−

√
(k + xγ )√

kλ + (x + 2t2)γ

+
√

(k + xγ )[kλ + (x + 2t2)γ + 2]

}
, (13)

with k′
x = kxd and k being the dimensionless quasimo-

mentum and γ = 1 − cos k′
x and t2 = 2g2t1/ge and λ = 1 +

4mg2n0d/
√

2πσ h̄2. Equation (13) can be numerically calcu-
lated, and the corresponding results are presented in Fig. 1(a).
Before delving into further analysis, we aim to verify the
validity of Eq. (12) by demonstrating that it can recover
well-known results in the limiting cases. In the scenario of
a vanishing optical lattice, i.e., Vopt = 0, our model system
simplifies into the pure 3D case. The ground-state energy of
Eq. (12) can then be reduced to

Eg

V
= 1

2
g0n2

0 + (ng0)5/2

4π2

(
2m

h̄2

)3/2

f0(x), (14)

where the function of f0(x) reads

f0(x) =
∫ ∞

0
dK0K2

0

(√
K2

0

(
λK2

0 + 2
) −

√
λK2

0

− 1√
λ

+ 1

2λ3/2K2
0

)
, (15)

which can be solved analytically, yielding the result f0(x) =
8
√

2/15λ2. Consequently, our result in Eq. (14) can pre-
cisely recover the relevant ones in Refs. [14,15]. Meanwhile,
Eq. (11) is consistent with the one in Ref. [36] in the case of
vanishing finite-range interaction, i.e., g2 = 0.

We proceed to calculate the quantum depletion of the
model system. The zero-temperature total particle number N
can be derived from the zero-temperature grand potential �(0)

using the thermodynamic formula N = −∂�(0)/∂μ, Conse-
quently, the quantum depletion of the model system can be
directly obtained as follows:

N − N0

N
= mge

2π2h̄2d
h(x), (16)

where the function of h(x) is defined as

h(x) = −1

4

∫ ∞

0
dk

∫ π

−π

dk′
x

{ √
k + xγ

2
√

kλ + (x + 2t2)γ

+
√

kλ + (x + 2t2)γ

2
√

k + xγ
−

√
k + xγ

2[kλ + (x + 2t2)γ ]3/2

− 2 + (λ + 1)k + 2xγ + 2γ t2
2
√

(k + xγ )[2 + kλ + γ (x + 2t2)]

+ 1

2
√

k + xγ
√

kλ + (x + 2t2)γ

}
, (17)

which can be calculated numerically and the result is shown
in Fig. 1(b).

Then, we routinely check the validity of Eq. (16) by using
the limiting result of Eq. (16) in the case of vanishing lat-
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FIG. 1. (a) Scaling function f (x) in Eq. (13) for different values
of λ = 1 + 4mμ

h̄2
g2
g0

. Here, the solid- and empty-point curves denote
the 3D and quasi-2D asymptotic behaviors of f (x) respectively.
(b) Scaling function h(x) in Eq. (17) for different values of λ. The
solid- and empty-point curves denote the 3D and quasi-2D asymp-
totic behaviors of h(x) respectively.

tice potential. By setting Vopt = 0, the quantum depletion in
Eq. (16) takes the following form:

N − N0

N
= n1/2

(2π )2

(
2mg0

h̄2

)3/2

h0(x), (18)

with the function of h0(x) being

h0(x) = −
∫ ∞

0
K2

0 dK0

[
− K2

0 λ + K2
0 + 2

2
√

K2
0

(
K2

0 λ + 2
)

+ 1

2
λ−1/2(λ + 1) + 2(λ − 1)

4K2
0 λ3/2

]
, (19)

which can also be solved and the result is h0(x) = √
2(λ −

2)/3λ2, which is exactly consistent with the corresponding
result in Ref. [15].

Equations (11) and (16) stand as key results of this paper,
representing the nonuniversal EOS of an optically trapped
Bose gas with the finite-range effects of the interatomic poten-
tial. In the subsequent analysis, we intend to utilize Eqs. (11)
and (16) to examine nonuniversal corrections to both the
ground-state energy and quantum depletion of the model sys-
tem along the dimensional crossover from 3D to quasi-2D.

IV. NONUNIVERSAL EFFECTS ALONG DIMENSIONAL
CROSSOVER FROM 3D TO QUASI-2D

In the preceding Sec. III, we have derived the analytical
expressions for the EOS of an optically trapped Bose gas with
finite-range interaction. Building upon Eqs. (11) and (16), the
purpose of Sec. IV is to analyze the nonuniversal effects due to
the finite-range interaction on the EOS along the dimensional
crossover from 3D to quasi-2D. Dimensional crossovers are
characterized by hierarchical access to new energy and length
scales. Based on Eq. (5), two kinds of dimensional crossover
related to the kinetic and interaction energies respectively can
be identified as shown in what follows.

First, the excitations of the model system can be frozen
in the x direction by the introduction of an optical lattice. In
more details, the ε0

k = 2t (1 − cos kxd ) + h̄2k2
⊥/2m in Eq. (5)

represents the the lattice-modified kinetic energy of the model
system. Here, the t is the tunneling rate along the x direction
between neighboring wells and is supposed to decay expo-
nentially with increasing the lattice depth. As a result, the
concrete forms of the kinetic energy in Eq. (5) will change
from the 3D form of ε0

k = h̄2k2/2m∗ + h̄2k2
⊥/2m to the 2D

form of ε0
k = h̄2k2

⊥/2m as t decreasing to be zero.
Secondly, the interaction term in Eq. (5) exhibits 2D fea-

tures of particle motion, and a dimensional crossover from 3D
to 2D emerges in the behavior of the interaction energy when
the energetic restriction to freeze axial excitations is reached.

(i) For 4t/μ 
 1, the system exhibits an anisotropic 3D
behavior, and the s-wave effective coupling constant takes the
form ge = g̃3D = 4π h̄2ã3D/m with the lattice-renormalized
s-wave scattering length ã3D = a3Dd/(

√
2πσ ). Furthermore,

the s-wave finite-range interaction coupling constant in the
last term of the functional (5) takes the form of g2 q̃2

2 = 2g2m
h̄2 ×

[ h̄2k2
x

2m∗ + h̄2k2
⊥

2m(
√

8πσ/d )
].

(ii) For 4t/μ � 1, the two interacting bosons are in the
ground state of an effective harmonic potential with a defined
frequency ω0 = h̄/mσ 2 and harmonic oscillator length σ . The
system undergoes a crossover to the quasi-2D regime, where
the s-wave coupling constant is reduced to that in a tightly
confined harmonic trap, given by ge = ghd [22,28,29,36,41]:

gh = 2
√

2π h̄2

m

1

a2D/a3D + (1/2π ) ln
[
1/n2Da2

2D

] , (20)

with the surface density n2D = n0d and the effective 2D scat-
tering length a2D = √

h̄/mω0 = σ . With decreasing σ , the 2D
features in the scattering of two atoms become pronounced
[28,29,36], and in the limit σ � a3D, Eq. (20) becomes in-
dependent of the value of a3D, and a regime of purely 2D
scattering is achieved, with Eq. (20) reducing to the coupling
constant of a purely 2D Bose gas gh → g2D:

g2D = 4π h̄2

m

1

ln
(
1/n2Da2

2D

) . (21)

In the above, the logarithmic dependence on the gas parameter
n2Da2D is unique of the 2D geometry [36].

(iii) Moreover, the s-wave finite-range interaction coupling
constant in Eq. (5) can be deduced into the 2D form of g2 q̃2

2 =
2g2m

h̄2 × [ h̄2k2
⊥

2m(
√

8πσ/d )
]. We remark that the emphasis and value
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of the present paper are to study the effect of dimensional
crossover induced by an optical lattice on the finite-range
interaction. The following analysis focuses on the anisotropic
3D and 2D geometry behavior of the ground-state energy
given in Eq. (12) and the quantum depletion described in
Eq. (16).

Now, we are ready to explore the nonuniversal behaviors of
the EOS of the model system along the dimensional crossover
from 3D to quasi-2D based on Eqs. (11) and (16). Equa-
tion (13) has been integrated numerically, and the result is
shown in Fig. 1(a).

In the limit x = 2t/gen0 
 1, corresponding to the
anisotropic 3D regime, we find that the function of f (x)
in Eq. (13) approaches the asymptotic law of f (x) �
32/15λ2√x, which has been plotted in Fig. 1(a) with the solid-
point curves at the fitting range x ∈ [1.72, 4.48]. Introducing
the effective mass m∗ = h̄2/2td2 associated with the band,
Eq. (12) takes the asymptotic form [22,36]

Eg

V
= g̃3Dn2

2

⎡
⎣1 + 128

15
(
1 + 4mμ

h̄2
g2

g0

)2

√
m∗

m

√
nã3

3D

π

⎤
⎦, (22)

where the second term of Eq. (22) corresponds to the gener-
alized LHY correction in the presence of the optical lattice
and finite-range interaction. It should be noted that Eq. (22)
can be simplified to yield the respective outcomes presented
in Ref. [36] when the finite-range interaction represented by
g2 vanishes; moreover, Eq. (22) aligns with the outcomes
presented in Ref. [14] in the absence of an optical lattice,
provided that ã3D is substituted with as. We define λ = 1 +
4mμ

h̄2
g2

g0
, which characterizes the effects of the finite-range

interaction. Then we select different values of λ and plot
the corresponding outcomes from Eq. (22) as the solid-point
curves in Fig. 1(a). It is evident that the ground-state energy
we calculate from Eq. (11) can be extrapolated to yield the
anisotropic 3D results presented in Eq. (22).

In the opposite 2D regime corresponding to x � 1, the
f (x) in Eq. (13) approaches the asymptotic law of f (x) �
π/4λ3/2 − π ln{2λ[x + 2(1.07/λ)4t2]}/2λ3/2, as shown by
the empty-point curves in Fig. 1(a) at the fitting range x ∈
[0.01, 0.58]. In this limit, Eq. (12) yields the ground-state
energy of a 2D Bose gas with the consideration of the finite-
range interaction

Eg2D

L2
� 1

2
g2Dn2

2D

{
1 + mg2D

8π h̄2λ3/2

− mg2D

4π h̄2λ3/2
ln

[
λ

(
4(t + B2g2n0t1)

g2Dn2D

)]}
, (23)

where L2 is the surface area of the gas, n2D = n0d is the
surface density, and B = ( 1.07

λ
)4g2Dn2D. In the absence of an

optical lattice, Eq. (23) reproduces the respective ground-state
energy results for a 2D dilute Bose gas with finite-range in-
teraction presented in Ref. [15]. It should be noted that the
nonuniversal parameter λ also appears within the logarithmic
term. Subsequently, we select different values of λ and plot
the corresponding outcomes from Eq. (23) as the empty-
point curves in Fig. 1(a). These curves demonstrate that the

ground-state energy we calculate from Eq. (11) can be extrap-
olated to yield the anisotropic 2D results presented in Eq. (23).

In a similar fashion, we analyze the asymptotic behav-
ior of quantum depletion using Eq. (16). In the limit where
x 
 1 corresponds to the anisotropic 3D regime, we discover
that h(x) � 2(λ − 2)/3λ2x1/2, as depicted by the solid-point
curves in Fig. 1(b) at the fitting range x ∈ [1.72, 4.48]. Subse-
quently, by inserting the asymptotic law of h(x) into Eq. (16),
one can directly derive the analytical expression for quantum
depletion in the 3D limit:

�N

N

∣∣∣∣
3D

� 8

3π1/2

√
m∗

m

(
nã3

3D

)1/2

− 64C2π1/2

√
m∗

m

rs

ã3D

(
nã3

3D

)3/2
, (24)

with C = d
∫ d/2
−d/2 ω4(u)du � d/

√
2πσ .

Note that the quantum depletion in Eq. (24) generalizes
the result presented in Ref. [15] to include the introduction
of an optical lattice. Furthermore, in the opposite limit where
x � 1, corresponding to the 2D limit, the function of h(x)
approaches

h(x) � π

2λ3/2

[
λ + 1

2
+ λ − 1

2

(
ln[(λx)α] − C1

C2 + ln[λ]

)]
,

(25)

with α = 0.126/(λ − 0.999), C1 = 1.715, and C2 = ln 1.014,
and Eq. (25) has been plotted in Fig. 1(b) with the empty-point
curves in the fitting range x ∈ [0.02, 0.58]. When there is no
finite-range interaction, by setting λ = 1, Eq. (25) recovers
the corresponding result presented in Ref. [36]. The quantum
depletion in the 2D case is then given by

�N

N

∣∣∣∣
2D

� 1

λ3/2 ln
(
1/n2Da2

2D

)
(

λ + 1

2
+ λ − 1

2

×
{

ln

[(
2λt

g2Dn2D

)α]
− C1

C2 + ln[λ]

})
. (26)

Our result in Eq. (26) shows good agreement with the one
presented in Ref. [15] regarding the quantum depletion of a
purely 2D Bose gas with finite-range interaction.

By choosing the different values of finite-range interaction
of λ, we have plotted the results from both Eqs. (24) and (26)
in Fig. 1(b). One can find that our calculated quantum deple-
tion from Eq. (16) accurately extrapolates to the 3D results
of Eq. (24) in the limit of x 
 1 [as seen in the solid-point
curves in Fig. 1(b)] and to the 2D results of Eq. (26) in the
limit where x � 1 [see the empty-point curves in Fig. 1(b)].

V. CONCLUSION AND OUTLOOK

The emphasis and value of this paper lie in visualizing
the finite-range effects on the system’s ground-state properties
under the dimensional crossover from 3D to quasi-2D. More-
over, the Bogoliubov approximation used in our calculation
should be justified a posteriori by estimating the quantum
depletion. For an optically trapped Bose gas along the di-
mensional crossovers, we can estimate the quantum depletion
(N − N0)/N with the help of Fig. 1(b). In typical experiments
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with an optically trapped BEC, the relevant parameters are
n = 3 × 1013 cm−3, d = 430 nm, a3D = 5.4 nm, and d/σ ≈
1 [21]. Thus, the quantum depletion in Eq. (16) is evaluated as
(N − N0)/N ≈ 0.0031 × h(x), with h(x) shown in Fig. 1(b).
Therefore, the Bogoliubov approximation is valid [60]. The
experimental realization of our scenario involves controlling
three parameters: the strength of the optical lattice s, the
s-wave scattering length as, and the effective range re. All
these parameters are highly controllable using state-of-the-art
technologies: The depth of an optical lattice s can be changed
from 0ER to 32ER [61], and both as and re can be controlled by
the dark-state method [62,63]. We hope the predicted results
can be observed in future experiments.

We mention that there exists a scaling symmetry under the
transformation r → λr for a pure 2D Bose gas interacting
only via g0δ(r) potential. Associated with this scale invari-
ance is an underlying SO(2,1) symmetry [64] and a universal
frequency belonging to breathing modes. As such, the bro-
ken SO(2,1) symmetry by the finite-range and dimensional
effects, inducing a frequency shift in breathing mode, pro-
vides sensitive measurements of quantum many-body effects.
Along this research line, the finite-range correction to the
universal breathing mode in quasi-2D Fermi gases has been
investigated in connection with quantum anomalies [31,32].
In the context of a Bose gas, Ref. [41] has studied how the
quasi-two-dimensionality affects the breathing mode and the
scale invariance. In this sense, observing the derivation of this
universality of the breathing mode in Ref. [33] presents an

important step in revealing the interplay between dimen-
sionality and quantum fluctuations in quasi-2D. To our best
knowledge, there is no related work studying how the finite-
range correction affects the breathing mode and the scale
invariance in bosonic systems, which needs to solve the hydro-
dynamic equations. In order to maintain the self-consistency
of the current paper, we will leave this interesting question for
future research.

In summary, the purpose of this paper is to investigate
nonuniversal corrections to the EOS for an optically trapped
Bose gas along the dimensional crossover from 3D to 2D,
incorporating the finite-range effects of the interatomic poten-
tial. Capitalizing on the characteristic dimensional crossover
properties, the results obtained in the quasi-2D regime enable
us to derive analytical expressions for the ground-state energy
and quantum depletion of an effectively pure 2D Bose gas
with finite-range interaction. Our analysis also demonstrates
that ground-state properties are logarithmically dependent on
nonuniversal parameters in systems with reduced dimension-
ality.
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APPENDIX A: DETAILED DERIVATION OF THE ACTION FUNCTIONAL OF EQ. (5)

In Appendix A, we give the detailed derivations of Eq. (5) starting from Eq. (2). Here we will mainly derivate the interacting
terms, while the noninteracting terms

∑
k,n ψ∗

k,n(−ih̄ωn + ε0
k − μ)ψ∗

k,n have been discussed in Refs. [36,42]. As such, we will
discuss the contact interacting term and finite-range interacting term respectively.

After expanding the complex bosonic field to Eq. (4), the contact interacting term SCI of the action functional can be written
as

SCI

h̄βV
= 1

h̄βV

∫ h̄β

0
dτ

∫
d3r

g0

2
|ψ (r, τ )|4

= 1

h̄βV

∑
k1,k2,k3,k4,l
n1,n2,n3,n4

g0

2
ψ∗

k1,n1
ψk2,n2ψ

∗
k3,n3

ψk4,n4

∫ h̄β

0
e−i(ωn1−ωn2+ωn3−ωn4 )τ dτ

×
∫

ei(ky1−ky2+ky3−ky4 )ydy
∫

ei(kz1−kz2+kz3−kz4 )zdz
∫

ω4(x − ld )dxei(kx1−kx2+kx3−kx4 )ld

=
∑

k1,k2,q
n1,n2,m

ge

2
ψ∗

k2+q,n2+mψ∗
k1−q,n1−mψk1,n1ψk2,n2 , (A1)

with ge = g0d/
√

2πσ .
We proceed to derive the finite-range interacting term of Eq. (5). In more details, we will derivate the action functional

in lattice direction (x direction) and y-z directions respectively. First, we focus on the action functional in y and z directions.
Plugging the expanded Bosonic field Eq. (4) into Eq. (2), we can obtain

SFIyz

h̄βV
= − 1

h̄βV

∫ h̄β

0
dτ

∫
d3r

g2

2
|ψ (r, τ )|2(∂2

y + ∂2
z

)|ψ (r, τ )|2

= − 1

h̄βV

∫ h̄β

0
dτ

∫
dxdydz

∑
k1,k2,k3,k4,l
n1,n2,n3,n4

ei(kx1−kx2+kx3−kx4 )ld e−i(ωn1−ωn2+ωn3−ωn4 )τω4(x − ld )
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×g2

2
ψ∗

k1,n1
ψk2,n2 ei((ky1−ky2 )y+(kz1−kz2 )z)

(
∂2

y + ∂2
z

)
ψ∗

k3,n3
ψk4,n4 ei((ky3−ky4 )y+(kz3−kz4 )z)

=
∑

k1,k2,q
n1,n2,m

g2
(
q2

z + q2
y

)
d

2
√

2πσ
ψ∗

k2+q,n2+mψ∗
k1−q,n1−mψk1,n1ψk2,n2 . (A2)

Second, we can derive the action functional in the lattice direction:

SFIx

h̄βV
= − 1

h̄βV

∫ h̄β

0
dτ

∫
d3r

g2

2
|ψ (r, τ )|2∂2

x |ψ (r, τ )|2

= −
∫ h̄β

0
dτ

∫
dxdydz

∑
k1,k2,k3,k4
n1,n2,n3,n4

∑
l1,l2,l3,l4

g2

2
ψ∗

k1,n1
ψk2,n2 ei(ky1−ky2 )yei(kz1−kz2 )zω(x − l1d )ω(x − l2d )

×ei(k1x l1−k2x l2 )e−i(ωn1−ωn2+ωn3−ωn4 )τ ∂2
x ψ∗

k3,n1
ψk4,n2 ei(ky3−ky4 )yei(kz3−kz4 )zω(x − l3d )ω(x − l4d )ei(k3x l3−k4x l4 )

= −g2

2

1

Lx

∑
k1,k2,q
n1,n2,m

∑
l1,l2

eiqxd (l1−l2 )ψ∗
k2+q,n2+mψ∗

k1−q,n1−mψk1,n1ψk2,n2

∫
dxω2(x − l1d )∂2

x ω2(x − l2d )

= − 1

d

g2

2

∑
k1,k2,q
n1,n2,m

ψ∗
k2+q,n2+mψ∗

k1−q,n1−mψk1,n2ψk2,n2

(∫
dxω2(x)∂2

x ω2(x) + 2 cos qxd
∫

dxω2(x)∂2
x ω2(x − d )

)

= g2

2

∑
k1,k2,q
n1,n2,m

2t1(1 − cos qxd )ψ∗
k2+q,n2+mψ∗

k1−q,n1−mψk1,n1ψk2,n2 , (A3)

with t1 = − 1
2d

∫
dxω2(x)∂2

x ω2(x) = 1
d

∫
dxω2(x)∂2

x ω2(x − d ). Note that Eqs. (A1)–(A3) correspond to the terms in the second
line of Eq. (5).

APPENDIX B: REMOVING POWER ULTRAVIOLET DIVERGENCES OF EQ. (11)

In Appendix B, we give the detailed derivations of the crucial regularizing terms on the second line of Eq. (11). The original
form the ground-state energy reads as Eg

V = 1
2 gen2

0 + 1
2V

∑
k �=0 Ek, which is divergent in the large k limit. Following the procedure

of avoiding ultraviolet divergences in Ref. [59], the ground-state energy can be written as follows:

Eg

V
= 1

2
gen2

0 + 1

2V

∑
k �=0

[Ek − lim
k→∞

Ek], (B1)

with

lim
k→∞

Ek = lim
k→∞

√√√√(
h̄2k2

⊥
2m

+ 2t (1 − cos kxd )

)(
h̄2k2

⊥
2m/

(
1 + 4mμ

h̄2
g2

g0

) + h̄2(1 − cos kxd )

h̄2/2(t + 2g2n0t1)
+ 2μ

)

=
√√√√(

h̄2k2
⊥

2m
+ 2t (1 − cos kxd )

)(
h̄2k2

⊥
2m/

(
1 + 4mμ

h̄2
g2

g0

) + h̄2(1 − cos kxd )

h̄2/[2(t + 2g2n0t1)]

)

+ gen0

√
h̄2k2

⊥
2m + 2t (1 − cos kxd )√

h̄2k2
⊥

2m/
(

1+ 4mμ

h̄2
g2
g0

) + h̄2(1−cos kxd )
h̄2/[2(t+2g2n0t1 )]

− (gen0)2
√

h̄2k2
⊥

2m + 2t (1 − cos kxd )

2

(
h̄2k2

⊥
2m/

(
1+ 4mμ

h̄2
g2
g0

) + h̄2(1−cos kxd )
h̄2/[2(t+2g2n0t1 )]

)3/2 + O

(
1

k4
⊥

)
. (B2)

Plugging Eq. (B2) into Eq. (B1), we can obtain Eq. (11) in the main text.
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After removing the power divergences in Eq. (11), we can replace the summation with an integral in the continuum limit and
deduce Eq. (12) as follows:

Eg

V
= 1

2
gen2

0 + 1

2V

∑
k �=0

Ek − E0
k

= 1

2
gen2

0 + 1

2V

1

�kx�ky�kz

∫
dkx

∫
dk⊥2πk⊥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ek −
√√√√[

h̄2k2
⊥

2m
+ 2t (1 − cos kxd )

][
h̄2k2

⊥
2m/(1 + 4mμ

h̄2
g2

g0
)

+ h̄2(1 − cos kxd )

h̄2/[2(t + 2g2n0t1)]

]

− gen0

√
h̄2k2

⊥
2m + 2tγ√

h̄2k2
⊥

2m/(1+ 4mμ

h̄2
g2
g0

)
+ h̄2(1−cos kxd )

h̄2/[2(t+2g2n0t1 )]

+ (gen0)2
√

h̄2k2
⊥

2m + 2t (1 − cos kxd )

2

(
h̄2k2

⊥
2m/(1+ 4mμ

h̄2
g2
g0

)
+ h̄2(1−cos kxd )

h̄2/[2(t+2g2n0t1 )]

)3/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 1

2
gen2

0 + 1

2(2π )2d

∫
dk′

x

∫
dk⊥k⊥

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Ek −
√√√√[

h̄2k2
⊥

2m
+ 2t (1 − cos k′

x )

][
h̄2k2

⊥
2m/(1 + 4mμ

h̄2
g2

g0
)

+ h̄2(1 − cos k′
x )

h̄2/[2(t + 2g2n0t1)]

]

− gen0

√
h̄2k2

⊥
2m + 2t (1 − cos k′

x )√
h̄2k2

⊥
2m/(1+ 4mμ

h̄2
g2
g0

)
+ h̄2(1−cos k′

x )
h̄2/[2(t+2g2n0t1 )]

+ (gen0)2
√

h̄2k2
⊥

2m + 2t (1 − cos k′
x )

2

(
h̄2k2

⊥
2m/(1+ 4mμ

h̄2
g2
g0

)
+ h̄2(1−cos k′

x )
h̄2/[2(t+2g2n0t1 )]

)3/2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

= 1

2
gen2

0 + 1

4(2π )2d

2m

h̄2

∫
dk′

x

∫
d

h̄2k2
⊥

2m

{
Ek −

√√√√[
h̄2k2

⊥
2m

+ 2t (1 − cos k′
x )

][
h̄2k2

⊥
2m/(1 + 4mμ

h̄2
g2

g0
)

+ h̄2(1 − cos k′
x )

h̄2/[2(t + 2g2n0t1)]

]

− gen0

√
h̄2k2

⊥
2m + 2t (1 − cos k′

x )√
h̄2k2

⊥
2m/(1+ 4mμ

h̄2
g2
g0

)
+ h̄2(1−cos k′

x )
h̄2/[2(t+2g2n0t1 )]

+ (gen0)2
√

h̄2k2
⊥

2m + 2t (1 − cos k′
x )

2

(
h̄2k2

⊥
2m/(1+ 4mμ

h̄2
g2
g0

)
+ h̄2(1−cos k′

x )
h̄2/[2(t+2g2n0t1 )]

)3/2

}

= 1

2
gen2

0 + 1

2(2π )2d

m

h̄2

∫
dk′

x

∫
dK

{
Ek −

√
[K + 2tγ ][λK + 2(t + 2g2n0t1)γ ]

− gen0
√

K + 2tγ√
λK + 2(t + 2g2n0t1)γ

+ (gen0)2√K + 2tγ

2(λK + 2(t + 2g2n0t1)γ )3/2

}

= 1

2
gen2

0 + (gen0)2

2(2π )2d

m

h̄2

∫
dk′

x

∫
dk

{
Ek −

√
[k + xγ ][λk + (x + 2t2)γ ]−

√
k + xγ√

λk + (x + 2t2)γ
+

√
k + xγ

2(λk + (x + 2t2)γ )3/2

}

= 1

2
gen2

0 + (gen0)2

(2π )2d

m

h̄2 f (x), (B3)

with K = h̄2k2
⊥/2m and k = K/gen0.
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