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Interacting Bose gas across a narrow Feshbach resonance
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We use a two-channel model to investigate an interacting Bose gas across a narrow Feshbach resonance within
a field path integral approach. The ground-state properties show strong deviation from that of a broad Feshbach
resonance or a single-channel interaction. The deviation can be interpreted by the strong energy dependence of
two-body scattering length near a narrow Feshbach resonance. As the density increases, the chemical potential
and energy per particle are found to saturate while the inverse compressibility and the phonon velocity undergo
a significant reduction. We also take Gaussian fluctuations into account and calculate the ground-state energy
correction as well as the quantum depletion.
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I. INTRODUCTION

The studies of weakly interacting dilute Bose gas have a
very long history ever since the pioneer works in the 1950s.
A cornerstone progress has been made by Lee, Huang, and
Yang in their famous paper [1]. In their work, a low-density
expansion was obtained for the equation of state at zero tem-
perature:
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where m is the mass of one atom, E/N is the energy per
particle of the ground state, n is the total density of the Bose
gas, and as is the s-wave scattering length [1]. The first term
in Eq. (1) can be obtained by a simple mean-field calcula-
tion while the second term includes the contribution from
the zero-point energy of quasiparticle excitations above the
mean-field ground state, which is often called Lee-Huang-
Yang correction nowadays [2]. This low-density expansion
was later extended to even higher orders in Refs. [3–8]. Based
on Eq. (1), all the thermal dynamic quantities can be derived
at zero temperature. For example, the chemical potential and
inverse compressibility are given as
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According to Eqs. (1)–(3), as the density increases with fixed
as, both the energy per particle and the chemical potential
increase monotonically and faster than linear as a function
of n, while the inverse compressibility remains a constant
at the mean-field level and shows a weak dependence on
density when including the Lee-Huang-Yang correction. Al-
though these results were published more than 60 years ago,
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their experimental verification is only possible very recently,
thanks to the realization and high-precision measurement of
Bose-Einstein condensate in ultracold quantum gases [9–11].

However, one should note that the validity of expansion
(1) not only requires the low-density condition n1/3as � 1 but
also relies on the fact that the two-body scattering process
is fully determined by a single parameter as. For quantum
gases close to a Feshbach resonance, while the second con-
dition is usually fulfilled for a broad Feshbach resonance, it
may break down for a very narrow resonance [12–18]. As
shown in several previous works, near a Feshbach resonance,
the two-body scattering amplitude is generally determined
by the energy-dependent scattering length as(Ecoll ) = abg[1 +
δμ�/(Ecoll − νr )], where Ecoll is the total energy of the two
particles under collision in the center-of-mass frame, abg is
the background scattering length, νr is the energy detun-
ing of the closed-channel bound state, � is the resonance
width, and δμ is the difference of magnetic momentum
between open and closed channels of the correponding res-
onance [19–23]. For the magnetic Feshbach resonance, νr =
δμ(B − Bres) is magnetic field tunable where Bres labels the
resonance position [19,20]. The low-momentum expansion
1/as(Ecoll ) = 1/as(0) − reffmEcoll/(2h̄2) + O(E2

coll ) gives the
effective range reff = −2h̄2δμ�/[mabg(δμ� − νr )2], which
characterizes the energy dependence of the scattering length.
Across a broad resonance, n1/3reff � 1, the energy de-
pendence in as(Ecoll ) can be safely neglected and one
has as(Ecoll ) � as(0). In contrast, for a narrow resonance,
n1/3reff � 1 such that as(Ecoll ) has a very sensitive depen-
dence on Ecoll, and thus the full functional form must be taken
into account [21–25].

In particular, for a Bose gas across a narrow Feshbach
resonance, one can qualitatively estimate the effect of the
energy-dependent scattering length as follows. In an interact-
ing many-body environment, the scattering energy between
any two atoms is uncertain; however, it can be estimated as an
average collision energy Ēcoll, which should be on the same
order of twice the chemical potential or of twice the energy
per particle. As a result, the effective interacting strength
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FIG. 1. Schematic plot of the energy-dependent scattering length
near a narrow Feshbach resonance.

should be determined by an effective scattering length
as � as(Ēcoll ) instead of the zero-energy scattering length
as(0). Obviously, as the density n increases, Ēcoll should also
increase.

In this paper, we consider a particular case in which νr > 0,
abg > 0, and as(0) > 0, and a schematic plot of as(E ) is
shown in Fig. 1. In this case, the function as(Ecoll ) decreases
from as(0) to 0 as the energy Ecoll increases from 0 to the
critical value Ec = νr − δμ�. At a fixed magnetic field, if
one increases the density, the average collision energy will
increase such that as(Ēcoll ) decreases towards 0, which results
in a rapid reduction of the interaction strength, thereby hin-
dering the further increasing of Ēcoll. As a result, the effect of
the energy-dependent as(Ēcoll ) is significantly enhanced in this
particular parameter regime, and we expect that chemical po-
tential μ and the energy per particle E/N may saturate to μc =
Ec/2 as the density increases, consequently yielding a nearly
0 inverse compressibility. In the following, we show that the
qualitative analysis above is correct based on a mean-field
plus Gaussian fluctuation calculation. We provide a modified
low-density expansion for the equation of state, which can
be seen as a generalization of Eq. (1), that applies to Bose
gases across either broad or narrow Feshbach resonances. The
effect of the energy-dependent scattering length on various
thermodynamic properties is investigated systematically.

Our paper is organized as follows. In Sec. II, we intro-
duce our model Hamiltonian for a spinless Bose gas across
a narrow Feshbach resonance and adopt the path integral ap-
proach to obtain the thermodynamic partition function [26]. In
Sec. III, we present the mean-field results on thermodynamic
properties in detail and show the effect of energy-dependent
scattering length in uniform systems. In Sec. IV, we calculate
the Gaussian fluctuation correction to the mean-field results,
which does not show qualitative changes. In Sec. V, we inves-
tigate density distributions for a trapped Bose gas. In Sec. VI,
we summarize our main findings and conclude the paper.

II. MODEL AND PATH INTEGRAL APPROACH

For spinless bosons interacting across a magnetic Fes-
hbach resonance, we adopt the widely used two-channel
model [27–30]. In the open channel, atoms persist in
scattering states, while in the closed channel, two atoms
form a deeply bound molecular state. The Hamiltonian is

given by

Ĥ = Ĥa + Ĥb + Ĥc, (4a)

Ĥa =
∫

d3x

[
â†(x)

(
−∇2

2m
+ Va(x)

)
â(x)

+ g

2
â†(x)â†(x)â(x)â(x)

]
, (4b)

Ĥb =
∫

d3x b̂†(x)

(
− ∇2

2M
+ νb + Vb(x)

)
b̂(x), (4c)

Ĥc =
∫

d3x
[

α√
2

â†(x)â†(x)b̂(x) + H.c.

]
, (4d)

where â† is the creation operator for atoms in the open channel
and b̂† is the creation operator of closed-channel molecules.
M = 2m is the mass of one molecule, and we set h̄ = 1
throughout this paper. Va and Vb are external potentials of
atoms and molecules. The molecule detuning νb, the inter-
channel coupling α, and the interaction parameter in open
channel g are bare quantities which need to be renormalized
as follows:

νb = νr − [1 − Z (	)]α2
r /gr, (5a)

α = Z (	)αr, (5b)

g = Z (	)gr, (5c)

where Z (	) = (1 − gr	)−1 and 	 = 1
V

∑′
k(k2/m)−1. The

renormalized quantities gr , αr , and νr determine the energy-
dependent scattering length as

4πas(Ecoll )

m
= gr + |αr |2

Ecoll − νr
, (6)

where gr and αr are related to the physical parameters
abg, �, and δμ through the relations gr = 4πabg/m and
|αr |2 = grδμ�. The effective range is expressed as reff =
−2�̃/mEcas(0), where �̃ = δμ�/νr . The partition function
of the Hamiltonian Eq. (4a) at arbitrary temperature T can be
written into the following imaginary-time path integral form

Z =
∫

D[φ∗, φ]D[ψ∗, ψ] exp(−S), (7)

where the action S is given as

S =
∫

dx

[
φ∗(x)

∂

∂τ
φ(x) + ψ∗(x)

∂

∂τ
ψ (x)

+ ha(x) + hb(x) + hc(x)

]
, (8a)

ha(x) = φ∗(x)

[
−∇2

2m
+ Va(x) − μ

]
φ(x),

+ g

2
φ∗(x)φ∗(x)φ(x)φ(x), (8b)

hb(x) = ψ∗(x)

[
−∇2

4m
+ νb + Vb(x) − 2μ

]
ψ (x), (8c)

hc(x) = α√
2
φ∗(x)φ∗(x)ψ (x) + c.c., (8d)
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where φ(x) and ψ (x) are the fields of atoms and molecules
and we have defined x ≡ (x, τ ) and

∫
dx ≡ ∫ d3x

∫ β

0 dτ , with
β = (kBT )−1.

The path integral (7) cannot be performed exactly due
to the interaction terms. However, for a weakly interacting
Bose gas with very low density, it is a good approximation
to expand the action S in Eq. (8a) around its saddle point
solution [26]:

φ(x) = φ0(x) + φ′(x), (9)

ψ (x) = ψ0(x) + ψ ′(x), (10)

where φ0(x) and ψ0(x) are the saddle point solutions which
minimize the action S, while ψ ′(x) and ψ ′(x) are the
fluctuation fields of atoms and molecules.

Later in Sec. III, we take the mean-field approximation by
neglecting all the fluctuation terms. The approximate action is
then given by

S(0) = β

∫
d3x
{
φ∗

0 (x)

[
−∇2

2m
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]
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+ g

2
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0 (x)
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−∇2

4m
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]
ψ0(x)

+ α√
2
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0 (x)2ψ0(x) + α∗
√

2
ψ∗

0 (x)(φ0(x))2

}
. (11)

Then in Sec. IV we include the contribution from Gaussian
fluctuation around the saddle point. For a uniform system, the
saddle point solution is uniform, i.e., φ0(x) ≡ φ0 and ψ0(x) ≡
ψ0, and we obtain the quadratic action as

S ≈ S(0) + S(2), (12)

S(2) =
∫

dxφ′∗(x)
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φ′(x)

+ 1
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+
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dxψ ′∗(x)

[
∂

∂τ
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4m
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]
ψ ′(x)

+
∫

dx

[
2

α√
2
φ′∗(x)φ∗

0ψ ′(x) + c.c.

]
. (13)

To perform the path integral for this quadratic action, it is
more convenient to first transform the action into momentum-
frequency space,

φ′(x) = 1√
βV

∑
k,n

φ′
k,n exp[i(k · x − ωnτ )], (14)

ψ ′(x) = 1√
βV

∑
k,n

ψ ′
k,n exp[i(k · x − ωnτ )], (15)

where ωn is the bosonic Matsubara frequency, and k is the free
wave vector. Then the action can be written more compactly
as a matrix multiplication in Nambu space as

S(2) = − β

2

′∑
k

(
εb

k + εa
k + 2g|φ0|2

)

− 1

2

∑
k �=0,n

�
†
kG−1(k, iωn)�k, (16)

where k ≡ (k, iωn),
∑′

k ≡∑k �=0, εb
k = k2

4m + νb − 2μ, and

εa
k = k2

2m − μ and we define the following vector:

�
†
k = [ψ ′∗

k , φ′∗
k , φ′

−k, ψ
′
−k]. (17)

The first summation in Eq. (16) comes from the order ex-
change between the creation and annihilation fields during the
transformation into Nambu space [26]. And the 4 × 4 matrix
G−1 gives the inverse Green’s function

G−1 = G−1
0 − �, (18)

where

G−1
0 =

⎡
⎢⎢⎣

G−1
b0 (k)

G−1
a0 (k)

G−1
a0 (−k)

G−1
b0 (−k)

⎤
⎥⎥⎦ (19)

and

� =

⎡
⎢⎢⎢⎣

0 α̃∗

α̃ 2g|φ0|2 g̃
g̃∗ 2g|φ0|2 α̃∗

α̃ 0

⎤
⎥⎥⎥⎦. (20)

Here we have defined Ga0(k) = (iωn − εa
k )−1, Gb0(k) =

(iωn − εb
k )−1, α̃ = √

2αφ∗
0 , and g̃ = gφ2

0 + √
2αψ0.

In the limit α → 0 with fixed μ < μc, the last two terms
in Eq. (11) and the elements α̃ in Eq. (20) become negli-
gible, leading to decoupling between atomic and molecular
states, and the effect of the closed-channel molecule can be
neglected. In this limit, the system can be approximately
described by a single-channel model corresponding to Ĥa in
Eq. (4a). We call this limit the single-channel limit. On the
other hand in the limit μ → 0 corresponding to a vanish-
ingly small density, we have as � as(0) and thus the system
is approximately described by a constant scattering length,
as(0). We call this limit the extremely low-density limit.
Consequently in these two limits, the energy dependence of
as(Ēcoll ) can be safely neglected and the equation of states
reduced to Eqs. (1)–(3) with as = abg and as = as(0) for
the single-channel limit and the extremely low-density limit,
respectively. We show in the following sections that this is
indeed true based on our general results which provide a
nontrivial check for our calculation.

It is known that the quasiparticle excitation corresponds to
the poles of the Green’s function. By diagonalizing Eq. (18)
we obtain two branches of excitations given as

ω±
k =

√
(B ±

√
B2 − 4C)/2, (21)

where

B = (
εa

k + 2g|φ0|2
)2 + (εb

k

)2 + 2|α̃|2 − μ2, (22)

C = [(
εa

k + 2g|φ0|2
)
εb

k − |α̃|2]2 − μ2
(
εb

k

)2
. (23)

It is straightforward to check that ω−
k has a linear dependence

on |k| as k → 0 and thus represents the phonon mode of this
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Bose superfluid. On the other hand, ω+
k is gapped at k = 0,

corresponding to the density fluctuation of the closed-channel
molecule.

The Green’s function can be diagonalized with a transfor-
mation matrix U [31]:

−UTG−1(k, iωn)U

=

⎡
⎢⎢⎣

−iωn + ω+
k −iωn + ω−

k
iωn + ω−

k
iωn + ω+

k

⎤
⎥⎥⎦.

(24)

Finally, we obtain the following Gaussian action:

S = S(0) + β

2

′∑
k

(ω+
k + ω−

k ) − β

2

′∑
k

(
εa

k + 2g|φ0|2 + εb
k

)

+
′∑
k

(−iωn + ω+
k )ψ∗

k,nψk,n+
′∑
k

(−iωn + ω−
k )φ∗

k,nφk,n,

(25)

where [ψ∗
k , φ∗

k , φ−k, ψ−k] is related to [ψ ′∗
k , φ′∗

k , φ′
−k, ψ

′
−k]

through

[ψ∗
k , φ∗

k , φ−k, ψ−k] = [ψ ′∗
k , φ′∗

k , φ′
−k, ψ

′
−k]U−1. (26)

Again the summation of ω+
k and ω−

k in Eq. (25) comes from
the exchange of the field operators [26].

In the following sections we calculate the zero-temperature
thermodynamic potential � and the total density n with the
action given by either Eq. (11) (in Sec. III) or Eq. (25) (in
Sec. IV) through the following thermodynamic relations:

�

V
= − 1

βV
ln(Z ), (27)

n = −∂ (�/V )

∂μ
, (28)

E

V
= �

V
+ nμ. (29)

III. MEAN-FIELD CALCULATION

In this section, we neglect the contribution of Gaussian
fluctuation, and the action is governed by S(0) (11). After
minimizing the mean-field action S(0) with φ0(x) and ψ0(x),
δS(0)/δφ∗

0 (x) = δS(0)/δψ∗
0 (x) = 0, we obtain the following

two-channel Gross-Pitaevskii equations:[
−∇2

2m
+ Va + gr |φ0(x)|2−μ

]
φ0(x) +

√
2αrφ

∗
0 (x)ψ0(x) = 0,

(30a)[
−∇2

4m
+ νr + Vb − 2μ

]
ψ0(x) + α∗

r√
2
φ0(x)2 = 0.

(30b)

The renormalization should be taken to the same order,
so that at mean-field level we should use the renormalized
parameters directly in Eq. (30) [26].

(a) (b)

(c) (d)

FIG. 2. (a) The chemical potential, (b) the molecular fraction,
(c) the energy per particle, and (d) the inverse compressibility κ−1 as
a function of the total density n for narrow resonance (red lines) with
�̃ = 0.01 and νra2

s (0) = 0.01 and for broad resonance (blue deshed
lines) with a constant scattering length as = as(0). The gray dot-
dashed lines donates the position of μc. The inset in panel (c) shows
the ratio between energy per particle and chemical potential as a
function of the density.

We now consider a uniform system with Va = Vb = 0. In
this case, the solutions of Eq. (30) for the ground state are also
uniform, and the atomic density na and the molecular density
nb are given by

na = |φ0|2 = μ

g(2μ)
, (31)

nb = |ψ0|2 = 1

2

[
1

g(2μ)

μ|αr |
2μ − νr

]2

, (32)

where we define the energy-dependent interacting strength
g(E ) = 4π h̄2as(E )/m. It is easy to see that both na and
nb, and thus the total atomic density n = na + 2nb, diverge
as g(2μ) → 0 corresponding to μ → μc = Ec/2 = (νr −
|αr |2/gr )/2. As a result, the chemical potential μ saturates to
μc as n increases. This behavior is shown exactly in Fig. 2(a).

Substituting Eqs. (31) and (32) into the mean-field action
S(0) (11), we can obtain the partition function Z through
Eq. (7) by replacing S by S(0) and, subsequently, the total
energy per particle through Eqs. (27)–(29) as

E

N
= g(2μ)n

2

(
1 − γ 2

b

) = 1 + γb

2
μ, (33)

where γb = 2nb/n is the molecular fraction representing the
fraction of atoms occupying the closed channel. The behavior
of γb as a function of n is shown in Fig. 2(b). As density grows,
γb increases from 0 to 1, and Eq. (33) indicates that E/N also
saturates to μc together with the chemical potential as shown
in Fig. 2(c). The inset of Fig. 2(c) shows the ratio between
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FIG. 3. The phonon velocity as a function of the total density n
for a broad resonance (black dashed line) and for narrow resonances
(solid lines) with νra2

s (0) = 0.01 and �̃ = {0.01, 0.1, 0.5}.

energy per particle and chemical potential (E/N )/μ, which
increases from 1/2 to 1 as the density grows. These behaviors
of the energy per particle and the chemical potential are in
qualitative difference with those given by Eqs. (1) and (2) as
shown with dashed lines in Figs. 2(a) and 2(c).

This difference can be attributed to the energy dependence
of the scattering length. As discussed in Sec. I, μ and E/N
should roughly be determined by the effective interacting
strength given by as � as(Ecoll ). For a broad resonance, as

is a constant and the energies increase monotonically as n
increases according to Eqs. (1) and (2). When close to a
narrow resonance, if density n increases, then μ also increases
such that as decreases as shown in Fig. 1. This decreasing
of as suppresses the further increasing of μ and E/N . Since
as approaches 0 as the average collision energy Ecoll → Ec,
one may expect that μ and E/N saturate to μc as n increases,
which is indeed the case as shown in Fig. 2.

Now we analyze the behavior of μ and E/N at different
limits in detail. In the extremely low-density limit where
we have μ � μc, the open channel dominates the scattering
since the closed channel is nearly unoccupied. As a result, γb

tends to 0 and Eq. (33) reduces to the broad resonance result
E/N = μ/2, which can be derived from a weakly interacting
single-channel model. This is shown in Fig. 2 where the
curves for narrow resonance and broad resonance approach
each other in the extremely low-density regime. As the density
increases, the system reaches the opposite limit μ → μc in
which the effective scattering length as vanishes. This leads to
a saturated energy per particle as well as a vanishingly small
inverse compressibility κ−1 as shown in Fig. 2(d) where the
compressibility κ is given as

κ =
(

∂n

∂μ

)
N

= n

μ

(
1 + γb

3μc − μ

μc − μ

)
. (34)

In the single-channel limit �̃ � 1, the crossover between the
above two limits roughly takes place around n = νr/gr .

Furthermore, the sound velocity vp of this system can be
obtained through the thermodynamic relation v2

p = nκ−1. The
results are shown in Fig. 3. We can see that vp develops a

pronounced peak as the density increases. This nonmonotonic
behavior can be explained by the strong density dependence
of the inverse compressibility κ−1, as shown in Fig. 2(d). In
the zero-density limit (n → 0), we have κ−1 → const. and
thus v2

p = nκ−1 increases linearly as density n. In the high-
density regime, we find κ−1 → 0 faster than 1/n and thus
we have v2

p → 0. In the intermediate-density region around
n ∼ νr/gr , the significant drop in κ−1 combined with the
linear increase of n contributes the pronounced peak in vp.
As analyzed earlier, the abnormal density dependence in κ−1

is a direct consequence of the strong energy dependence in
as(Ecoll ), as a result, the peak behavior in vp is only pro-
nounced for very narrow resonance. We have also verified that
this value of vp is fully consistent with the value obtained
directly from the quasiparticle spectrum given in Eq. (21)
through

vp = lim
k→0

ω−
k

k
. (35)

IV. GAUSSIAN FLUCTUATION CALCULATION

In this section, we take the correction of Gaussian fluctua-
tion into account, and the action is governed by Eq. (25) which
gives the thermodynamic potential

�

V
=�0

V
+ 1

V β

′∑
k

ln(1 − e−βω−
k ) + 1

V β

′∑
k

ln(1 − e−βω+
k ).

(36)

At zero temperature, the ground-state thermodynamic poten-
tial �0 is given by

�0

V
= FL

V
+ Ffluc

V
. (37)

FL is the mean-field thermodynamic potential given as

FL

V
= − μ2

2g(2μ)
. (38)

Ffluc is the zero-point energy correction induced by Gaussian
fluctuation. After the renormalization procedure, we obtain

Ffluc

V
= 1

2V

′∑
k

[
(ω−

k + ω+
k )

−(εa
k + 2gr |φ0|2 + εb

k

)+ mμ2

k2

]

= 1

4π2
(2m)3/2μ5/2F (μ̃, �̃). (39)

where the term mμ2/k2 in the square brackets comes from
the renormalization of the bare parameters and cancels the
divergence in the momentum summation

∑′
k. Here F (μ̃, �̃)

is a dimensionless function defined as

F (μ̃, �̃) =
∫ ∞

0

[
1

2
+ x2g(x, μ̃, �̃)

]
dx, (40)
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(a) (b) (c)

FIG. 4. Behavior of F (μ̃, �̃) − FLHY when close to three different limits. (a) The extremely low-density limit with �̃ = 0.4. (b) The
single-channel limit with μ̃ = 0.2. (c) The saturation limit with �̃ = 0.01. The red lines in panels (a)–(c) show the results given by Eq. (40),
while the blue dashed lines are the asymptotic results in the corresponding limits given by Eqs. (43), (44), and (48).

where μ̃ = μ/νr , and g(x, μ̃, �̃) is another dimensionless
function defined as

g(x, μ̃, �̃) =
√

ω2
a + ω2

b + 4ξ − 1 + 2
√

(ωaωb − 2ξ )2 − ω2
b

− ωa − ωb, (41)

with

ωa = x2 + 1 − 2
�̃

2μ̃ − 1 + �̃
, (42a)

ωb = x2

2
+ 1

μ̃
− 2, (42b)

ξ = �̃

μ̃

2μ̃ − 1

2μ̃ − 1 + �̃
. (42c)

Based on the asymptotic behavior of F (μ̃, �̃) as is shown
below, in the extremely low-density limit (n → 0 such that
μ̃ → 0 with finite �̃) or the single-channel limit (αr → 0
such that as(E ) = mgr/(4π ) ≡ abg and we have �̃ → 0 with
μ̃ remaining finite), F approaches a constant given by FLHY =
8
√

2/15. We have verified that in these two limits the energy
per particle obtained from our Eqs. (49) and (50) recovers
the LHY result in Eq. (1) with as replaced by as(0) for the
extremely low-density limit and by abg for the single-channel
limit (see also the comparison in Fig. 4). This should be the
case since in both limits the energy dependence of as(E ) can
be safely neglected.

Below, we analyze the asymptotic behavior of F (μ̃, �̃)
close to the above two limits as well as to the saturation limit
where μ → μc as discussed in Sec. III.

(i) In the limit μ̃ � 1 while �̃ remains finite, i.e., the
extremely low-density limit, we have

F (μ̃, �̃) = 8
√

2

15
+

√
6π

4

�̃

1 − �̃

√
μ̃ + O(μ̃). (43)

(ii) In the limit �̃ � 1, i.e., the single-channel limit, we
have

F (μ̃, �̃) = 8
√

2

15
+ G(μ̃)

1 − 2μ̃
�̃ + O(�̃2), (44)

G(μ̃) =
∫ ∞

0
η(x, μ̃)dx, (45)

where

η(x, μ̃) = 1√
(x2 + 1)2 − 1 + (x2 + 1)

× 2x2√
(x2 + 1)2 − 1 + x2

2 − 2 + 1
μ̃

×
(

1 + x2

2
√

(x2 + 1)2 − 1

)
. (46)

If μ̃ also approaches 0 in this case, then we have

G(μ̃) =
√

6π

4

√
μ̃ + O(μ̃). (47)

(iii) In the limit μ̃ → (1 − �̃)/2 − 0+ such that g(2μ) →
0+, which is called the saturation limit (since this is the limit
where μ and E/N saturate to μc), we have

F (μ̃, �̃) = π
√

�̃

4

1√
z

+ 1 − (21 − 8
√

6)�̃

8(1 − �̃)
√

�̃
π

√
z + O(z3/2),

(48)
where z = (1 − �̃)/2 − μ̃. The comparison between the
above three asymptotic behaviors and the full results of F is
shown in Fig. 4.

The correction of energy per particle due to the Gaussian
fluctuation is given by

E

N
= 1

n

[
− μ2

2g(2μ)
+ (2m)

3
2

4π2
μ

5
2 F (μ̃, �̃)

]
+ μ, (49)

n = n0 − (2μ)
3
2

4π2

[
μ̃F ′(μ̃, �̃) + 5

2
F (μ̃, �̃)

]
, (50)

where n0 = na + 2nb is the mean-field density given by
Eqs. (31) and (32). As shown in Fig. 5, the Gaussian fluctua-
tion correction does not change the behavior of the mean-field
results qualitatively. At low density, again the results approx-
imately coincide with that of the broad resonance case with
a constant as = as(0). As density increases towards the satu-
ration limit, the contribution of Gaussian fluctuation is small
compared with the mean-field part, and the energy per particle
still saturates to μc and the energy per particle remains on the
same order of the chemical potential.
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0.03
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(0

)

broad resonance

narrow resonance

narrow resonance MF

µ

Ec/2

FIG. 5. Energy per particle as a function of density n at
νra2

s (0) = 0.1 and �̃ = 0.1. Close to a narrow resonance, E/N with
a Gaussian fluctuation correction (red line) coincides with that of the
broad resonance case with a constant as = as(0) (blue dot-dashed
line) at very small density and saturates to μc (indicated by the dotted
line) at the saturation limit. The gray long-dashed line donates the
results of the chemical potential μ, and the black short-dashed line
donates the mean-field results of the energy per particle.

In Fig. 6(a), we show δĒ = E/N − ELHY/N at fixed na3
s (0)

with different detuning νr and resonance width �, which
is the difference between the energy per particle given by
Eq. (49) and that given by the LHY formula in Eq. (1) with
as = as(0). This discrepancy results from the energy depen-
dence of the scattering length and, therefore, is anticipated
to be characterized by the effective range reff depicted in
Fig. 6(b). It is evident from Fig. 6 that, in general, an increase
in the effective range |reff | corresponds to a more pronounced
energy difference, δĒ . As an example, consider the narrow
resonance of 87Rb at 406.2 G with � = 0.0004 G [19,32].
Tuning the magnetic field to �̃ = 0.5 gives an effective range

(a)

(b)

FIG. 6. (a) δĒ/ĒLHY as a function of νr and � at fixed na3
s (0) =

0.002. ĒLHY = ELHY/N is the energy per particle for the single-
channel model given by Eq. (1). (b) reff as a function of νr and �

at fixed na3
s (0) = 0.002.

FIG. 7. The ratio between the density of quantum depletion and
the total density ndp/n as a function of the total density n. The
solid lines from top to bottom stand for νra2

s (0) = 0.01 with �̃ =
{0.01, 0.1, 0.5}, respectively. The black dashed line shows ndp/n for
the single-channel model with νra2

s = 0.01.

of reff/as(0) = −15 748 and leads to δĒ/ĒLHY = −30.2% at
density n = 1014 cm−3.

We have also investigated the quantum depletion ndp =∑′
k〈G|â†

kâk + 2b̂†
kb̂k|G〉 as shown in Fig. 7. In particular, we

find

〈G|â†
kâk|G〉 = ξ 2

1 + v2
1, (51a)

〈G|b̂†
kb̂k|G〉 = ξ 2

2 + v2
2, (51b)

where

âk = 1√
V

∫
â(x)e−ik·xdx,

b̂k = 1√
V

∫
b̂(x)e−ik·xdx, (52)

and |G〉 is the ground state of quasiparticles at zero temper-
ature, and ξ1, ξ2, v1, and v2 are the matrix elements of the
quasiparticle transformation [31].

At very small density, the behavior of quantum depletion
also approaches that of broad resonance with a constant as =
as(0). In the saturation limit (μ → μc), the depletion vanishes
due to the vanishing of effective interaction strength repre-
sented by as. The phonon velocity measures the collective
excitation due to these fluctuations, and the k components of
the quantum depletion (51) donate the momentum distribution
of the density fluctuations. In the broad resonance limit, one
has ndp ∝ v3

p. As a result, the overall behavior of quantum
depletion is similar to that of the phonon velocity in Fig. 3.

V. DENSITY PROFILE IN HARMONIC TRAP

In this section, we investigate the density distribution of a
narrow Feshbach resonance Bose gas trapped in a harmonic
potential with Vb(r)/2 = Va(r) = 1

2 mω2r2. For trapped gas
with a large particle number, if one assumes the density
fluctuation is negligible, the kinetic terms in Eq. (30) can
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(a) (b) (c)

FIG. 8. Density distribution na3
s (0) of a Bose gas in a harmonic trap with fixed particle number N = 2 × 105. (a) The comparison between

the narrow resonance (red line) with �̃ = 0.001 and ao = √
mω/h̄ = 60as(0) and the broad resonance (blue dashed line) with as ≡ as(0) at

the mean-field level. (b) and (c) The comparion of the density distribution with (red lines) and without (blue dashed lines) Gaussian correction
for broad resonance (b) and narrow resonance (c).

be neglected by local-density approximation and Eq. (30)
becomes

[Va(x) + grna(x) − μ0] + αr

√
2nb(x) = 0, (53a)

[νr + Vb(x) − 2μ0]
√

2nb(x) + α∗
r na(x) = 0. (53b)

where μ0 is the chemical potential determined by the total
particle number. At the edge R of the gas cloud, the density
vanishes and na(R) = nb(R) = 0. One obtains μ0 = Va(R)
according to Eq. (53a). Then the density distribution just
becomes Eqs. (31) and (32) by replacing μ with the local
chemical potential μ0 − Va(x).

For an interacting Bose gas across a broad Feshbach res-
onance, the distribution in a harmonic trap is approximately
parabolic as a consequence of the competition between the
interaction energy and the trap potential [33,34]. Here, as
shown in Fig. 8(a), the distribution is similar to that of a broad
resonance Bose gas at the edge of the trap while more particles
can be accommodated in the center where the gas has higher
density and thus a smaller effective scattering length as as
discussed in Sec. III. A sharp peak appears if the chemical
potential at the trap center μ0 approaches μc. This density
bump at the trap center is related to the vanishing of inverse
compressibility in the saturation limit and the increase in the
amount of the noninteracting molecules in the closed channel.

Finally, we take account of the correction by fluctuations
and evaluate the density distribution by substituting μ in
Eq. (50) with μ0 − V (r). The distribution compared with
mean-field results with a fixed particle number is shown in
Fig. 8(c). The density at the trap center is further increased
after the Gaussian fluctuation is included.

VI. CONCLUSION

We studied the ground-state properties of a weakly in-
teracting Bose gas close to a narrow Feshbach resonance.
With the help of a path integral approach, we established a
low-density expansion for the equation of state of this sys-
tem. As a consequence of the energy dependence for narrow
Feshbach resonance, the gas behaves very differently, espe-
cially for higher density. As the density increases, the energy
dependence in scattering length leads to a saturated energy, a
vanishingly small inverse compressibility, and a highly sup-
pressed quantum depletion. When the Bose gas is trapped in a

harmonic potential, this effect leads to a density bump in the
trap center. Such phenomena should be able to be observed in
current cold-atom experiments.
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APPENDIX: DIAGONALIZATION OF THE INVERSE
GREEN’S FUNCTION G−1

In this Appendix, we provide the details on how to obtain
the transformation matrix U that appears in Eq. (24) in the
main text. Considering symmetry, the transformation matrix
U can be written as⎛

⎜⎜⎝
η2 u2 v2 ξ2

η1 u1 v1 ξ1

ξ1 v1 u1 η1

ξ2 v2 u2 η2

⎞
⎟⎟⎠, (A1)

where for convenience we set matrix elements as real num-
bers. Because the quasiparticles are bosonic, it is convenient
to set

UT ·

⎛
⎜⎜⎝

−1
−1

1
1

⎞
⎟⎟⎠ · U =

⎛
⎜⎜⎝

−1
−1

1
1

⎞
⎟⎟⎠,

(A2)
and the diagonalization of the inverse Green’s function is
accomplished by

UT ·

⎛
⎜⎜⎝

εb α

α εa g
g εa α

α εb

⎞
⎟⎟⎠ · U =

⎛
⎜⎜⎝

ω+
ω−

ω−
ω+

⎞
⎟⎟⎠,

(A3)
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where

εa = k2

2m
+ 2gφ2

0 − μ, (A4a)

εb = k2

4m
+ νb − 2μ, (A4b)

g = gφ2
0 +

√
2αψ0, (A4c)

α =
√

2αφ0. (A4d)

It is expedient to first take the transformation as follows:

u1 = (x1 + w1)/2, v1 = (x1 − w1)/2, (A5a)

η1 = (y1 + z1)/2, ξ1 = (y1 − z1)/2, (A5b)

u2 = (x2 + w2)/2, v2 = (x2 − w2)/2, (A5c)

η2 = (y2 + z2)/2, ξ2 = (y2 − z2)/2. (A5d)

Taking x2 = s1x1, w2 = t1w1 and y1 = s2y2, z1 = t2z2, we
can obtain the following from Eqs. (A2) and (A3):

x1 =
⎛
⎝ 1

1 + s1t1

√
εa − g + εbt2

1 + 2αt1
εa + g + εbs2

1 + 2αs1

⎞
⎠

1/2

, (A6a)

w1 =
⎛
⎝ 1

1 + s1t1

√
εa + g + εbs2

1 + 2αs1

εa − g + εbt2
1 + 2αt1

⎞
⎠

1/2

, (A6b)

y2 =
⎛
⎝ 1

1 + s2t2

√
(ε − g)t2

2 + εb + 2αt2
(ε + g)s2

2 + εb + 2αs2

⎞
⎠

1/2

, (A7a)

z2 =
⎛
⎝ 1

1 + s2t2

√
(ε + g)s2

2 + εb + 2αs2

(ε − g)t2
2 + εb + 2αt2

⎞
⎠

1/2

, (A7b)

There are two sets of solutions of s1, t1, s2, and t2; however,
using the conditions that u2, v2, ξ2, η1, and ξ1 should tend to 0
in the limit α → 0, we can determine the correct solutions as
follows,

s1 = −t2 = g2 − ε2
a + ε2

b − λs0

2α(εa + εb − g)
,

t1 = −s2 = g2 − ε2
a + ε2

b − λs0

2α(g + εa + εb)
,

(A8)

where λ is the sign of g2 − ε2
a + ε2

b and

s0 =
√(

g2 − ε2
a + ε2

b

)2 − 4α2(g − εa − εb)(g + εa + εb).

(A9)

Substituting the solutions of x, w, y, and z [Eqs. (A6) and
(A7)] into Eq. (A5), we can finally obtain the transformation
matrix and quasiparticle excitations.
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