
PHYSICAL REVIEW A 109, 063302 (2024)
Editors’ Suggestion

Dynamical formation of a prethermal Bose-Einstein condensate in a Floquet-engineered lattice
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We experimentally realize an effective Hamiltonian with a continuously adjustable staggered gauge field for
weakly interacting bosons in an optical lattice. Periodic driving realizes a staggered �-flux model, where � can
be continuously tuned around π or 2π . We study heating and prethermal relaxation in the modulated lattices
following sudden changes in the effective fields. By quenching the system between different Floquet-induced
fields with different ground states, we observe Bose recondensation of quench-excited atoms on time scales
faster than heating due to the drive. These results are necessary steps towards the generation of correlated states
by Hamiltonian modulation, but drive-induced heating (observed here in the weakly interacting limit) is poorly
understood in the highly correlated limit and needs to be further studied to determine if such correlated states are
realizable.
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I. INTRODUCTION

Ultracold atoms in periodically driven quantum systems
serve as a highly flexible tool for exploring novel phenom-
ena. In the “Floquet” approach to describing periodically
modulated systems, the time-dependent Hamiltonian can of-
ten be described by a static, effective Hamiltonian that can
exhibit behavior not present in an undriven system. Floquet
modulation of ultracold atomic systems has been used to
realize conventional and unconventional classical magnetic
models [1–5], the Haldane model [6,7], a moatlike disper-
sion [8,9], anomalous topological states associated with the
periodic nature of the Floquet energy structure [10], density-
dependent gauge fields [11,12], and the Harper-Hofstadter
model [13–16], which can exhibit topologically nontrivial
states [6,17].

Much of the interesting physics in Floquet-engineered sys-
tems requires interactions. Unfortunately, interacting systems
are observed to heat when driven [18–23]. Realising effective
Hamiltonians with interactions requires a separation of time
scales: the time scale associated with elastic scattering of
particles within the Hilbert space described by the effective
Hamiltonian should be faster than interaction-induced heat-
ing. For lattice systems with bounded spectra, which requires
finite local interaction strengths and bounded single-particle
spectra, such “Floquet prethermalization” is generally ex-
pected in the limit of high-frequency driving [24–27]. While
the Hilbert spaces of real systems are not locally bounded,
if the states of interest are separated from all other states by
a sufficient energy gap, Floquet prethermalization can occur
[28].

In lattice systems, the bands of interest are often reason-
ably isolated, but when considering periodic driving, higher
lying bands can be coupled through higher-order resonances,
which can result in heating. In the weakly interacting limit,
periodically driven, isolated lattice systems have been used to
simulate artificial gauge fields [13,17,29–31] and spin-orbit
coupling, and engineer interesting band structure [3,7,8]. In

these systems, Floquet prethermalization is not guaranteed
and heating depends on specific details of the system. Pre-
vious Floquet-engineered experiments using Bose Einstein
condensates (BEC) have relied on the existence of a Floquet
prethermal time scale, since the BEC had to be stable long
enough to prepare it in a Floquet state [1,4,13,32–38].

Here, we experimentally study thermalization of bosons
subject to a Floquet-engineered effective Hamiltonian with a
continuously adjustable staggered flux �. Starting with a BEC
subject to an initial � and quenching to a different � with a
different ground state, we observe recondensation of quench-
excited atoms on time scales faster than global heating due
to the drive. The resulting (staggered-vortex) state occupies
the ground state of the effective Hamiltonian. We note that
this state can also be created with a non-Floquet approach,
by exciting atoms to higher bands in static optical lattices
[39,40]. Interestingly, similar recondensation is observed in
the non-Floquet approach, except that decay from the excited
band limits the long-time behavior, instead of drive-induced
heating.

We explore two effective field configurations: a staggered
2π regime with topologically trivial band structure related to
the field-free state by a gauge transformation and a nontrivial
staggered �-flux model with � � π [13], where near � = π

the single-particle band structure displays minima at two in-
equivalent points in the lowest Brillouin zone (BZ). (Note that
while gauge-independent observables are completely insen-
sitive to a 2π gauge transformation, for the artificial gauge
field used here, the system observables are gauge dependent.)
The latter system is expected to exhibit a phase transition for
interacting bosons when tuning � across � = π [41–43].

In both field configurations, when the gauge-field quench
is applied to a BEC, the resulting sudden shift of the quasimo-
mentum of the equilibrium ground state leads to fast heating
followed by recondensation at the new band minima of the
effective Hamiltonian of the driven system. Such postquench
relaxation was recently proposed as an efficient mechanism
for preparation of Floquet-engineered states in a Hofstadter
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(a) (b) (c)

FIG. 1. Schematic of the real-space lattice geometry. (a) The two sublattices [A (blue) and B (red)] are offset in energy by h̄�. The
principle lattice vectors are a1 and a2, where |aα| = λ/

√
2. (λ is the wavelength of the lattice beams.) The reciprocal lattice vectors, defined by

aα · bβ = 2πδαβ , have magnitude |bα| ≡ kL , where kL = √
2kR and kR = 2π/λ. The A sites of the lattice have creation-annihilation operators

a†
i /ai, where i is a two-dimensonal index spanning the lattice. The four nearest neighbors of each A site living on the B sublattice have associated

operators b†
i,μ/bi,μ (μ = {1, 2, 3, 4}). The relative position between the ith A site and the four {i, μ} B sites are d δ̂μ, where d = λ/2. The angles

between the x axis and δ̂μ are φμ = π/4, 3π/4, 5π/4, 7π/4. Static tunneling processes up to order J2 are indicated: (1) nearest-neighbor
coupling with strength J , which is suppressed by the offset �; (2) resonant second-order tunneling to next-nearest neighbors on the same
sublattice, which scale as ∼J2/�; (3) direct next-nearest-neighbor tunneling processes (inherent to the static lattice) with strengths Ja and Jb

that scale as ∼J2/ER. (b) Effective gauge field model: periodic drive restores tunneling between sublattices, with complex tunnel coefficients
Jn(αAμ)e−inϕμ along δ̂μ (see Appendix A 1). The phase factors acquired when traversing a plaquette clockwise, including the sign associated
with the tunneling direction relative to δ̂μ, are indicated. Near-resonant driving, � � nω, results in an effective two band system that exhibits
a staggered-nπ flux. (c) Elliptical drive trajectory shown for a fixed φ0 = π/2.

band [44]. Finally, using the ability to continuously change
the staggered flux around π , we observe relaxation between
the two inequivalent minima of the π flux model.

II. STAGGERED FLUX MODEL

A. Ideal tight-binding model

We consider bosons on a 2D checkerboard lattice subject
to a time-periodic elliptical displacement of the lattice with
period T (Fig. 1). The lowest-order effective Hamiltonian
for this system is a two-band, tight-binding staggered �-flux
model, where β = �/4 is a continuous, variable phase picked
up when tunneling along one leg of a square plaquette in the
lattice (see Appendix A 1). As we will emphasize below, an
accurate model requires inclusion of higher-order coupling
to additional bands beyond this low-order tight-binding pic-
ture, but we start by considering this simple model. Written
in terms of the “spoke” numbering (see Fig. 1), the simple
effective Hamiltonian for the driven system has the form

H = − J
∑

i

(einβa†
i bi,1 + e−i(nβ−π )a†

i bi,2

+ ei(nβ+π )a†
i bi,3 + e−inβa†

i bi,4 + H.c.) − δna†
i ai, (1)

where J is the nearest-neighbor tunneling matrix element, � is
the staggered offset, and δn = � − nω is the (small) detuning
from the nth-order resonance, i is a two-dimensional index
spanning the lattice, and bi,μ, μ = {1, 2, 3, 4}, act on the four
B sites tunnel coupled to the site ai along directions δ̂μ. Here,
we consider n = 1 (ω � �) and n = 2 (ω � �/2). Given the
geometry of neighboring plaquettes, the flux pattern is stag-
gered, since tunneling in an opposite direction is associated
with complex conjugation, negating the acquired phase.

In momentum space, the ideal case band structure for
Eq. (1) with δn = 0 is given by [29]

ε± = ±JJn(α)|Gn(q)|, (2)

where Jn is the nth-order Bessel function, α is the normalized
drive strength (proportional to the magnitude of the driving
force), and Gn(q) are q-dependent functions that arise in the
tight-binding calculation of the Floquet effective Hamiltonian
(see Appendix A 1.) The band structure depends on the order
n of the resonance: a staggered-2π case has a single minimum
at the point qmin = M = 1

2 (±b1 ± b2); see Fig. 2(a). This
band is equivalent to the zero flux case, Fig. 2(e), up to a
gauge transformation that translates q′ → q + 1

2 (±b1 ± b2).
While the low-energy physics confined to the driven lattice
is gauge independent [45], the underlying gauge is exper-
imentally accessible for synthetic magnetic fields and the
gauge has physical significance for measurements that access
high-energy states, such as suddenly turning off the lattice to
project the state onto the free particle basis. In particular, a
sudden shift in the band minimum from q = (0, 0) ≡ � to
point M will cause heating and require rethermalization to re-
lax to the new, shifted ground state. Additionally, the physical
gauge is observable in time-of-flight momentum measure-
ments after projecting onto free particle states by suddenly
turning off the drive.

For the staggered-π case, the ground band has two minima
at inequivalent points in the BZ of the staggered lattice defined
by b1,2 [see Fig. 2(c)], which are degenerate at � = π . (The
staggered lattice BZ is 1/

√
2 smaller and rotated by π/4

relative to the BZ associated with square, unstaggered lattice
of spacing d = λ/2. The square lattice BZ corresponds to the
second BZ of the staggered lattice.) The twofold degener-
acy persists in the presence of interactions and is indicative
of nonzero (staggered) π flux [13,42,46]. We note that, in
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FIG. 2. Effective Floquet band structure. Left column: lowest-
order tight-binding Floquet band structure for nπ staggered flux;
right column: more accurate Floquet band structure, under the same
conditions as the left column. The extended calculations include
contributions at second order in tunneling, ∝J2, as well as effects
from higher bands. (a), (b) The 2π case has a single ground-state
minimum at point M in the BZ, which, due to the periodic boundary
conditions, occurs at the equivalent point q = 1

2 (±b1 ± b2). The
2π band structure is simply related to the 0π case shown in (e),
(f) by a gauge transformation q′ → q + 1

2 (±b1 ± b2). (c), (d) The
π -staggered flux case has two inequivalent ground-state minima at
X+ and X−. In addition, the periodicity of the band doubles.

the tight-binding limit, the staggered-π flux is identical to
the uniform-π flux, which realizes a fully frustrated Bose-
Hubbard model [13,41,42]. In the gauge appropriate for our
experimental realization, the minima occur at qmin+ ≡ X+ =
± 1

2 b1 and qmin− ≡ X− = ± 1
2 b2. When δ1 = 0, there are two

inequivalent Dirac points (qDi, i = {1, 2}), at which the gap
to the second band (not shown in Fig. 2) closes linearly with
|q − qDi|. In the ideal case [Fig. 2(c)] both gaps close at δ1 =
0. With the more realistic model described below [Fig. 2(d)],
the Dirac points occur at different δ1 and a topological regime
occurs for a (small) range of parameters between the gap
closings [29].

The experimental focus of this paper is to study dynamics
following quenches between these effective field configura-
tions, which have different band minima.

B. Realistic lattice model

The dispersion given by Eq. (2) is only the lowest-order
approximation to the real driven lattice. There are several
important corrections missing from this model. First, the Flo-
quet treatment of Eq. (A 1) has higher-order corrections that
should be included to accurately describe the band structure.
Taking the high-frequency Floquet expansion to order (J2/ω)
gives rise to additional α-dependent terms that are second
order in the hopping. We note that although the lowest-order
dispersion, Eq. (2), vanishes in the limit that the drive strength
goes to zero, α → 0, the J2/ω � nJ2/� terms are nonzero at
α = 0. In particular, the lowest-order terms in α and J scale
as J1(α)J + J0(α)J2/ω � αJ + nJ2/�. These second-order
hopping terms are dominant at small α and must be included.

To be consistent, if we include Floquet terms to sec-
ond order in J , we should include the two-site hopping Ji j

which also scale as J2. This hopping is a direct process
inherent to the static lattice, whereby an atom tunnels two
sites to the next-nearest sites; see Fig. 1. These terms are
small, but nonzero, even in the case of a simple � = 0
square lattice. Normally ignored, they are the same order
of magnitude as the second-order Floquet hopping. Includ-
ing both the higher-order Floquet and two-site hopping
terms gives a two-band tight-binding dispersion ε±(q) =
ε±(q, α, ω, δn, J, Ja, Jb) that, in addition to J and ω, depends
on α, δn, and the two-site hopping parameters Ja and Jb. The
full expression for ε± is given in Appendix A 1 and several
examples are shown in Fig. 2.

The two-band tight-binding approximation including two-
site hopping does a good job of capturing the overall shape of
the Floquet bands at small drives. However, this model breaks
down at higher values of α, as a result of coupling to higher
bands not present in the two-band description. A full treatment
of the system can be performed in the extended basis, which
considers a larger number of lattice bands; see Appendix A 2.
The coupling to higher bands results in several effects. First,
off-resonant coupling to higher bands modifies the effective
tight-binding parameters, which must be accounted for in
order to correctly determine the parameters. In addition, the
coupling to higher bands breaks the symmetry between the
A and B sites: the B sites, which by definition are higher in
energy [Eq. (1)], are more strongly coupled to the excited
bands, which leads to larger micromotion, for example. More
consequentially, resonant n-photon coupling gives rise to dra-
matic shifts in the band shapes and direct excitation to higher
bands, making it challenging to adiabatically navigate through
parameter space, particularly near the resonant π -flux case,
� � ω.

These effects can be seen in Fig. 3, which shows the
extended basis calculation of the Floquet quasienergies as a
function of drive frequency, ω, at q = [�, M, X±], the three
different points within the BZ where the bands exhibit min-
ima. Figure 3(a) shows the lowest quasienergies in the full
extended system, where the boxes indicate the regions near
the ω, 2ω resonance conditions that are plotted in Fig. 3(b)
and Fig. 3(c). Zooming into the n = 1 resonance, Fig. 3(b),
one can see that the frequency at which the two bands cross
at q = � (black lines) is no longer equal to the α = 0 res-
onance condition (green dashed line), indicating a shift in
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(a)

(b) (c)

(d) (e)

FIG. 3. Extended basis calculation of the Floquet quasienergy
spectrum vs drive frequency ω/2π , shown for q = � (black), q = M
(red), and q = X (blue) at α = 2.0; see Appendix A 2. Thin transpar-
ent lines indicate the extended basis calculation and thick solid lines
indicate a tight-binding fit. The inset in (a) shows the lowest two
BZs of the staggered lattice, where the labeled points match the lines
shown in (a), (d), and (e). Panels (b) and (d) show the spectra zoomed
into the black rectangular regions in (a). The green dashed lines
indicate the line � − ω. Panels (c) and (e) show the resulting bands
along the symmetry line (�-M-X-�) at a fixed frequency for the full
matrix calculation (black) and the tight-binding approximation (red).
The green arrows in (a) indicate the load conditions in Fig. 4.

the tight-binding δ1. In addition, avoided band crossings are
evident for all three q in the BZ. Figure 3(c) shows the
band structure calculated near resonance (black curve) as well
as the tight-binding fit (red curve). We find that there are
many higher-order avoided-crossing couplings for the n = 1
resonance, which result in significant heating when loading
the condensate into the Floquet lattice. There are regions in
parameter space below resonance, however, that do not have
strong higher band coupling and yet still have band minima
at the staggered π -flux condition q = X±. These regions that
produce well-isolated bands with minimal coupling are ex-
plored in Fig. 4.

III. EXPERIMENT

Our experiment begins with a 87Rb BEC of approxi-
mately 3 × 104 atoms in the |F = 1, mF = −1〉 state held
in a crossed optical dipole trap. A 2D checkerboard lat-
tice [47,48] with λ = 813 nm was adiabatically turned on

(a) (b) (c)

(d) (e) (f)

FIG. 4. Adiabatic loading of Floquet states. (a)–(c) Micro-
motion-averaged time-of-flight images of condensates loaded adia-
batically into the Floquet lattice at different drive frequencies (see
Appendix A 1). The first two BZs are indicated with black lines. In
all cases, the states were prepared by ramping on the shaking in 12
ms at fixed frequency to a final drive strength α = 2. The frequencies
are (a) ω/2π = 2.0 kHz � �/2, (b) ω/2π = 2.5 kHz � �/2, and
(c) �/2 < ω/2π = 3.5 kHz < �. The given frequencies are indi-
cated in Fig. 3(a) by the green arrows. For ω/2π = 2.0 kHz � �/2,
corresponding to a staggered 2π effective B field, the BEC condenses
at the single equivalent point, M = {±b1, ±b2}. For �/2 < ω/2π <

�, corresponding to staggered-π flux, the BEC condenses at the two
inequivalent points X+ = {0, ±b1} and X− = {±b1, 0}. (d)–(f) Cal-
culated band structure along the path �-M-X±-� of the two lowest
bands for the conditions in (a) and (b).

in 200 ms to the target depth, with a variable offset be-
tween neighboring sites. In our lattice, ER = h̄2k2

R/2m = h×
3.5 kHz is the single-photon recoil energy and kR = 2π/λ is
the single-photon wave vector (m is the mass of 87Rb). We
used lattice depths of �7 ER/h (= 24.5 kHz) and staggered
offsets �/h � 4 kHz to 5 kHz, for which the nearest-neighbor
tunneling strength is J � h × 120 Hz and the on-site in-
teraction energy at the center of the trap is approximately
U � h × 550 Hz. Two piezoactuated mirrors [49] allow us
to translate the lattice along an elliptical trajectory with
an amplitude (�3 μm) and frequency (�20 kHz): r(t )=
{�x sin (ωt − φ),�y cos (ωt − φ)}. As we discuss below,
the ellipticity of the trajectory determines the magnitude of
the staggered field. We adjust the phase of the drive relative
to the time origin of the experiment in order to measure and
mitigate micromotion effects.

A. Adiabatic loading

We first observe the condensation at finite momentum for
different effective flux patterns resulting from circular drive.
Starting with a BEC loaded at q = 0, we ramp on the drive
at a fixed frequency in 12 ms to a final drive strength α. The
12 ms turn on time was chosen to be long enough that there
was thermalization and no projection to higher bands and
short enough that there was minimal drive-induced heating
out of the condensate. Once the ramp is completed, the drive
is abruptly stopped and all confining potentials are turned off.
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We measure the momentum distribution through absorption
imaging after a 29 ms time of flight (TOF).

Figure 4 shows the condensate after a linear ramp of the
drive strength to α = 2 for three different frequencies. Mea-
surements were taken for circular drive (β = π/4) in a 7.2 ER

total final lattice depth, with a q = 0 gap between the two
lowest bands equal to h × 4.7 kHz. The presented images are
an average over individual images taken at different drive
phases, in order to average over the micromotion.

The distinct change in the condensation quasimomentum
at different circular drive frequencies results from the discrete
change in effective flux from 2π to π . Below the n = 2
resonance, the cloud relaxes into a condensate at the single
minimum associated with the staggered 2π flux in our system.
This can be seen in the TOF image in Fig. 4(a), where the con-
densate in the single minimum is projected onto the four free
particle momenta 1

2 (±b1 ± b2) before the TOF measurement.
Below the n = 1 resonance, we observed condensation at

the two inequivalent minima associated with the staggered π

flux at X+ and X−, as shown in Fig. 4(c). The noninteracting
single-particle states at the band minima, ψ+ and ψ−, are
degenerate and any superposition of them breaks the trans-
lational symmetry of the Hamiltonian [42]. We discuss these
degenerate band minima and the phase transitions expected
when varying the system between ground states preferring one
of the two minima below.

At intermediate driving frequency the atoms fill the band,
which coincides with the regime where the band’s mini-
mum at q = � becomes energetically equal to the two-band
minima at q = X± resulting in a flatter band. In addition,
there are intersecting higher bands that can cause heating
[see Fig. 4(e)].

For the ideal case band structure [Eq. (2)], the band minima
associated with the staggered flux appear for any nonzero
drive α. As noted above, at small α the second-order terms
are dominant and one needs a sufficient drive to make the flux
terms dominant. At a given frequency, the band minimum will
therefore depend on the drive strength. For the 2π staggered
flux, which has an ideal-case minimum at M, there is a region
in low α where E (�) < E (M). We observe this change in
minima with drive frequency in Fig. 5, where we adiabatically
load at ω = 2 kHz to a given drive α in 12 ms and measure a
visibility between the populations at q = � and q = M. We
find the visibility between the q points varies with α as the
calculated energy difference of the two minimum switches
sign.

B. Tuning across � = π

Cold-atom systems with two or more degenerate dis-
persion minima have been studied in 1D [4] and 2D
[1,2,13,39,40,45,50,51] lattice systems. For weakly interact-
ing Bose particles, a magneticlike phase transition is expected
when varying system parameters such that the dispersion
degeneracy is crossed [42,43]. The nature of the transition
depends on whether the two phases on either side of � = π

are miscible or tend to phase separate [4,45]. Tuning the
effective interactions from repulsive to attractive changes the
nature of the phase transition from a Z2 transition with a phase
separated state at the transition to one in which the magnetic

FIG. 5. Visibility between q = � and q = M for condensates
loaded into the Floquet bands at a final α, for a drive frequency below
the n = 2 resonance. The blue points represent the measured visibil-
ity between the two q points, V = (N� − NM )/(N� + NM ). The red
curve indicates the energy difference, E (M) − E (�) vs α, obtained
through the extended basis calculations, showing that the inversion
of band minima is dependent on both ω and the drive strength.

states are separated by a miscible phase with second-order
transitions to the magnetic phases [45].

In 2D spin-orbit coupled experiments without a lattice
[52], for example, the single-particle Hamiltonian was tuned
between two regimes with distinct single band minima, with
a transition between the regimes occurring when the two
minima were degenerate. The direct observation of the phase
transition associated with crossing the band degeneracy was
challenging in this case due to the effective conservation of
magnetization in cold atom systems, which resulted in long-
lived metastable states that did not relax toward the magnetic
ground state. (Exactly at the degeneracy point, however, a
miscible to immiscible phase transition was observed, which
results from the tuning of the effective dressed interactions as
spin-orbit coupling was turned on.)

Considering only single-particle states at the degenerate
band minima for the single effective band model, the state
space consists of two states, which we label ψ+ and ψ−. If
interactions are weak and do not significantly couple to other
states [42,43], the continuum of possible superposition states
can be written

ψ (σ, ξ ) = cos σ ψ+ + sin σ eiξ ψ−. (3)

The Z2 nature of the transition for repulsive interactions
means that of the continuum of states, ψ (σ, ξ ), two of these
ground states remain degenerate, ψ↑ and ψ↓. It was argued
in [41] that for a continuously variable flux �, the transition
point � = π is a first-order phase transition. One expects
large fluctuations in the measured populations |ψ↑|2 and |ψ↓|2
for systems prepared at the degenerate condition � = π . Such
large fluctuations were seen in both 1D [4] and 2D [1] double-
well dispersion systems. Depending on the physical gauge
in which the dispersion is realized, however, the observable
accessible by projecting the gauge-dressed state onto free
particle states (measured in TOF) may not be sensitive to
the difference between |ψ↑|2 and |ψ↓|2. Such insensitivity to
the difference of the two states was described in [42] and
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FIG. 6. Left panel: histogram of the fraction of the total pop-
ulation in X+ for different flux configurations across the � = π

boundary. Right panel: extended basis calculation of the energy
along a path containing the two minima at X+ and X−, for the
two extreme fluxes shown in the left panel. The total single-particle
energy difference between the ground state and the nonequilibrium
initially prepared state is ≈10 Hz. The inset indicates the path
chosen for the cross sections, showing the imbalance between the
two configurations, where the square indicates the boundary of the
second BZ.

experimentally confirmed in [50] for the Landau-like gauge.
( See Appendix B for a discussion of the differences between
the gauge used in Ref. [42] and the gauge we employ here.)

In our physical gauge, ψ↑ = ψ+ and ψ↓ = ψ− project onto
distinct plane-wave components, giving rise to distinguishable
expansion images. Based on the effective Floquet Hamilto-
nians described above (either the tight-binding model or the
extended basis model) one would expect to see significant
fluctuations of the measured populations |ψ |2 between |ψ+|2
and |ψ−|2 for � = π .

In order to study the fluctuations near � = π , we prepare
the condensate by ramping on the drive, as in Fig. 4(c), but
with a small, adjustable ellipticity in the trajectory (close to
circular). We control the effective gauge field by adjusting
the relative amplitudes of our two piezomirrors, which shifts
the trajectory from a strictly circular displacement and breaks
the symmetry between the X± points (see Appendix A 1).
We measured the relative populations after adiabatically
loading the atoms into the �π -flux lattice at different
ellipticities.

In Fig. 6, we show the distribution of relative X+/X−
populations for different fluxes. The data was obtained by
measuring the populations after an adiabatic turn on of the
drive and a sudden quench back to the static bands. We find
that, contrary to the expectation based on the effective Floquet
model (see Appendix B), the condensate consistently relaxed
into a state with well-defined relative population of X+ and
X−, with small fluctuations around the measured ratio. This
lack of fluctuations indicates that either some perturbation
not included in the model selects for equal populations in the
two minima or that thermal effects destroy the “spontaneous
symmetry breaking.” Both explanations are plausible, since
the single-particle energy scale differentiating X+ and X− is
quite small, indicating that interactions dominate the behavior
of the system. We observe that breaking the degeneracy by
only ±10 Hz shifts the mean population balance significantly
[see Fig. 6(b)]. In addition, while it is hard to determine
(or even define) an effective temperature in our short-lived

FIG. 7. BEC relaxation dynamics between the 0-flux and the
2π -flux configurations, at ω/2π = 2.3 kHz. After quenching on the
drive, the BEC, initially at q = �, quickly relaxes into q = M.
The plot shows the population in the q = M state (see Appendix C).
The data was taken at a fixed end phase. For reference, the in-
set shows a phase-averaged image of the cloud when adiabatically
loaded into the final 2π flux Floquet lattice. The dashed line is a fit
to a two exponential relaxation, with an initial fast relaxation time
of 2.1 ms and a longer decay time of 9.1 ms, where the longer time
scale is also associated with atom loss. The boundary of the second
BZ is indicated by the black lines in the representative fixed-phase
absorption images.

Floquet system, higher temperatures are expected to destroy
the spontaneous magnetization [2].

C. Prethermal relaxation

To observe the relaxation dynamics, we project the
undriven state of the condensate onto the Floquet basis Hamil-
tonian by abruptly turning on the drive. To ensure that we only
populate states that are adiabatically connected to the undriven
ground band, we ramp on the drive over a single period,
T , which minimizes excitation to higher bands. The drive is
then held for an integer number of periods, after which the
lattice is snapped off (in � 2 µs). Figure 7 shows the relaxation
dynamics as a function of hold time after abruptly turning
on the lattice, for the n = 2 case, with ω/2π = 2.3 kHz and
α = 2. Starting with a condensate at q = �, we see fast decay
of the condensate followed by recondensation at the q = M
band minimum, on a time scale of �2 ms. This time scale
is faster than the � 10 ms time scale of heating-induced loss
of population given by the second time constant determined in
the fit in Fig. 7. Interestingly, these time scales are comparable
to those observed in a similar band structure that was created
using a different, undriven approach where atoms were pre-
pared in higher bands of a static lattice [51].

In the near-resonant case of n = 1, significant heating is
observed and a single period quench near resonance results in
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FIG. 8. BEC relaxation dynamics between the 0 flux and the π

flux configurations, at ω/2π = 4 kHz, using the procedure described
in the text. We observe that the BEC initially at q = � quickly relaxes
into q = X±. The plot shows a measure of the population in the
q = X± state (see Appendix C) and the star indicates the q = X±
population of the state prior to the quench. The data was taken
for fixed end phase. The dashed line is a fit to a two exponential
relaxation, with an initial fast relaxation time of 2.1 ms and a longer
decay time of 10.6 ms, where the longer time scale is also associated
with atom loss. The boundary of the second BZ is indicated by the
black lines in the representative phase-averaged absorption images.

a thermal cloud that fails to relax into the new band minima.
To mitigate the heating during the quench from qmin = � to
qmin = X , we initially ramped up the drive to α = 2 over a
period of 3 ms at a higher detuning of ω = 3.5 kHz, where
the heating was less severe. We then swept the frequency to
4 kHz in 250 μs to quench to the near resonance condition.
The relaxation dynamics for these conditions are shown in
Fig. 8, where the insets show sample images that are phase
averaged to display all four minima. We observe relaxation
into qmin = X on similar time scales as the qmin = M case.
Remarkably, despite the high drive strengths, where one might
expect strong heating, we find the condensate relaxes to the
time-dependent Floquet eigenstate corresponding to the effec-
tive Hamiltonian ground state.

As previously discussed, the symmetry of the drive can be
broken by shaking the lattice along an elliptical trajectory,
removing the degeneracy of the bands at q = X±. We study
the relaxation dynamics of atoms loaded into ψ+ at X+ while
driving at one ellipticity and suddenly changing the drive to a
different ellipticity for which the minimum state ψ− is at X−.
This results in a small change in effective flux �, resulting in
a small difference in the band structure at X±: we calculate
(using the full extended basis) that the single-particle energy
difference between the two configurations is �10 Hz.

We observe relaxation between minima by loading atoms
into one configuration’s minimum and then quenching to the
other X point’s minimum. The resulting prethermal relaxation

FIG. 9. Relaxation dynamics between band minima after a sud-
den, small change in the ellipticity of the drive, at a drive strength of
α = 1.5 and ω/2π = 4 kHz. The shaking is ramped on such that the
atoms condense into one minima. The drive is then quenched such
that the opposite point has lower energy. We measure the relative
visibility between the two points as a function of time after the
quench and note the relaxation from one to the other. The boundary
of the second BZ is indicated by the black lines in the representative
phase-averaged absorption images.

is shown in Fig. 9, where we observe relaxation to the new
condensation point on a short time scale, similar to the 2
ms observed for the other nπ quenches shown in Fig. 7.
This time scale is consistent with the interaction energy driv-
ing the recondensation shown in Figs. 7 and 8, but much
faster than the time scale associated with the <10 Hz single-
particle energy difference between the two configurations (see
Fig. 6). We also note that the relaxation is much faster than in
magnetization-conserving spin-orbit coupled systems.

IV. CONCLUSION

In this work, we Floquet engineered an effective Hamil-
tonian with an adjustable staggered gauge field, which we
tune near nπ for n = 1 and n = 2. The gauge field arises
in the lowest-order tight-binding Hamiltonian describing the
system, although the lowest-order Hamiltonian is inadequate
to describe the parameter regimes that avoid heating. A tight-
binding model that includes higher-order tunneling processes
is more accurate, but capturing the possible heating due to
resonances requires a full extended-basis Floquet calcula-
tion. By using these more realistic models, we identified
parameters where an effective gauge field is realized and
we experimentally observe interaction-induced equilibration
to be faster than the Floquet-induced heating. Thermaliza-
tion and recondensation of atoms into the gauge-dependent
low-energy states was studied, as well as the fluctuations of
populations loaded under different flux conditions. Our results
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indicate that relaxation within the interacting Floquet basis
for our system is possible. It is not clear if the temperatures
and densities can be made low enough to realize the highly
correlated states expected in this system, but our observations
of relaxation from highly nonequilibrium states represent an
important step towards using Floquet engineering to realize
highly correlated states.
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APPENDIX A: FLOQUET TREATMENT OF OPTICAL
LATTICES

In the Floquet treatment of periodically driven systems, the
quasienergy spectrum exhibits a Brillouin zone–like structure
[53], where pseudoeigenenergies εn are defined up to modulo
the drive frequency, ω = 2π/T . This energy folding results
in a large number of (time-dependent) Floquet states within
a given range of εn. However, for finite drive strength only
a subset of these states are significantly coupled by the drive
or the interactions and the driven system can frequently be
treated by considering a subset of all the states. The particular
set of states used to describe the system depends on the initial
conditions and how the time-dependent Hamiltonian is turned
on. For an undriven initial state, one can use the extended
basis approach [54], which includes time-periodic states up to
a finite number of Fourier components of the drive frequency.
In principle, including a large enough Fourier basis provides
an accurate description of the Floquet spectrum.

For periodically driven lattices, one can, under the right
conditions, further restrict the noninteracting states to a
few-band, tight-binding picture. An accurate effective tight-
binding description allows for making direct analogies with
well-known lattice models, such as the Harper-Hofstadter
model of a particle in a lattice with a magnetic field. (The
analogy is frequently imperfect, however, due to additional
terms in the tight-binding description that are not in the model
system.) More importantly, an accurate tight-binding model
indicates weak coupling to higher bands and we expect heat-
ing to be slow.

1. Tight-binding model

In this section, we derive the tight-binding effective Hamil-
tonians describing our driven checkerboard lattice. Using a
high-frequency Floquet expansion [29], we calculate the total
effective Hamiltonian up to second order in the tunneling
(which includes Floquet contributions up to first order in the
inverse drive frequency). We focus first on the lowest-order
term in the expansion (which we refer to as “first order” since
it is first order in the tunneling), as it is the term that gives rise
to the effective gauge fields responsible for the staggered flux.

Lattice geometry. The bare static lattice unit cell consists of
an A and B site, where the B sublattice is offset in energy from
the A sublattice by h̄� (see Fig. 1). The elementary lattice
vectors a1,2, the reciprocal lattice vectors b1,2, and the relative
positions d δ̂μ of the four nearest neighbors of a given site are

shown in Fig. 1. The unit cell is chosen such that bi is offset
from ai by d δ̂1.

First-order effective Hamiltonian. We start by considering
only nearest-neighbor tunneling, where the bare real-space
Hamiltonian is given by

H = −
∑
i∈A

4∑
μ=1

J (a†
i bi+μ + aib

†
i+μ) − �a†

i ai. (A1)

The i sum is a 2D sum over unit cells in the lattice, J is the
nearest-neighbor tunneling strength, � is the staggered energy
offset of the B sites, and bi+μ are the lowering operators for
the four B sites that are tunnel coupled to the ith A site along
the directions δ̂μ (μ = {1, 2, 3, 4}; see Fig. 1).

We consider periodic shaking of the lattice in an elliptical
pattern, with inertial force

F(t ) = −F [x̂ cos β cos ωt + ŷ sin β cos (ωt + φ0)]. (A2)

Here ω = 2π/T is the radial drive frequency and F is the
magnitude of the inertial force due to shaking. The parameters
β and φ0 determine the trajectory of the shaking force in
the 2D plane, with β = π/4 and φ0 = π/2 corresponding
to circular displacement. The driving adds a time-dependent
term to H , given by

V (t ) = −
∑

i

F(t ) · (ria
†
i ai + (ri + d δ̂1)b†

i bi ). (A3)

The periodic driving term in H + V (t ) can be removed by a
time-dependent unitary transformation into a basis that com-
pensates for V (t ) and shifts the staggered offset � by nω [29].
The transformation induces time-dependent tunneling con-
stants with different phase lags for the four different tunneling
parameters Jμ(t ) associated with tunneling from a given site
i to its four nearest neighbors on the other sublattice. The
resulting kinetic Hamiltonian has time-dependent tunneling
parameters and a shifted sublattice offset of δn = � − nω,

H (t ) =
∑
i∈A

⎡
⎣ 4∑

μ=1

(Jμ(t )a†
i bi+μ + H.c.) − δn(a†

i ai )

⎤
⎦, (A4)

where

Jμ(t ) = −J ei�μ(t )−inωt . (A5)

In Eq. (A 1), we have also shifted the overall energy by δn/2.
The time-dependent tunneling phases �μ(t ) are deter-

mined from the force F(t ) by time integrating the difference
F · �ri = F · δ̂μd between each pair of neighboring sites,

�μ(t ) = −1

h̄

∫ t

0
F(t ′) · d δ̂μdt ′

= α[cos φμ cos β sin ωt + sin φμ sin β sin(ωt + φ0)].
(A6)

The angles φμ = {π
4 , 3π

4 , 5π
4 , 7π

4 } are determined by the geom-
etry of the lattice, x̂ · δ̂μ = cos φμ and ŷ · δ̂μ = sin φμ, and the
unitless drive strength is α = Fd/h̄ω. Simplifying Eq. (A6)
gives

�μ(t ) = αAμ sin (ωt − ϕμ), (A7)
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where the amplitudes Aμ(β, φ0) and phases ϕμ(β, φ0) of the
tunneling modulation depend on the parameters (β, φ0) gov-
erning the trajectory. Using the Jacobi-Anger expansion, we
can expand Jμ(t ) in Fourier components

Jμ(t ) = − J eiαAμ sin (ωt−ϕμ )−inωt

= − J
∞∑

s=−∞
Jn+s(αAμ)e−i(n+s)ϕμeist . (A8)

Using this expansion for Jμ(t ), H (t ) can similarly be ex-
panded in Fourier components

H (t ) =
∞∑

s=−∞
H̃se

isωt , (A9)

where

H̃s = − J
∑
i∈A

4∑
μ=1

(Jn+s(αAμ)e−i(n+s)ϕμa†
i bi+μ

+ Jn−s(αAμ)ei(n−s)ϕμaib
†
i+μ). (A10)

For the rest of the discussion of the lowest-order effec-
tive Hamiltonian, we will temporarily ignore the offset term
(δn/2)(b†

i bi − a†
i ai ).

Deriving the momentum space effective Floquet Hamil-
tonian from here can proceed in two ways: one can Fourier
transform the real-space Hamiltonian (A 1) into the mo-
mentum basis and then perform the high-frequency Floquet
expansion or one can perform the high-frequency expansion
in real space first and then Fourier transform the result. While
the former is more efficient, the latter leads to expressions for
the effective Hamiltonian in real space from which the Peierls
phases of the effective gauge field are easy to read out.

The first order (in J) term in the Floquet expansion of (A 1)
is just the average of H (t ), which gives H [1](r) = H̃0:

H [1](r) = −J
∑
i∈A

4∑
μ=1

(Jn(αAμ)e−inϕμa†
i bi+μ + H.c.).

(A11)

The effective staggered flux � is given by the sum of the
Peierls phases nϕμ around a square plaquette, keeping track
of the sign changes when traversing opposite to the directed
tunneling, aib

†
i+μ vs a†

i bi+μ:

� = ± n
4∑

j=1

(−1) jϕ j

= ∓ n(ϕ1 − ϕ2 + ϕ3 − ϕ4). (A12)

Values of Aμ, ϕμ, and � are given in Table I for some example
trajectories. For an elliptical trajectory with major axis aligned
along x̂ or ŷ, the staggered flux is continuously variable, � =
±4nβ. In particular, for β � π/4 in the n = 1 resonant case,
the flux can be tuned across the transition at � = π [41,42].

We can easily identify the Peierls phases by rearranging
the terms in Eq. (A11) from a “spoke” numbering, where
tunneling to each of four B sites are counted for every A
site, to a “plaquette” accounting, where tunneling along the
four bonds of a square are counted for each plaquette, and

TABLE I. Example values of Aμ, ϕμ, and � for different tra-
jectories: (a) an elliptical trajectory with major axis aligned along
x̂ (β < π/4) or ŷ (β > π/4); (b) an elliptical trajectory with major
axis aligned along x̂ + ŷ; (c) a linear trajectory along a line making
an angle β with respect to x̂. It is useful to note that cos φμ =
{1, −1, −1, 1}/√2 and tan φμ = {1, −1, 1, −1}.

Elliptical x̂, ŷ Elliptical x̂ + ŷ Linear at angle β

0 < β < π/2 β = π/4 0 < β < π/2
φ0 = π/2 0 < φ0 < π/2 φ0 = 0

Aμ cos φμ

√
1
2 (1 + tan φμ cos φ0) cos (β − φμ)

ϕμ β tan φμ φμ − π/4 + φ0/2 0
� ±4nβ nπ 0

writing out the Hamiltonian explicitly for the elliptical drive
case gives

H [1](r) = − J

2

∑
P j

(e−inβa j1b†
j1 + e−in(β−π )a†

j2b j1

+ e−in(β+π )a j2b†
j2 + e−inβa†

j1b j2 + H.c.). (A13)

Equation (A13) is the Peierls substitution expression for par-
ticles on a square lattice with staggered � = 4nβ flux. (The
factor of 1/2 accounts for overcounting, since the sum is over
all plaquettes.)

When dealing with the Fourier transforms of H , it is con-
venient to define a set of functions,

Gs(q, αAμ, ϕμ) =
4∑

μ=1

Js(αAμ)e−iq·(δ̂μ−δ̂1 )−isϕμ, (A14)

which capture the momentum dependence of the different
Fourier transformed terms in the Hamiltonian.

Fourier transforming H [1](r) [Eq. (A11)] gives the first-
order Hamiltonian in momentum space, which is diagonal in
q: H [1](q) = ∑

q(h1a†
qbq + H.c.),

h1 = −JGn(q, αAμ, ϕμ) (A15)

for the near resonant condition ω � �/n, with n = 1 or 2.
For each q in momentum space, h1 couples the two states
corresponding to the A band and B band.

Second-order effective Hamiltonian. As noted in the main
text, in the limit α → 0, the first-order tunneling vanishes as
Jα, while the remaining lowest-order terms scale as J2 and are
nonzero and should therefore be included. The second-order
term in the high-frequency Floquet expansion is given by

H [2] = 1

h̄ω

∞∑
s=1

1

s
[Hs, H−s]. (A16)

Evaluating Eq. (A16) in momentum space gives an effective
Hamiltonian at this order that is also diagonal in q, H [2](q) =∑

q h2(b†
qbq − a†

qaq), where

h2 = J2

h̄ω

∑
s

1

s
(|Gn−s(q, αAμ, ϕμ)|2 − |Gn+s(q, αAμ, ϕμ)|2).

(A17)
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Next-nearest-neighbor tunneling Hamiltonian. To be con-
sistent, we also include next-nearest-neighbor tunneling, since
it scales as J2/ER. These are direct tunneling terms that in-
volve tunneling confined to the same sublattice and depend
on additional tight-binding parameters Ja and Jb. In addition,
these terms are affected by the modulation at strength 2α:

Hab(r) = J0(2α)
∑
i∈A,B

4∑
μ=1

(Jaa†
i ai+2μ + Jbb†

i bi+2μ), (A18)

where the sum over i includes both A and B sites and the
index (i + 2μ) indicates the next-nearest lattice site located
at 2δ̂μ relative to site A or B on site i. Hab is also diagonal in
momentum space, Hab(q) = ∑

q hab(Jaa†
qaq + Jbb†

qbq), with

hab = e−iq·(a1+a2 )G0(2q, 2α, 0). (A19)

Combining all these terms together, we have H = ∑
q Hq,

where

Hq = (h1a†
qbq + H.c.) + h2(a†

qaq − b†
qbq)

+ hab(Jaa†
qaq + Jbb†

qbq). (A20)

In the (aq, bq) basis, the tight-binding Hamiltonian to sec-
ond order in J2 can be written

Hq =
(−h2 − Jahab h∗

1
h1 δn − Jbhab + h2

)
. (A21)

The band structure is obtained by diagonalizing this matrix
and the energy spectrum is given by

ε±(q) = 1

2
[δn − hab(Ja + Jb)

±
√

4|h1|2 + [δn + 2h2 + hab(Ja − Jb)]2]. (A22)

2. Extended matrix–full calculation

The periodically driven system can also be treated in the
Floquet-Shirley picture, where an extended Hilbert space is
introduced. For the details of the approach, we refer the reader
to the literature [54–56] and provide here only a brief outline
of the calculation. The extended Hilbert space used in this
approach is the product of the Hilbert space of the lattice
functions and time periodic functions, namely

ψnm = eimωt un, (A23)

where un = un(q) are the states of the undriven lattice
(Bloch states) at a given q. The spectrum in this picture
is determined by the eigenvalues of the “quasimomentum”
operator Q̂ ≡ H (t ) − ih̄∂t . For our shaken lattice system, the
time-dependent Hamiltonian can be expressed in the frame
co-moving with the lattice as

H = |p|2
2m

+ Vlat(x, y) − ω[�x cos(ωt )px

+ �y cos(ωt + φ)py]. (A24)

Our single drive frequency results in the matrix element,
H±1 = α(px + py), which we numerically calculate. The

quasimomentum operator can be expressed as a block-
diagonal matrix with matrix elements

〈n′, m′|Q̂|n, m〉 = 〈n′|Hm′−m|n〉 + δmm′δnn′mh̄ω, (A25)

where Hm are the Fourier components of H (t ), Hm =∫ T
0 eimωt H (t ). For the case of a single drive frequency, the only

contributions will arise from m′ − m = 1, which is H±1. The
first term in Eq. (A25) couples two static lattice bands, n, n′
by the H±1 component. The second contribution represents
the static Hamiltonian H0, offset by integer multiples of the
drive frequency.

We numerically calculate the extended basis, which re-
quires truncating the number of Floquet blocks (m), such
that there are 2 ∗ m + 1 blocks in the full extended picture.
The energies reported are taken to be the eigenvalues of the
operator Q̂.

We note that, for a multiphoton resonance, since there is
no direct 2ω component (H±2 = 0 as defined above), the cou-
pling at resonance comes from an intermediate state and not a
direct coupling [57]. In numerically calculating the extended
basis picture, if the number of Bloch states are truncated, we
find that to recover the tight-binding behavior requires four
Bloch states.

APPENDIX B: IMPACT OF GAUGE ON MEASUREMENTS

In order to elucidate the role that a particular experimental
gauge plays in the measurements, we consider explicitly two
realizations of the ideal, tight-binding model of the same
staggered-π flux system: one described by the Hamiltonian
in the staggered “symmetric” gauge given here in Eq. (1)
and the other in the staggered “Landau” gauge described by
Eq. 5 in Ref. [42], based on the proposal in [58]. These two
Hamiltonians describe the same “low-energy” physics (up to
a rotation and scaling of the spatial basis), where low energy
means that any dynamics imposed on the system during a
measurement does not excite the atoms outside of the tight-
binding basis associated with the lowest dressed band. Under
this assumption, the physics of the systems, i.e., the energy
spectrum, transport, and response functions, will be identi-
cal. For synthetic gauge fields, this assumption can be easily
violated, for example, by suddenly turning off the optical
lattice, which projects the states onto a range of excited states
outside the ground band. The resulting measurement can then
be sensitive to the particular experimental realization of the
gauge.

Focusing on the single-particle ground states (ignoring in-
teractions), the systems are diagonal in crystal momentum q.
If there are no degeneracies in the spectrum, then the ground
states in the different gauges are simply related by an overall
phase. If the ground state is degenerate, however, the single-
particle wave function can be an arbitrary superposition of
the two degenerate solutions, which can be parametrized as in
Eq. (3). The solution including mean-field interactions will be
the one that minimizes density variations from site to site. For
the symmetric gauge used here [Fig. 10(a)], the q-dependent
eigenstates are homogenous and both solutions minimize the
interaction. A superposition of the two states [Fig. 10(a)(iii)]
has large density modulations, which increases the interaction
energy. Conversely, for the Landau gauge [Fig. 10(b)], the
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FIG. 10. Gauge dependence of the wave functions. The tight-binding wave function for (a) the staggered symmetric gauge, driven on
resonance, (b) the staggered Landau gauge [42], and (c) the staggered symmetric gauge, driven off-resonantly. The Hamiltonian in both the
symmetric and Landau gauges is diagonal in momentum ψ = ψ (q), with identical spectra ε(q). The wave functions [shown in subfigures (i),
(ii), and (iii)], however, depend on the choice of gauge. The figures show representations of the ideal case tight-binding wave functions, with
the same color labeling as Fig. 1 [A (blue); B (red)]. The size of the circles represents the wave-function density at each lattice site, while the
arrow indicates the phase. (The Landau gauge implementation is not a checkerboard lattice and the color scheme has no significance for this
case; it is included for comparison to the symmetric gauge.) The contour plots in panels (iv) indicate the magnitude of the mean-field energy
Uint ∝ |ψ (σ, ξ )|4 as a function of the superposition of the two q-dependent eigenstates [main text Eq. (3)]. The labeled red points indicate
the particular superposition (σ, ξ ) associated with the panels on the left. Blue indicates lower energy. For the detuned symmetric case (c), the
energy difference between pure ψ+ [(σ, ξ ) = (π/2, 0)] and a superposition of ψ+ and ψ− [(σ, ξ ) = (π/2, π/4)] becomes small in the large
detuning limit.

two q-dependent eigenstates are inhomogeneous and have
large interaction energy. A particular superposition (σ, ξ ) =
(π/4, π/2) minimizes the energy by making the density ho-
mogeneous.

As discussed in the main text, in the symmetric gauge we
employ here, one would expect the states observed in TOF to
fluctuate between the two crystal momenta, which we do not
observe. We note that, in the large detuning limit in which we
work, the detuning results in a strong staggered density and
a particular superposition of the two states with (π/4, π/2)
does not cost too much energy. This small energy could
more easily be overcome by an interaction that breaks the
phase symmetry that would prefer the (σ, ξ ) = (π/4, π/2)
state.

APPENDIX C: DATA ANALYSIS

Time-averaged images, shown for example in Fig. 4, were
generated by averaging multiple images taken at different
snap-off times within the Floquet period, which gives differ-
ent end phases. Examples of “instantaneous” images of the
BEC in a driven lattice are given in Fig. 12 for several end
phases, which shows the extent of the micromotion in this
system.

In order to determine the crystal momentum populations
for the relaxation dynamics shown in Figs. 7– 9 of the main
text, we take multiple different slices, along either the vertical
or horizontal directions, where the width of the slice contains
the populations in the diffraction orders selected by the slice.

An example of a horizontal slice targeting the first vertical row
of diffraction peaks is shown in Fig. 11. The OD is averaged
over the width of the slice and the resulting 1D curve is fit to
the sum of Gaussians, one for each expected peak and then an
overall central thermal background. The fits have constrained
centers and widths, so that the extracted amplitudes are a good
estimate of the population. An example curve fit is shown for
a specific slice in Fig. 11, where we have a thermal Gaus-
sian and then four additional peaks. In order to analyze this
particular shot, there would be four horizontal slices taken,
corresponding to the different momentum states that appear
in the image. These slices would allow us to reconstruct the
total populations in X±.

FIG. 11. Left: sample image summed over end phases. The hor-
izontal black lines indicate the slice region as shown as in the right
panel. Right: mean slice optical depth of the left image showing an
example curve fit of a large central Gaussian and four condensate
peaks.
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FIG. 12. Micromotion example: TOF absorption images of the atom cloud after suddenly turning off the lattice at different end phases
of the drive, as indicated above each image. The micromotion consists of significant periodic modulation of the populations in the different
plane-wave components. The mean is scaled by 1.2 to compare on the same color scale.

APPENDIX D: MICROMOTION

Micromotion is the fast, periodic behavior of the state on
top of the slow dynamics associated with the effective (static)
Floquet Hamiltonian. Although micromotion is typically lim-
ited in real space, the actual time-dependent state has strongly
modulated occupation of different momentum components.
Figure 12 shows an example sequence of state projections

at different phases of the drive period but otherwise identical
conditions for the individual phase-averaged image shown in
Fig. 4(a). (In order to easily compare the fixed-phase and
phase-averaged images visually, here and throughout the pa-
per, we scale the time-averaged images so that the peak optical
depth of the average image matches the peak instantaneous
optical depth during one period of the instantaneous images
contributing to the time-averaged image.)
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