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Universal relations for dilute systems with two-body decays in reduced dimensions
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Physical systems in reduced dimensions exhibit intriguing properties. For instance, the dependences of
two-body and many-body physics on scattering lengths are distinct from their counterparts in three dimensions.
Whereas many studies of ultracold atoms and molecules in reduced dimensions have been focusing on closed
systems, two-body losses may occur in such systems. Here, we show that the two-body inelastic loss rate
in reduced dimensions can be expressed in universal relations that are governed by contacts. These universal
relations correlate the two-body decay rate with other physical observables at zero and finite temperatures and
generic interaction strengths. Our results will provide experimentalists with a new protocol to study inelastic
scatterings in both few- and many-body systems in reduced dimensions.

DOI: 10.1103/PhysRevA.109.063301

I. INTRODUCTION

Ultracold atoms have provided physicists with a highly
tunable platform to explore quantum few-body and many-
body systems in both three dimensions (3D) and reduced
dimensions [1–4]. In reduced dimensions, microscopic pa-
rameters control few-body and many-body physics in distinct
means. For instance, the dependence of phase shifts on en-
ergies in one dimension (1D) and two dimensions (2D) is
distinct from that in 3D [5,6]. Furthermore, in the celebrated
universal relations that underlie ultracold atoms and other
dilute quantum systems in arbitrary dimensions, the s-wave
scatterings enter these relations in terms of a0 and ln a0 in
1D and 2D, respectively, while universal relations in 3D often
include 1/a0 [7–29]. a0 is the s-wave scattering length. It is
thus an important task to find the counterparts of 3D universal
relations in reduced dimensions, which helps us to study how
contacts manifest themselves in reduced dimensions. In such
studies of universal relations, most works have been focusing
on systems with elastic scatterings. However, two-body losses
due to inelastic collisions may occur in realistic systems [30].
It is thus desirable to explore how inelastic scatterings may
change the universal relations or provide us with conceptually
new relations in 3D and reduced dimensions.

In addition to ultracold atoms, ultracold molecules have
also been well established as a powerful platform to study a
wide range of important topics in condensed matter physics,
atomic, molecular and optical physics, and chemical physics
[31–34]. One of the key issues emerged in experiments is the
inelastic loss of molecules [35–53]. For instance, two reactive
molecules can get close and react as AB + AB → A2 + B2,
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which leads to the loss of AB molecules [43,54]. Even in the
absence of reactions, the formation of complexes could also
lead to two-body decays [42,44,55–59]. Similar to atoms, ul-
tracold molecules can also be prepared in reduced dimensions
[60–66]. A recent pioneering experiment has made an attempt
to explore how the two-body decay may change with reducing
the dimension by increasing the transverse confinement [60].

In 3D, it has been recognized that universal relations ex-
ist in systems with two-body losses [67–69]. Such relations
directly correlate two-body decays with other many-body
properties such as the momentum distribution and the density-
density correlation function. Motivated by the importance of
studying ultracold atoms and ultracold molecules in reduced
dimensions, in this paper, we explore universal relations in 1D
and 2D systems when an arbitrary partial wave scattering is
inelastic. We show that the two-body inelastic loss rate can be
expressed as contacts multiplied by microscopic parameters
determined purely by two-body physics at short range, similar
to those obtained in 3D. As such, our results are valid at
zero and finite temperatures and generic interaction strengths
and will provide experimentalists a useful protocol to explore
two-body decays in a many-body environment in reduced
dimensions.

The rest of this paper is organized as follows. In Sec. II,
we provide a generic method of deriving the two-body in-
elastic loss rate, the momentum distribution, and the density
correlation function in d-dimensional (dD) systems, where
d = 1, 2, 3. In Sec. III, we consider single-component ultra-
cold reactive molecules in 1D and derive the exact relations
between contacts and physical quantities including the two-
body inelastic loss rate, the momentum distribution, and the
density correlation function. Similar discussions for 2D are
given in Sec. IV. Furthermore, we discuss the temperature
dependence of the loss rate in both the homogeneous systems
and the harmonic traps in Sec. V. We conclude our results in
Sec. VI.
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II. TWO-BODY INELASTIC LOSS RATE FOR REACTIVE
MOLECULES IN d DIMENSIONS

We consider a single-component system of N reactive
molecules. The Hamiltonian is written as

H =
N∑

i=1

[
− h̄2

2M
∇2

i + Vext (xi )

]
+

∑
i< j

U (xi j ), (1)

where M is the mass of each molecule and xi =
(x(1)

i , x(2)
i , . . . , x(d )

i ) is the coordinate of the ith molecule
in dD space. xi j = xi − x j = (x(1)

i j , x(2)
i j , . . . , x(d )

i j ). Vext (xi ) is
the external trap. U (xi j ) = UR(xi j ) + iUI(xi j ) is the complex
two-body short-range interaction, which captures the two-
body inelastic collisions and is nonzero only when |xi j | < r0.
UI(xi j ) is nonpositive and nonzero at an even shorter distance
characterized by r∗, |xi j | < r∗ < r0, where the chemical re-
action happens. The many-body wave function, which is an
eigenstate of the system, satisfies the Schrödinger equation

ih̄
∂

∂t
�(x1, x2, . . . , xN ) = H�(x1, x2, . . . , xN ). (2)

We consider a finite system, the net current of which vanishes
at large distance. The two-body inelastic loss rate is written as

∂N

∂t
= 4

h̄

∑
i< j

∫ N∏
i=1

dxiUI(xi − x j )|�(x1, x2, . . . , xN )|2, (3)

which is consistent with the second quantization form using
bosonic (fermionic) operators

∂N

∂t
= 2

h̄

∫
dx dx′UI(x − x′)〈�†(x)�†(x′)�(x′)�(x)〉, (4)

which can be derived from the Lindblad master equation [69].
It is clear that a length scale separation exists in ultracold

reactive molecules, i.e., the range of interaction r0 is much
shorter than the average interparticle distance characterized
by the inverse of the Fermi momentum kF while the reactive
collisions happen in an even shorter distance characterized
by r∗, r∗ < r0 � k−1

F . When the distance between any two
molecules is much shorter than the average interparticle dis-
tance, i.e., |xi j | � k−1

F , the possibility of a third molecule to
get close to these two molecules and interact together at short
distance is negligible. It is thus sufficient to consider only
the two-body effect. The many-body wave function has the
asymptotical behavior at short distance, which is stated as

�(x1, x2, . . . , xN )
|xi j |�k−1

F−−−−−→
∑
s,ε

ψs(xi j ; ε)Gs(Xi j ; E − ε),

(5)

where ε is the two-body collision energy and ψs(xi j ; ε) is the
two-body relative wave function which satisfies[

− h̄2

M
∇2

xi j
+ U (xi j )

]
ψs(xi j ; ε) = εψs(xi j ; ε). (6)

s is the angular momentum quantum number, which denotes
(l, m) for 3D and l for 1D and 2D. ∇2

xi j
= ∑d

n=1[∂2/∂ (x(n)
i j )2].

Xi j = {(xi + x j )/2, xk 	=i, j} denotes the center-of-mass coordi-
nate of the ith and the jth molecules and the coordinates of all
the other N − 2 molecules. Gs(Xi j ; E − ε) is the many-body

wave function, which characterizes the center-of-mass motion
of the ith and the jth molecules and the motions of all the
other N − 2 molecules.

Whereas Gs(Xi j ; E − ε) is usually very complex and hard
to know, ψs(xi j ; ε) has a universal asymptotic form when
r0 � |xi j | � k−1

F . ψs(xi j ; ε) = ϕs(|xi j |; ε)Ys(x̂i j ), where x̂i j =
xi j/|xi j | and Ys(x̂i j ) is the generalized spherical harmon-
ics in dD. Furthermore, ϕs(|xi j |; ε) can be expanded as
ϕs(|xi j |; ε) = ϕ(0)

s (|xi j |) + ϕ(1)
s (|xi j |)q2

ε + O(q4
ε ), where qε =

(Mε/h̄2)1/2. Equation (5) can then be written as

�(Xi j, xi j )
|xi j |�k−1

F−−−−−→
∑

s

[
ϕ(0)

s (|xi j |)g(0)
s (Xi j )

+ ϕ(1)
s (|xi j |)g(1)

s (Xi j )
]
Ys(x̂i j ), (7)

where g(m)
s (Xi j ) = ∑

ε q2m
ε Gs(Xi j ; E − ε). Starting from

Eq. (7) and the exact universal asymptotic form of ϕ(0)
s (|xi j |)

and ϕ(1)
s (|xi j |) at r0 � |xi j | � k−1

F , a number of universal
relations determined by contact C, a fundamental quantity in
dilute quantum systems, can be derived. C ∼ ∫

dXi jg(ν)∗
s g(ν ′ )

s′ .
In this paper, we will focus on the universal relations of the
two-body inelastic decay rate, the momentum distribution,
and the density correlation function.

Two-body inelastic loss rate. The two-body inelastic loss
rate can be obtained by solving Eq. (3). Starting from
Eqs. (5)–(7), the right-hand side of Eq. (3) can be obtained
by solving the following equation, which is

J [UI (xi j )|�(Xi j, xi j )|2]

= 1

2i
J

[
�∗(Xi j, xi j )

∑
s,ε

εGs(Xi j ; E − ε)ψs(xi j ; ε)

]

− 1

2i
J

[
�(Xi j, xi j )

∑
s,ε

ε∗G∗
s (Xi j ; E − ε)ψ∗

s (xi j ; ε)

]

+ 1

2i

h̄2

M
J

[
�∗(Xi j, xi j )∇2

xi j
�(Xi j, xi j )

− �(Xi j, xi j )∇2
xi j

�∗(Xi j, xi j )
]
, (8)

where J is the shorthand notation of the summation and
integral

∑
i< j

∫
dXi j

∫ r0

0 dxi j . The last term on the right-hand
side of Eq. (8) can be further rewritten as the surface integral:∑

i< j

∫
dXi j

∫ r0

0
dxi j

[
�∗(Xi j, xi j )∇2

xi j
�(Xi j, xi j )

− �(Xi j, xi j )∇2
xi j

�∗(Xi j, xi j )
]

=
∑
i< j

∫
dXi j

∮
|xi j |=r0

[�∗(Xi j, xi j )∇xi j �(Xi j, xi j )

− �(Xi j, xi j )∇xi j �
∗(Xi j, xi j )] · dS. (9)

One can use the mathematics given in the Appendix during the
calculation. By taking the explicit expressions of ϕ(0)

s (|xi j |)
and ϕ(1)

s (|xi j |) at r0 � |xi j | � k−1
F into Eq. (7) first, and bring-

ing Eq. (7) back to Eqs. (8) and (9) then, Eq. (8) can be
calculated explicitly. Finally, by taking Eq. (8) back to Eq. (3),
the explicit expression of Eq. (3) can be obtained.
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TABLE I. The low-energy expansion of phase shift ηl in different dimensions [70]. γ ≈ 0.577 is the Euler’s constant.

l One dimension Two dimensions Three dimensions

l = 0 qε tan η0 = 1
a0

π

2 cot η0 = ln
( qεa0

2 eγ
)

qε cot η0 = − 1
a0

+ re
0q2

ε

l = 1 qε cot η1 = − 1
a1

+ re
1q2

ε
π

2 q2
ε cot η1 − q2

ε ln
( qε r0

2 eγ−1/2
) = − 1

a1
+ re

1q2
ε q3

ε cot η1 = − 1
a1

+ re
1q2

ε

l > 1 π

2 q2l
ε cot ηl = − 1

al
+ re

l q2
ε q2l+1

ε cot ηl = − 1
al

+ re
l q2

ε

Momentum distribution. The momentum distribution can
be obtained by using the first quantization form

n(k) =
N∑

i=1

∫ ∏
j 	=i

dx j

∣∣∣∣
∫

dxi�(x1, x2, . . . , xN )e−ik·xi

∣∣∣∣
2

.

(10)

Density correlation function. The density correlation func-
tion can be obtained by using the definition

S(xi j ) =
∫

d
xi + x j

2
〈n(xi )n(x j )〉

= N (N − 1)
∫

dXi j |�(Xi j, xi j )|2. (11)

Near the Feshbach resonance of a certain partial-wave scat-
tering, contacts of this partial wave will be dominant. For
simplicity, we consider single-component molecules in a
single partial-wave scattering channel s in the following dis-
cussions. The generalization of these discussions to systems
with mixed partial-wave scatterings will be straightforward.

III. UNIVERSAL RELATIONS FOR REACTIVE
MOLECULES IN ONE DIMENSION

In this section, we consider single-component reactive
molecules in 1D. We need to clarify that by universal rela-
tions, we mean the relations between the two-body loss and
other quantities that can be expressed in terms of contacts and
microscopic parameters independent of the temperature and
the total particle number. As such, the meaning of universal is
different from the other context, where effects dependent only
on the scattering length are called universal and the effective
range and other beyond-scattering-length effects are dubbed
nonuniversal.

We label s = l , xi = zi, xi j = zi j , k = kz, and Xi j = Rz
i j

in the following discussions. The generalized spherical har-
monics in 1D is Yl (ẑi j ) = (zi j/|zi j |)l/

√
2. The two-body

wave function ψl (zi j ; ε) = ϕl (|zi j |; ε)Yl (ẑi j ) has the universal
asymptotic form when r0 � |zi j | � k−1

F , which is

ϕl (|zi j |; ε)
r0�|zi j |�k−1

F−−−−−−−−→ ql−1
ε

tan ηl

[
cos

(
qε |zi j | − lπ

2

)

− tan ηl sin

(
qε |zi j | − lπ

2

)]
, (12)

where ηl is the 1D lth partial-wave phase shift and can be
expanded under the low-energy limit qεr0 � 1, as shown in
Table I.

A. Even-wave scatterings with l = 0

We first consider the even-wave scatterings with l = 0. For
even-wave scatterings, it is sufficient to take the zero-energy
limit, i.e., we consider only the even-wave scattering length a0

and ϕ
(0)
0 (|zi j |). Based on Eq. (12), we obtain

ϕ
(0)
0 (|zi j |)

r0�|zi j |�k−1
F−−−−−−−−→ a0 − |zi j |. (13)

By taking Eq. (13) into Eq. (7) first, and then bringing Eq. (7)
back to Eqs. (3), (10), and (11), respectively, we obtain the
following universal relations.

Two-body inelastic loss rate. From the calculation of
Eq. (3), we obtain that

∂N

∂t
= − h̄

2M
Im(−a0)C(0)

1 , (14)

where C(0)
1 is the 1D even-wave contact defined in Table II.

Momentum distribution: From Eq. (10), we obtain that

n(kz )
kF�|kz |�r−1

0−−−−−−−−→ C(0)
1

|kz|4 |Y0(k̂z )|2. (15)

Density correlation function. From Eq. (11), we obtain

S(zi j )
r0�|zi j |�k−1

F−−−−−−−−→ 1
4 |a0|2C(0)

1 |Y0(ẑi j )|2. (16)

B. Odd-wave scatterings with l = 1

Next, we consider the odd-wave scatterings with l = 1.
Based on Eq. (12), we obtain

ϕ
(0)
1 (|zi j |)

r0�|zi j |�k−1
F−−−−−−−−→ 1 − |zi j |

a1
, (17)

ϕ
(1)
1 (|zi j |)

r0�|zi j |�k−1
F−−−−−−−−→ re

1|zi j | − |zi j |2
2

+ 1

a1

|zi j |3
6

, (18)

where a1 and re
1 are the 1D odd-wave scattering length and

effective range, respectively. By taking Eqs. (17) and (18)
into Eq. (7) first, and then bringing Eq. (7) back to Eqs. (3),
(10), and (11), respectively, we obtain the following universal
relations.
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TABLE II. The two-body inelastic loss rate in different dimensions. ϕ̃(0)
s (r) is a wave function obtained from extending the actual wave

function ϕ (0)
s (r) outside the potential (r > r0) into the regime r < r0. Ri j = (Rρ

i j, Rz
i j ).

One dimension (s = l) Two dimensions (s = l) Three dimensions [69] (s = lm)

∂t N − 2h̄
22M

∑3
ν=1 κνC (s)

ν − 2h̄
(2π )2M

∑3
ν=1 κνC (s)

ν − 2h̄
(4π )2M

∑3
ν=1 κνC (s)

ν

C (s)
1 22N (N − 1)

∫
dRz

i j

∣∣g(0)
s

∣∣2
(2π )2N (N − 1)

∫
dRρ

i j

∣∣g(0)
s

∣∣2
(4π )2N (N − 1)

∫
dRi j

∣∣g(0)
s

∣∣2

C (s)
2 2(22)N (N − 1)

∫
dRz

i jRe
(
g(0)∗

s g(1)
s

)
2(2π )2N (N − 1)

∫
dRρ

i jRe
(
g(0)∗

s g(1)
s

)
2(4π )2N (N − 1)

∫
dRi jRe

(
g(0)∗

s g(1)
s

)
C (s)

3 2(22)N (N − 1)
∫

dRz
i jIm

(
g(0)∗

s g(1)
s

)
2(2π )2N (N − 1)

∫
dRρ

i jIm
(
g(0)∗

s g(1)
s

)
2(4π )2N (N − 1)

∫
dRi jIm

(
g(0)∗

s g(1)
s

)
κ1 − M

h̄2

∫ ∞
0

∣∣ϕ (0)
s (r)

∣∣2
UI (r)dr − M

h̄2

∫ ∞
0

∣∣ϕ (0)
s (r)

∣∣2
UI (r)r dr − M

h̄2

∫ ∞
0

∣∣ϕ (0)
s (r)

∣∣2
UI (r)r2dr

κ2 − M
h̄2 Re

[ ∫ ∞
0 ϕ (0)∗

s (r)ϕ (1)
s (r)UI (r)dr

] − M
h̄2 Re

[ ∫ ∞
0 ϕ (0)∗

s (r)ϕ (1)
s (r)UI (r)r dr

] − M
h̄2 Re

[ ∫ ∞
0 ϕ (0)∗

s (r)ϕ (1)
s (r)UI (r)r2dr

]
κ3

M
h̄2 Im

[ ∫ ∞
0 ϕ (0)∗

s (r)ϕ (1)
s (r)UI (r)dr

]
M
h̄2 Im

[ ∫ ∞
0 ϕ (0)∗

s (r)ϕ (1)
s (r)UI (r)r dr

]
M
h̄2 Im

[ ∫ ∞
0 ϕ (0)∗

s (r)ϕ (1)
s (r)UI (r)r2dr

]
κ1 Im(−a0) Im[ln(1/a0)] Im(1/a0 )

κ1 Im(1/al>0 ) Im(1/a|l|>0) Im(1/al�0)

κ2 Im(−re
l>0/2) Im

( − re
|l|>0/2

)
Im

( − re
l�0/2

)
κ3

∫ r0
0

{[
Imϕ̃

(0)
l>0(r)

]2 − [
Imϕ

(0)
l>0(r)

]2}
dr

∫ r0
0

{[
Imϕ̃

(0)
|l|>0(r)

]2 − [
Imϕ

(0)
|l|>0(r)

]2}
r dr

∫ r0
0

{[
Imϕ̃ (0)

s (r)
]2 − [

Imϕ (0)
s (r)

]2}
r2dr

Two-body inelastic loss rate. As shown in Sec. II, to calcu-
late Eq. (3), we could calculate Eqs. (8) and (9) first. From the
calculation of Eq. (9), we have (see Appendix)

ϕ∗
1 (|zi j |; ε)

∂

∂|zi j |ϕ1(|zi j |; ε)

∣∣∣∣
|zi j |=r0

− ϕ1(|zi j |; ε)
∂

∂|zi j |ϕ
∗
1 (|zi j |; ε)

∣∣∣∣
|zi j |=r0

= − 1

a1
+ 1

a∗
1

+ re
1q2

ε − re∗
1

(
q2

ε

)∗

+
[

− r0 + r0

2

(
1

a1
+ 1

a∗
1

)
− r3

0

3

1

a1a∗
1

][
q2

ε − (
q2

ε

)∗]
+ O

(
q4

ε

)
.

By using a trick that the first term on the right-hand side of the
1D odd-wave effective range in Table III can be rewritten as

r0 = re
1 + re∗

1

2
+ r2

0

2

(
1

a1
+ 1

a∗
1

)
− r3

0

6

(
1

a2
1

+ 1

(a∗
1 )2

)

+ 1

2

∫ r0

0

{[
ϕ

(0)
1 (r)

]2 + [
ϕ

(0)∗
1 (r)

]2}
dr, (19)

one has

ϕ∗
1 (|zi j |; ε)

∂

∂|zi j |ϕ1(|zi j |; ε)

∣∣∣∣
|zi j |=r0

− ϕ1(|zi j |; ε)
∂

∂|zi j |ϕ
∗
1 (|zi j |; ε)

∣∣∣∣
|zi j |=r0

= − 1

a1
+ 1

a∗
1

+ 1

2

(
re

1 − re∗
1

)[
q2

ε + (
q2

ε

)∗]

− 2
∫ r0

0

{[
Imϕ̃

(0)
1 (r)

]2 +
[
ϕ

(0)
1 (r)

]2 + [
ϕ

(0)∗
1 (r)

]2

4

}
dr

× [
q2

ε − (
q2

ε

)∗] + O(q4
ε ),

where ϕ̃
(0)
1 (r) is obtained by extending the universal asymp-

totic form of ϕ
(0)
1 (r) in the range r0 � r � k−1

F into the
range r < r0, i.e., ϕ̃

(0)
1 (r) = 1 − r/a1. Following the proce-

dure given in Sec. II, Eq. (3) can be written as

∂N

∂t
= − h̄

2M

3∑
ν=1

κνC(1)
ν , (20)

where C(1)
ν are the 1D odd-wave contacts that fully cap-

ture the many-body physics and κν are the microscopic
parameters determined purely by the two-body short-range
physics. Both C(1)

ν and κν are defined in Table II. κ1 and

TABLE III. The effective range re
l in different dimensions [70].

Dimension l = 1 l > 1

1D re
1 = r0 − r2

0
1
a1

+ r3
0
3

1
a2

1
− ∫ r0

0

[
ϕ

(0)
1 (r)

]2
dr

2D re
1 = 1

2 − r2
0
2

1
a1

+ r4
0

16
1

a2
1

− ∫ r0
0

[
ϕ

(0)
1 (r)

]2
rdr re

l>1 = − (2l−2)!!(2l−4)!!
r2l−2
0

− r2
0

2l
1
al

+ r2l+2
0

(2l )!!(2l+2)!!
1

a2
l

− ∫ r0
0

[
ϕ

(0)
l (r)

]2
r dr

3D re
l�0 = − (2l−1)!!(2l−3)!!

r2l−1
0

− r2
0

2l+1
1
al

+ r2l+3
0

(2l+1)!!(2l+3)!!
1

a2
l

− ∫ r0
0

[
ϕ

(0)
l (r)

]2
r2dr
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κ2 can simply be expressed as Im(1/a1) and Im(−re
1/2),

respectively. κ3, however, is a new microscopic parameter
emerged in the system with inelastic losses. As shown in
Table II, the physical meaning of κ3 is the integration of
[Imϕ̃

(0)
1 (r)]2 subtracted by [Imϕ

(0)
1 (r)]2 with respect to r

from 0 to r0. We note that κ2 is the real part of the in-
tegral regarding ϕ(0)∗ϕ(1)UI , while κ3 is the imaginary part
of this integral. In general, the real and imaginary parts of
ϕ(0)∗ϕ(1)UI are independent functions. κ2 and κ3 are thus
independent parameters. Whereas it is possible to express
κ3 in terms of other microscopic parameters characterizing

the two-body interactions, here, we keep κ3 in the expression
of the universal relation since all these parameters, κ1,2,3, are
independent on the particle number and temperature. As such,
κ1,2,3 are measurable quantities.

Momentum distribution. From Eq. (10), we obtain that

n(kz )
kF�|kz |�r−1

0−−−−−−−−→ C(1)
1

|kz|2 |Y1(k̂z )|2. (21)

Density correlation function. From Eq. (11), we obtain

S(zi j )
r0�|zi j |�k−1

F−−−−−−−−→ 1

4

{
C(1)

1 +
[

Re
(
re

1

)
C(1)

2 − Re

(
2

a1

)
C(1)

1 − Im
(
re

1

)
C(1)

3

]
|zi j |

+
[

1

|a1|2 C(1)
1 − Re

(
1

2
+ re

1

a∗
1

)
C(1)

2 + Im

(
re

1

a∗
1

)
C(1)

3

]
|zi j |2

+
[

Re

(
2

a1

)
C(1)

2 + Im

(
1

a1

)
C(1)

3

] |zi j |3
3

− 1

|a1|2 C(1)
2

|zi j |4
6

}
|Y1(ẑi j )|2. (22)

By fitting the data of quantities such as the momentum
distribution and the density correlation function obtained
in experiment, all quantities in Eqs. (14) and (20) can be
measured.

For s-wave inelastic scatterings, only the leading term
determined by scattering length a0 is important in the low-
energy expansion of phase shift (See Table I). C(1)

1 alone
is enough to describe physics in such systems. Generally
speaking, for high-partial-wave scatterings with a generic
short-range interaction, other microscopic parameters like the
effective range are required in the low-energy expansion of
phase shift. The low-energy expansion of the wave function
needs to be kept up to the q2

ε term in Eq. (7). As such, all three
contacts C(1)

ν are required in the complete expressions of the
universal relations that apply to all parameter regimes. Nev-
ertheless, in certain parameter regimes, the terms including
C(1)

2 and C(1)
2 in Eq. (20) may be less important. For instance,

in weakly interacting systems when a1 → 0, the contribution
to the phase shift is dominated by the scattering length and
other microscopic parameters can be neglected. As such, the
universal relations are mainly governed by C(1)

1 , similar to the
original universal relations for s-wave scatterings. This could
simplify data analysis in experiments as fewer parameters are
required to fit the experimental results. This argument works
for 2D and 3D systems as well.

IV. UNIVERSAL RELATIONS FOR REACTIVE
MOLECULES IN TWO DIMENSIONS

We now consider single-component reactive molecules in
2D. We label s = l , xi = ρi, xi j = ρi j = (xi j, yi j ), and Xi j =
Rρ

i j in the following discussions. The generalized spher-

ical harmonics in 2D is Yl (ρ̂i j ) = [(xi j + iyi j )/ρi j]l/
√

2π ,
where ρi j = |ρi j |. The two-body wave function ψl (ρi j ; ε) =
ϕl (ρi j ; ε)Yl (ρ̂i j ) has the universal asymptotic form when r0 �

ρi j � k−1
F , which is

ϕl (ρi j ; ε)
r0�ρi j�k−1

F−−−−−−−−→ π

2

ql
ε

tan ηl
[Jl (qερi j )

− tan ηlNl (qερi j )], (23)

where Jl (Nl ) is the Bessel function of the first (second) kind
and ηl is the 2D lth partial-wave phase shift and can be
expanded under the low-energy limit qεr0 � 1, as shown in
Table I.

A. s-wave scatterings with l = 0

We first consider the s-wave scatterings with l = 0. For
s-wave scatterings, it is sufficient to take the zero-energy limit,
i.e., we consider only the s-wave scattering lengths a0 and
ϕ

(0)
0 (ρi j ). We obtain

ϕ
(0)
0 (ρi j )

r0�ρi j�k−1
F−−−−−−−−→ ln a0 − ln ρi j . (24)

By taking Eq. (24) into Eq. (7) first, and then bringing Eq. (7)
back to Eqs. (3), (10), and (11), respectively, we obtain the
following universal relations.

Two-body inelastic loss rate. From the calculation of
Eq. (3), we obtain that

∂N

∂t
= − h̄

2π2M
Im

(
ln

1

a0

)
C(0)

1 , (25)

where C(0)
1 is the 2D s-wave contact defined in Table II.

Momentum distribution. From Eq. (10), we obtain that

n(kρ )
kF�|kρ|�r−1

0−−−−−−−−→ C(0)
1

|kρ|4 |Y0(k̂ρ )|2. (26)
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Density correlation function. From Eq. (11), we obtain

S(ρi j )
r0�ρi j�k−1

F−−−−−−−−→ 1

(2π )2
| ln ρi j |2C(0)

1 |Y0(ρ̂i j )|2. (27)

B. High-partial-wave scatterings with l > 0

Next, we consider the high-partial-wave scatterings with
l > 0. From Eq. (23), we obtain

ϕ
(0)
l>0(ρi j )

r0�ρi j�k−1
F−−−−−−−−→ − 1

al

ρ l
i j

(2l )!!
+ (2l − 2)!!

ρ l
i j

, (28)

ϕ
(1)
l=1(ρi j )

r0�ρi j�k−1
F−−−−−−−−→ re

1
ρi j

2
− ln

(
ρi j

r0

)
ρi j

2
+ 1

a1

ρ3
i j

16
,

(29)

ϕ
(1)
l>1(ρi j )

r0�ρi j�k−1
F−−−−−−−−→ re

l

ρ l
i j

(2l )!!
+ 1

al

ρ l+2
i j

2(2l + 2)!!

+ (2l − 4)!!

2

1

ρ l−2
i j

, (30)

where al and re
l are the 2D lth partial-wave scattering length

and effective range, respectively. By taking Eqs. (28)–(30)
into Eq. (7) first, and then bringing Eq. (7) back to Eqs. (3),
(10), and (11), respectively, we obtain the following universal
relations.

Two-body inelastic loss rate. As shown in Sec. II, to calcu-
late Eq. (3), we could calculate Eqs. (8) and (9) first. From the
calculation of Eq. (9), we have (see Appendix)

ρi jϕ
∗
1 (ρi j ; ε)

∂

∂ρi j
ϕ1(ρi j ; ε)

∣∣∣∣
ρi j=r0

− ρi jϕ1(ρi j ; ε)
∂

∂ρi j
ϕ∗

1 (ρi j ; ε)

∣∣∣∣
ρi j=r0

= − 1

a1
+ 1

a∗
1

+ re
1q2

ε − re∗
1

(
q2

ε

)∗ +
[

− 1

2

+ r2
0

4

(
1

a1
+ 1

a∗
1

)
− r4

0

16

1

a1a∗
1

][
q2

ε − (
q2

ε

)∗] + O
(
q4

ε

)
for the p-wave scattering and

ρi jϕ
∗
l (ρi j ; ε)

∂

∂ρi j
ϕl (ρi j ; ε)

∣∣∣∣
ρi j=r0

− ρi jϕl (ρi j ; ε)
∂

∂ρi j
ϕ∗

l (ρi j ; ε)

∣∣∣∣
ρi j=r0

= − 1

al
+ 1

a∗
l

+ re
l q2

ε − re∗
l

(
q2

ε

)∗ +
[

(2l − 2)!!(2l − 4)!!

r2l−2
0

+ r2
0

4l

( 1

al
+ 1

a∗
l

)
− r2l+2

0

(2l )!!(2l + 2)!!

1

al a∗
l

][
q2

ε − (
q2

ε

)∗]
+ O

(
q4

ε

)
for the higher-partial-wave scatterings with l > 1. By using
the same trick in 1D case that the first term on the right-hand

side of the 2D effective range in Table III can be rewritten as

1

2
= re

1 + re∗
1

2
+ r2

0

4

( 1

a1
+ 1

a∗
1

)
− r4

0

32

( 1

a2
1

+ 1

(a∗
1 )2

)

+ 1

2

∫ r0

0

{[
ϕ

(0)
1 (r)

]2 + [
ϕ

(0)∗
1 (r)

]2}
r dr (31)

for the p-wave scattering and

− (2l − 2)!!(2l − 4)!!

r2l−2
0

= re
l + re∗

l

2
+ r2

0

4l

( 1

al
+ 1

a∗
l

)

− r2l+2
0

2(2l )!!(2l + 2)!!

( 1

a2
l

+ 1

(a∗
l )2

)

+ 1

2

∫ r0

0

{[
ϕ

(0)
l (r)

]2 + [
ϕ

(0)∗
l (r)

]2}
r dr (32)

for the higher-partial-wave scatterings with l > 1, one has

ρi jϕ
∗
l (ρi j ; ε)

∂

∂ρi j
ϕl (ρi j ; ε)

∣∣∣∣
ρi j=r0

− ρi jϕl (ρi j ; ε)
∂

∂ρi j
ϕ∗

l (ρi j ; ε)

∣∣∣∣
ρi j=r0

= − 1

al
+ 1

a∗
l

+ 1

2

(
re

l − re∗
l

)[
q2

ε + (
q2

ε

)∗]

− 2
∫ r0

0

{[
Imϕ̃

(0)
l (r)

]2 +
[
ϕ

(0)
l (r)

]2 + [
ϕ

(0)∗
l (r)

]2

4

}
r dr

× [
q2

ε − (
q2

ε

)∗] + O
(
q4

ε

)
for l > 0, where ϕ̃

(0)
l (r) is obtained from extending the uni-

versal asymptotic form of ϕ
(0)
l (r) in the range r0 � r � k−1

F

into the range r < r0, i.e., ϕ̃
(0)
l>0(ρi j ) = −(1/al )[ρ l

i j/(2l )!!] +
(2l − 2)!!/ρ l

i j . It is interesting to notice that, for high-partial-
wave scatterings, the above formula suits for 3D systems as
well, which gives

|xi j |d−1ϕ∗
l (|xi j |; ε)

∂

∂|xi j |ϕl (|xi j |; ε)

∣∣∣∣
|xi j |=r0

−|xi j |d−1ϕl (|xi j |; ε)
∂

∂|xi j |ϕ
∗
l (|xi j |; ε)

∣∣∣∣
|xi j |=r0

= − 1

al
+ 1

a∗
l

+ 1

2

(
re

l − re∗
l

)[
q2

ε + (
q2

ε

)∗]

− 2
∫ r0

0

{[
Imϕ̃

(0)
l (r)

]2 +
[
ϕ

(0)
l (r)

]2 + [
ϕ

(0)∗
l (r)

]2

4

}

× rd−1dr
[
q2

ε − (
q2

ε

)∗] + O
(
q4

ε

)
.

Following the procedure given in Sec. II, Eq. (3) can be
written as

∂N

∂t
= − h̄

2π2M

3∑
ν=1

κνC(l )
ν , (33)
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where C(l )
ν are the 2D lth partial-wave contacts that fully

capture the many-body physics and κν are the microscopic
parameters determined purely by the two-body short-range
physics. Both C(l )

ν and κν are defined in Table II. κ1 and κ2 can
simply be expressed as Im(1/al ) and Im(−re

l /2), respectively.
Similar to that for 1D odd-wave scatterings κ3, however, is
a new microscopic parameter emerged in the system with
inelastic losses. As shown in Table II, again, the physical
meaning of κ3 is the integration of [Imϕ̃

(0)
l (r)]2 subtracted by

[Imϕ
(0)
l (r)]2 with respect to r from 0 to r0.

Momentum distribution. From Eq. (10), we obtain that

n(kρ )
kF�|kρ|�r−1

0−−−−−−−−→ C(l )
1 |kρ|2l−4|Yl (k̂ρ )|2. (34)

Density correlation function. From Eq. (11), we obtain

S(ρi j )
r0�ρi j�k−1

F−−−−−−−−→ 1

(2π )2

{
C(1)

1

1

ρ2
i j

− C(1)
2

ln(ρi j/r0)

2

+
[
Re

(
re

1

)
C(1)

2 − Re
( 2

a1

)
C(1)

1 − Im
(
re

1

)
C(1)

3

]1

2

+
[
Re

( 1

a1

)
C(1)

2 + Im
( 1

a1

)
C(1)

3

] ln(ρi j/r0)ρ2
i j

4

+
[ 1

|a1|2 C(1)
1 − Re

( re
1 − 1/4

a∗
1

)
C(1)

2

+ Im
( re

1 + 1/4

a∗
1

)
C(1)

3

]ρ2
i j

4

− 1

|a1|2 C(1)
2

ρ4
i j

32

}∣∣Y1(ρ̂i j )
∣∣2

(35)

for the p-wave scattering and

S(ρi j )
r0�ρi j�k−1

F−−−−−−−−→ 1

(2π )2

{
C(l )

1

[(2l − 2)!!]2

ρ2l
i j

+C(l )
2

(2l − 4)!!(2l − 2)!!

2ρ2l−2
i j

+
[
Re

(
re

l

)
C(l )

2 − Re
( 2

al

)
C(l )

1 − Im
(
re

l

)
C(l )

3

] 1

2l

−
[1

l
Re

( 1

al

)
C(l )

2 + Im
( 1

al

)
C(l )

3

] ρ2
i j

(2l − 2)(2l + 2)

+
[

1

|al |2 C(l )
1 − Re

( re
l

a∗
l

)
C(l )

2 + Im
( re

l

a∗
l

)
C(l )

3

]
ρ2l

i j

[(2l )!!]2

− 1

|al |2 C(l )
2

ρ2l+2
i j

2(2l )!!(2l + 2)!!

}
|Yl (ρ̂i j )|2 (36)

for the higher-partial-wave scatterings with l > 1.
By fitting the data of quantities such as the momentum

distribution and the density correlation function obtained in
experiment, all quantities in Eqs. (25) and (33) can be mea-
sured. It is worth pointing out that it might be difficult to
distinguish certain terms such as ln(ρi j/r0)ρ2

i j and ln(ρi j/r0)
in practice. It is nevertheless useful to keep the full expression
of the universal relation as a complete description, which shall
be useful even for purely theoretical studies. In experiments,

despite that the full expression may lead to difficulties in
fitting the experimental data, a unique feature is that the same
universal relation applies to both the weakly and strongly in-
teracting regimes and also any particle numbers. Furthermore,
in certain parameter regimes, some terms may be more impor-
tant than others. For instance, when C(1)

2 � Re(1/a1)C(1)
2 +

Im(1/a1)C(1)
3 , the term dependent on ln(ρi j/r0)ρ2

i j shall be
more important than that dependent on ln(ρi j/r0). This may
simplify the fitting procedures.

V. DISCUSSION

In Table II, we list the two-body inelastic loss rate in 1D,
2D, and 3D. One can recognize that the two-body inelastic
loss rate has exactly the same form in all dD, which is

∂N

∂t
= − 2h̄

2
d M

3∑
ν=1

κνC(s)
ν (37)

or, equivalently,

∂n

∂t
= − 2h̄

2
d M

3∑
ν=1

κνC (s)
ν , (38)

where d is the solid angle in dD, which is 1 = 2, 2 = 2π ,
and 3 = 4π , respectively. n = N/Ld and C (s)

ν = C(s)
ν /Ld are

the molecular density and the contact density of the system,
respectively. Ld is the size of the system in dD. Whereas κν

behave very differently in different dimensions for s-wave
(even-wave for 1D) scatterings, which is originated from the
distinct behavior of the low-energy expansion of the phase
shift in different dimensions as shown in Table I, they are
exactly the same for high-partial-wave scatterings, regardless
of the dimension of the system.

We need to emphasize that we have considered the short-
range interactions U (r) with a cutoff length r0 throughout
this work to demonstrate the physics underlying the universal
relations in lossy systems at low dimensions. When an elec-
tric field is applied, the dipole moment of a polar molecule
becomes finite, and the dipole-dipole interaction ∼A/|r|n with
n = 3 would become important. Generally, for dilute systems
with the power-law interaction ∼A/|r|n where n > 2, a char-
acteristic length r̃ = (M|A|/h̄2)1/(n−2) can be defined [71].
When r̃ � |r| � k−1

F , due to such a length scale separation,
the many-body wave function has universal asymptotic behav-
ior Eq. (7) as well [72]. Following the method presented in our
paper, universal relation (37) can also be obtained. While the
low-energy expansion of the phase shift might be very differ-
ent that the scattering length and effective range may not be
well defined [73,74], new microscopic parameters determined
by the details of the interactions, such as n and l , need to be
used. For instance, without losses, universal relations for sys-
tems with dipole-dipole interactions have been studied [72].
In lossy systems like reactive molecules, it will be interesting
to study how the power-law interactions influence contacts,
universal relations, and the decay rates.

Equations (37) and (38) are exact for any many-body
eigenstates. Thus, it is invariant under the thermal average.
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A. Temperature dependence of the loss rate
in homogeneous systems

We take a two-body system in free space as an ex-
ample. In this case, ε becomes a good quantum number.
The two-body wave function can be written as �(x1, x2) =
φc(X12)ψs(x12), where φc(X12) is the normalized wave func-
tion of the center-of-mass motion of the two molecules.
ψs(x12) is

ψl (z12) =
[√

21

L1

ql
ε

q2l−1
ε (cot ηl − i)

]
ql−1

ε

tan ηl

×
[

cos
(

qε |z12| − lπ

2

)

− tan ηl sin
(

qε |z12| − lπ

2

)]
Yl (ẑ12) (39)

for 1D systems and

ψl (ρ12) =
[√

22

L2

ql
ε

(π/2)q2l
ε (cot ηl − i)

]
π

2

ql
ε

tan ηl
[Jl (qερ12)

− tan ηlNl (qερ12)]Yl (ρ̂12) (40)

for 2D systems, where L1 is the length of the 1D system and
L2 is the area of the 2D system. Recall that, in 3D,

ψlm(r12) =
[√

23

L3

ql
ε

q2l+1
ε (cot ηl − i)

]
ql+1

ε

tan ηl
[ jl (qε |r12|)

− tan ηl nl (qε |r12|)]Ylm(r̂12), (41)

where r12 = (ρ12, z12), jl (nl ) is the spherical Bessel function
of the first (second) kind, and L3 is the volume of the 3D
system.

By denoting C[l]
ν as C(l )

ν for 1D, C(l )
ν + C(−l )

ν for 2D, and∑
m C(lm)

ν for 3D, respectively, and based on the definition in
Table II, C[l]

ν in dD is expressed as

C[l]
1 = σd

43
d

Ld

∣∣ql
ε fl,d (qε )

∣∣2
, (42)

C[l]
2 = 2 Re

(
q2

ε

)
C[l]

1 , (43)

C[l]
3 = 2 Im

(
q2

ε

)
C[l]

1 , (44)

where fl,d (qε ) ≡ 1/{[1 + δd,2(π/2 − 1)]q2l+d−2
ε (cot ηl − i)}

and δd,d ′ is the Kronecker delta. σd is the fold of degen-
eracy for the lth partial-wave scatterings in dD, which is
σ1 = 1, σ2 = 2, and σ3 = 2l + 1, respectively. Based on the
results shown in Table I, fl,d (qε ) can be expanded in the
low-energy limit, fl,d (qε ) = f (0)

l,d + O(qε ), where f (0)
l,d is qε

independent and relates only to the scattering length al . Note
that f (0)

0,2 = 1/[ln(a0eγ /2)]. As an example, we consider the

scattering states only and the case that only the term f (0)
l,d in

fl,d (qε ) is important, where qε can treated as a real quantity
and C[l]

3 = 0.
By considering the second-order virial expansion only and

based on the two-body results as shown in Eqs. (42)–(44),
the thermal averaged contacts can be obtained by doing the

calculation [69]〈
C[l]

ν

〉
T = Z−1e

2μ

kBT

∑
Ec

e− Ec
kBT

∑
n

C[l]
ν e− εn

kBT , (45)

where Z is the partition function, Ec = h̄2q2
c/(4M ) is the en-

ergy of the center-of-mass motion with momentum qc, εn =
h̄2q2

εn
/M is the eigenenergy of the relative motion with mo-

mentum qεn , and kB is the Boltzmann constant. μ is the chem-
ical potential, which can be extracted from N = kBT ∂μ ln Z .
In the high-temperature regime, N/Ld ≈ exp[μ/(kBT )]/λd

T ,
where λT = [2π h̄2/(kBT M )]1/2 is the thermal wavelength.
We have

〈
C[l]

ν

〉
T = 2

d
2 −1N2λd

T

d

(2π )d

∫ ∞

0
C[l]

ν exp
(

− λ2
T

2π
k2

)
kd−1dk.

(46)
Thus, we obtain 〈C[l]

ν 〉T as a function of N and T by substi-
tuting Eqs. (42) and (43) into Eq. (46). Based on the fact that∫ ∞

0 exp(−nx2)xw−1dx = 2−1�(w/2)n−w/2, we obtain

〈
C[l]

1

〉
T

= 2lπ l− d
2 �

(
l + d

2

)
σd

4
d

∣∣ f (0)
l,d

∣∣2 N2

Ld
λ−2l

T , (47)

〈
C[l]

2

〉
T = 2l+2π l− d

2 +1�
(

l + d

2
+ 1

)
σd

4
d

∣∣ f (0)
l,d

∣∣2 N2

Ld
λ−2l−2

T .

(48)

B. Temperature dependence of the loss rate in harmonic traps

When a harmonic trap Vext (x) = (1/2)Mω2(x · x) is ap-
plied, under the local density approximation, we can replace
μ by the local chemical potential μ(x) = μ(0) − Vext (x) and
write n(x) = exp[μ(x)/(kBT )]/λd

T in the high-temperature
regime. ω is the harmonic frequency. μ(0) is the chemical
potential at the center of the trap. At any point x in the trap,
Eq. (38) still applies, we have

∂n(x)

∂t
= − 2h̄

2
d M

3∑
ν=1

κν

〈
C[l]

ν (x)
〉
T . (49)

Thus, by taking the integration over x on both sides of
Eq. (49), the two-body inelastic loss rate in dD traps can be
written as

∂N trap

∂t
= − 2h̄

2
d M

3∑
ν=1

κν

〈
C[l]trap

ν

〉
T
. (50)

Based on Eqs. (47) and (48), at the center of the trap, we still
have

〈
C[l]

1 (0)
〉
T = 2lπ l− d

2 �
(

l + d

2

)
σd

4
d

∣∣ f (0)
l,d

∣∣2
n2(0)λ−2l

T , (51)

〈
C[l]

2 (0)
〉
T = 2l+2π l− d

2 +1�
(

l + d

2
+ 1

)
σd

4
d

∣∣ f (0)
l,d

∣∣2

× n2(0)λ−2l−2
T , (52)

where n(0) can be expressed by N trap and T , which is

N trap =
∫

n(x)dx =
(

2πkBT

Mω2

)d/2

n(0). (53)
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The total contacts 〈Ctrap
ν 〉T can be determined by integrating

the local contacts in the trap,

〈
C[l]trap

ν

〉
T = 〈

C[l]
ν (0)

〉
T

∫
e−2Vext (x)/(kBT )dx

=
(

πkBT

Mω2

)d/2〈
C[l]

ν (0)
〉
T
. (54)

Thus, based on Eqs. (50)–(54), one can map the loss rate
in a harmonic trap to the one in a homogeneous system by
setting the effective size of the homogeneous system to be
L̃d = [4πkBT/(Mω2)]d/2. One has

∂N trap

∂t
= −βl,d

(N trap)2

L̃d
(55)

or, equivalently,

∂ ñ

∂t
= −βl,d ñ2, (56)

where ñ = N trap/L̃d is the average molecular density of the
system and βl,d is the loss-rate coefficient for dD lth partial-
wave scatterings.

VI. CONCLUSION

In conclusion, we have established universal relations for
the two-body inelastic loss rate, which are controlled by
contacts C(s)

ν in 1D and 2D, respectively. Whereas κν have
different forms in different dimensions for s-wave (even-wave
for 1D) scatterings, the loss rate can be written as exactly the
same form in arbitrary dimensions for high-partial-wave (odd-
wave for 1D) scatterings. Moreover, the two-body inelastic
loss rate can be related to other physical quantities such as
the momentum distribution and the density correlation func-
tion through contacts. While we considered single-component
ultracold atoms or reactive molecules, discussions can be
generalized to multicomponent systems straightforwardly. It
will also be interesting to consider a finite confinement in the
transverse direction such that the dimension crossover can be
explored in the presence of two-body losses. We hope that

our work could inspire more efforts of using contacts and
universal relations to study novel phenomena in lossy quan-
tum systems in condensed matter physics, atomic, molecular,
and optical physics, and chemical physics.
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APPENDIX: MATHEMATICS USED
IN THE CALCULATION OF EQ. (9)

For a specific partial-wave scattering only, to calculate
Eq. (9), one can first calculate∫ r0

0
dxi j

[
ψ∗

s (xi j ; ε)∇2
xi j

ψs(xi j ; ε) − ψs(xi j ; ε)∇2
xi j

ψ∗
s (xi j ; ε)

]
=

∫ r0

0
dxi j

[
ϕ∗

s (|xi j |; ε)Y ∗
{0}(x̂i j )∇2

xi j
ϕs(|xi j |; ε)Y{0}(x̂i j )

−ϕs(|xi j |; ε)Y{0}(x̂i j )∇2
xi j

ϕ∗
s (|xi j |; ε)Y ∗

{0}(x̂i j )
]

= 1

d

∮
|xi j |=r0

[
ϕ∗

s (|xi j |; ε)
∂

∂|xi j |ϕs(|xi j |; ε)

−ϕs(|xi j |; ε)
∂

∂|xi j |ϕ
∗
s (|xi j |; ε)

]
êx · dS, (A1)

where Y{0} = Ys={0} means that all the quantum numbers in s
are zero. êx is the outgoing unit vector perpendicular to S.
|Y{0}|2 = 1/d is also used. Thus, to calculate Eq. (9), it is
helpful to first calculate

|xi j |d−1ϕ∗
s (|xi j |; ε)

∂

∂|xi j |ϕs(|xi j |; ε)

∣∣∣∣
|xi j |=r0

−|xi j |d−1ϕs(|xi j |; ε)
∂

∂|xi j |ϕ
∗
s (|xi j |; ε)

∣∣∣∣
|xi j |=r0

. (A2)
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