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Decoupling the complex amplitudes of partial waves in two-photon ionization
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Taking the two-photon ionization process in hydrogen atoms as an example, we propose a scheme to decouple
the partial-wave information in ultrafast ionization. By analyzing the interference in the photoelectron angular
distributions obtained from the solution of the time-dependent Schrödinger equation, the phase difference and
amplitude ratio for different partial waves can be extracted. In the perturbative regime, the one-photon ionization
by the 2ω pulse is taken as a reference to distinguish the contributions from the s and d waves in two-photon
ionization. In the nonresonant cases, the phases of different partial waves in two-photon ionization are essentially
the Coulomb phase shifts, which are independent of the pulse width. In the resonant case, an additional phase is
accumulated during the resonant transition. The resulting time delays for both partial waves are proportional to
the pulse duration. When the above-threshold ionization occurs, the continuum-continuum transition introduces
an additional phase. The amplitudes of both partial waves are strongly related to the photon energy. They can be
used to reveal hidden structures, such as the nonlinear Cooper minimum of different partial waves. This method
of decoupling the partial-wave information can be extended to more complex atoms with photons across a wide
range of energy.
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I. INTRODUCTION

As a fundamental process, photoionization has been widely
studied since the discovery of the photoelectric effect [1].
Benefiting from the advancement of laser technologies, the
observation of photoionization in experiments has been ex-
tended from single-photon processes to multiphoton regimes
[2–4]. Unlike one-photon ionization, which loses its intu-
itiveness when the multielectron effect is involved [5–7],
multiphoton ionization is already complicated due to the in-
fluence of intermediate states or continuum-continuum (CC)
transitions in above-threshold ionization (ATI) [8–13]. Two-
photon ionization (TPI) is the most basic case of multiphoton
ionization. Understanding the amplitudes and phases of differ-
ent partial waves is crucial for comprehending this dynamic
process [14,15].

Photoionization is not instantaneous [16,17]. Similar to
quantum scattering, the electron wave packet accumulates a
phase during the ionization process, a phenomenon known
as half-scattering. The partial derivative of this phase with
respect to the photoelectron energy is called the Eisenbud-
Wigner-Smith (EWS) delay [18–21], which represents the
time it takes for an electron to absorb a photon and become
ionized. The techniques of the reconstruction of attosecond
beating by interference of two-photon transitions (RABBITT)
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[22–26] and the attosecond streak camera (ASC) [27–32]
were initially developed to characterize the attosecond pulse
generated. They are now commonly used to study phase in-
formation and time delays in ionization processes.

In RABBITT studies, an attosecond pulse train (APT) with
extreme ultraviolet (XUV) wavelengths and a weak near-
infrared (NIR) field are utilized. While in the ASC, the APT is
replaced by an isolated attosecond pulse. In both techniques,
the delay between the XUV and the NIR pulses is tuned
to extract the time delay in photoionization processes. The
time delay consists of two parts: the EWS delay and the CC
delay. The first arises from the absorption of the XUV photon,
while the second provides insight into the transition pro-
cess between the continuum states induced by the NIR field
[17,33,34]. The CC delay is typically estimated using the
Coulomb states of hydrogen-like atoms [11,15,35]. By sub-
tracting this part from the time delay, the EWS delay can
be obtained. In RABBITT experiments, the TPI processes
studied contain one XUV photon and one NIR photon. As for
the ASC, it can provide phase information when the electron
is ionized by either one or two XUV photons.

Both techniques can be further applied to study the phase
accumulated in resonant transitions [36,37]. For instance, the
phase shift and the photoelectron angular distribution (PAD)
of TPI via an intermediate resonant state has been studied
both experimentally and theoretically with the RABBITT
technique [38–40]. By employing the ASC, the time delay
of two-photon resonant ionization has been extracted by Su
et al. [41]. The delay is proportional to the applied XUV pulse
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width. In the methodologies introduced above, the partial-
wave information in TPI processes is usually not disentangled.
It was reported that the time delay difference of the outgoing
s and d electrons from the TPI of helium is extracted in
a RABBITT experiment [42]. Recently, another theoretical
work presented a method to obtain the relative phases and
magnitude ratios in TPI processes for both s- and p-electron
targets also by the RABBITT technique [43]. However, the
contributions from different partial waves are still unable to
be separated.

By applying the ω − 2ω pulse pair technique, the informa-
tion of different partial waves can be easily distinguished in
TPI processes. With the assistance of the seeded free-electron
laser, an ω − 2ω pulse pair with a controlled relative phase
can be generated [44]. When the pulse pair is applied to an
atom, different partial wave contributions will interfere with
each other in the PAD. By analyzing the PADs as a function
of relative phases, the phase and amplitude information can
be obtained [45–48]. Most studies only extracted the phase
difference or amplitude ratio of different partial waves by this
method. Nevertheless, if one primarily focuses on the scenario
where the ground state is not strongly modulated, the phase
and amplitude of the one-photon ionization can serve as a ref-
erence. This allows for the calculation of the phase, amplitude,
and time delay of the individual partial-wave contribution
in TPI. The phase accumulated in one-photon ionization of
the hydrogen atom can be analytically determined by the
Coulomb phase shift [49]. For other atoms, this phase can
be calculated using the many-body perturbation theory or de-
termined through experiments using the RABBITT technique
[5,14].

In this study, we apply ω − 2ω pulse pairs to distinguish
the contributions from multiple partial waves in TPI. We
solve the time-dependent Schrödinger equation (TDSE) to
obtain the PADs resulting from pulse pairs with different
relative phases in hydrogen atoms. Through the analysis of
the PADs, the partial-wave phase difference and amplitude
ratio can be extracted. By taking the partial-wave phase and
amplitude in one-photon ionization as a reference, we are
able to distinguish the contributions of the s and d waves in
phases, amplitudes, and time delays. The method is applied
to the cases of two-photon nonresonant, resonant, and above-
threshold ionization processes. The validity of the results is
confirmed and analyzed with the second-order perturbation
theory and full analytical calculations in the ionization of
hydrogen atoms.

This paper is organized as follows. Section II contains
the details of the TDSE simulation and the decoupling
of partial-wave information from the PADs. In Sec. III,
the partial-wave phases and amplitudes are extracted and
analyzed for two-photon nonresonant, resonant, and above-
threshold ionization, respectively. Section IV provides a
summary of the paper. Atomic units are applied throughout
the paper unless stated otherwise.

II. NUMERICAL METHODS

A. TDSE simulations

The TDSE is numerically solved to investigate the ioniza-
tion processes of the hydrogen atom by the publicly available

QPC-TDSE program developed by Zhang et al. [50]. The

solution of the TDSE, i
∂ψ

∂t
= Ĥψ , is conducted in velocity

gauge, where the Hamiltonian is expressed as

Ĥ = − 1
2∇2 − iA(t ) · ∇ + V (r), (1)

where V (r) = −1/r. The applied vector potential can be
expressed as

A(t ) = Aω exp

[
− (2 ln 2)

t2

T 2

]
sin(ωt )ez

+ A2ω exp

[
− (2 ln 2)

t2

T 2

]
sin(2ωt − φ)ez, (2)

where ω represents the fundamental angular frequency, Aω

and A2ω denote the amplitudes of the fundamental wavelength
and its second harmonic, and φ is the relative phase between
the two components. The field has a Gaussian envelope with
T representing its full width at half maximum (FWHM). The
tails of the Gaussian envelope are smoothly truncated to avoid
any nonphysical effect in the calculation.

The TDSE is solved by expanding the wave function
through 6000 eighth-order B-spline functions, denoted as
Bn(r), defined on a knot sequence that is linearly spaced in the
radial direction, and 12 spherical harmonics, labeled as Yl0(θ ).
The magnetic quantum number of the spherical harmonics can
be set to zero, as the applied fields are all linearly polarized.

We diagonalize the Hamiltonian to calculate the ground-
state wave function and propagate the wave function by the
Crank-Nicolson method with a step size of �t = 0.008 a.u.
The simulations are conducted in a spherical box with a max-
imum radius of Rmax = 2500 a.u. and an absorbing boundary
lies at Ra = 2450 a.u. When the wave function propagates
to the boundary, it is smoothly absorbed by the mask func-
tion cosα[π (r − Ra)/2(Rmax − Ra)], where α = 0.002. At the
end of the propagation, the final wave function is projected
onto the field-free Coulomb continuum states with incoming
boundary conditions to obtain the angle-resolved photoelec-
tron momentum distribution (PMD) [51–53]. The projection
first evaluates the partial wave PMDs with different angular
quantum numbers, which are denoted as Ml0(k). For the pho-
toelectron with energy E , where E = k2/2, its Coulomb phase
shift is [49]

�l (E ) = arg

[



(
l + 1 − i√

2E

)]
. (3)

Then the angle-resolved PMD is calculated as

I (k, θ ) =
∣∣∣∣∣
∑

l

(−i)l ei�l (k2/2)Yl0(θ )Ml0(k)

∣∣∣∣∣
2

. (4)

B. Decoupling of partial-wave information through
photoelectron angular distributions

We take the electron initially located in the s orbital as an
example. The extension of this method to the p0 electron can
be found in Appendix A. When an ω − 2ω pulse pair acts on
the electron, it can be ionized to the same continuum state
by absorbing either one 2ω photon or two ω photons. The
first process leads to the p wave, while the second results
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in the s and d waves. The amplitudes of the three partial
wave terms are denoted as cs, cp, and cd . Their corresponding
phases, which exclude the centrifugal-potential phase, −lπ/2,
are written as σs, σp, and σd . The PAD at energy E can be
calculated as

I (E , θ ) = |cs(E )eiσsd (E )Y00(θ ) + cp(E )eiσpd (E )+i(φ−π/2)Y10(θ )

− cd (E )Y20(θ )|2, (5)

where σsd = σs − σd and σpd = σp − σd . Since Yl0(θ ) =√
2l+1
4π

Pl (cos θ ) and the maximum l in Eq. (5) is 2, I (E , θ )
can be also expanded as

I (E , θ ) ∝ 1 +
4∑

k=1

βk (E )Pk (cos θ ), (6)

where Pk (cos θ ) is the Legendre polynomial of order k and
βk is the corresponding coefficient. From Eq. (5), we can
calculate that [45,46]

β1 = 2
√

3[−2
√

5cpcd sin(σpd + φ) + 5cpcssin(σps + φ)]

5
(
c2

s + c2
p + c2

d

) , (7a)

β2 = 2[5c2
d + 7c2

p−7
√

5cd cs cos(σsd )]

7
(
c2

s + c2
p + c2

d

) , (7b)

β3 = −6
√

15cpcd sin(σpd + φ)

5
(
c2

s + c2
p + c2

d

) , (7c)

β4 = 18c2
d

7
(
c2

s + c2
p + c2

d

) , (7d)

β1 − 2

3
β3 = 2

√
3cpcs sin(σps + φ)

c2
s + c2

p + c2
d

. (7e)

In the TDSE simulation, the PADs with different φ

are calculated. By projecting the PADs onto the Legen-
dre polynomials, the φ-dependent β parameters can be
obtained. Define A = 6

√
15cpcd/5(c2

s + c2
p + c2

d ) and B =
2
√

3cpcs/(c2
s + c2

p + c2
d ). From Eqs. (7c) and (7e), we can fit

β3 and β1 − 2β3/3 with respect to φ to get σps, σpd , A, and
B. Since the one-photon ionization process, which leads to the
p wave, is straightforward, it can be treated as a reference.
cp can be measured by the ionization amplitude when only a
2ω pulse is applied, while the phase is given by the Coulomb
phase shift �p(E ). Then the phases and amplitudes for the s
and d waves can be separated as

σs = �p − σps, (8a)

σd = �p − σpd , (8b)

cs = 7
√

3Bcpβ4

5A2
, (8c)

cd = 7
√

15cpβ4

15A
. (8d)

The time delay in TPI for different partial waves can be
calculated as [19,21]

τl = ∂σl

∂E

∣∣∣∣
E=E0

, (9)

where E0 = 2ω − Ip and Ip is the ionization energy.

III. RESULTS AND DISCUSSION

According to the selection rule [54], TPI in atoms induced
by a linearly polarized field is always accompanied by two

or three different partial waves. Although these contributions
show up simultaneously, their behaviors are quite different
due to the intrinsic structure of the atom. Figure 1 depicts the
TPI processes of hydrogen atoms studied in this work. The 1s
electron can be ionized to s and d waves after absorbing two ω

photons. The PAD of TPI is strongly correlated with the laser
frequency applied. In essence, this is due to the interference
between the s and d waves. By simultaneously applying the
second harmonic, the resulting p wave will join the interfer-
ence, leading to an asymmetric PAD. Taking this one-photon
ionization pathway as a reference, the contributions from the
s and d components can be decoupled by the method in
Sec. II B. The phases and amplitudes of the s and d waves are
then examined to discover the hidden structures in two-photon
nonresonant ionization and the effect of intermediate resonant
states or CC transitions.

A. Two-photon nonresonant ionization

To better assess the factors that affect the phases and
amplitudes of different partial waves, we first focus on the
nonresonant cases. Pulse pairs with the fundamental frequen-
cies of ω = 0.35 a.u. and ω = 0.4 a.u. are applied. For the
first, the laser intensities of the fundamental component Iω and
its second harmonic I2ω are 2 × 1011 W/cm2 and 2 × 1010

W/cm2, respectively. While for the second, Iω = 1 × 1012

W/cm2 and I2ω = 2 × 1010 W/cm2. The intensities are ad-
justed to ensure that the ratios cs/cp and cd/cp are neither too
large nor too small, which is crucial for the accuracy of the
fitting from Eqs. (7c) and (7e). Under these laser intensities,
the processes are still within the perturbative regime. The
FWHM of the pulse pairs varies from 6 fs to 10 fs. For each
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0.35 a.u.

0.375 a.u. 

0.4 a.u. 

0.6 a.u. 

2p

E=0

1s

CC
 transition

FIG. 1. The schematic diagram illustrates the TPI processes in
hydrogen atoms with different laser frequencies. The blue arrows
show the four cases with ω = 0.35, 0.375, 0.4, and 0.6 a.u. Their
respective PADs with the same color are located at the end of the
arrows. The red dashed arrow demonstrates the second harmonic
of ω = 0.35 a.u. The resulting red PAD interferes with the blue
one from the ω pulse, which leads to the PAD in green. For other
frequencies studied, their corresponding second harmonics are also
applied. For ω = 0.375 a.u., the TPI passes through the 2p state. For
ω = 0.6 a.u., the process undergoes an extra CC transition.

laser frequency, the PADs are calculated by the TDSE simu-
lation near their respective E0. The calculations are repeated
for φ ranging from 0 to 2π . Then the β parameters derived
from the PADs are fitted to obtain σps, σpd , A, and B. From
Eqs. (8a) to (8d), the separated phases or amplitudes of the
s and d waves can be extracted. The values of σs and σd at
E0 for ω = 0.35 a.u. and ω = 0.4 a.u. are shown in Fig. 2(a).
The isolated points represent the extracted values for different
FWHM, while the corresponding lines show the values of the
Coulomb phase shifts �l (E ) as calculated by Eq. (3). The
extracted σl is independent of the FWHM and agrees well
with �l . This indicates that the partial-wave phases in two-
photon nonresonant ionization are essentially the Coulomb
phase shifts.

By taking the partial derivative of the phases with respect to
the photoelectron energy at E0 as Eq. (9), one can obtain their
corresponding time delays τs and τd , as shown in Fig. 2(b).
The isolated points are calculated from σs and σd , while the
lines are calculated with �s and �d . Similar to the phases,
the points and lines align closely and remain unchanged with
the increase of the pulse width. This demonstrates that the
time delay in TPI without passing through any intermediate
state is a fixed value related to the intrinsic structure of the
atom.

The spectral widths of the driven pulse pairs allow for
extracting the complex amplitude of the partial waves within
an energy interval near E0. The phase variation as a function
of the photoelectron energy should follow the change of the
Coulomb phase shift. This is true for the case of ω = 0.35 a.u.
However, when ω = 0.4 a.u., an additional π phase jump

FIG. 2. (a,b) The phases and time delays for ω = 0.35 a.u. and
ω = 0.4 a.u. at their corresponding E0. The isolated points are ex-
tracted values from the β parameters for T ranging from 6 fs to 10
fs. The lines correspond to the results calculated by the Coulomb
phase shifts. (c) Extracted σs and σd for ω = 0.4 a.u. with T =
8 fs in the energy domain around E0. (d) Same as (c) but for
ω = 0.32 a.u.

occurs for σd , while the σs in this case still changes smoothly
as �s as is shown in Fig. 2(c). From this phenomenon, one can
infer that there may exist hidden structures for different partial
waves in the atom. Similar to the resonance with an intermedi-
ate state, such structures are stimulated when specific photon
energy is applied. To find similar structures, we gradually
reduce the fundamental frequency from ω = 0.35 a.u. with
fixed intensities. When ω is tuned to 0.32 a.u., another π phase
shift occurs. However, instead of σd , σs undergoes the phase
shift in this case. The phase jump for ω = 0.32 a.u. is shown
in Fig. 2(d).

To elucidate the π phase jump in the energy domain, the
partial-wave amplitudes are investigated. Figure 3(a) displays
the results of cs and cd for ω = 0.32 a.u. The dots and squares
represent the extracted values from the β parameters for the s
and d waves, respectively. While the solid and dashed curves
are their counterparts directly obtained from the TDSE calcu-
lation. These two results are consistent with each other and in
this case, the d wave is dominant. Both phenomena can also
be observed when ω = 0.35 a.u. as demonstrated by Fig. 3(b).
The main distinction between the two cases lies in the number
of peaks. In contrast to the single peaks of both partial waves
when ω = 0.35 a.u., the peak of the s wave splits into two for
ω = 0.32 a.u., leading to a local minimum in the middle. The
energies where the local minimum exists and the phase jump
occurs in Fig. 2(d) coincide with each other, indicating the
possible existence of the nonlinear Cooper minimum in TPI
for the s wave [55,56].

As for the case of ω = 0.4 a.u., the s wave dominates
the TPI. However, the extracted values of cs and cd match
poorly with the results from the TDSE calculation, as shown
in Fig. 3(c), especially when the energy approaches the π

phase jump in Fig. 2(c). This manifests that the method for
extracting amplitudes is not valid around the photoelectron
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FIG. 3. (a) The amplitudes of the s and d waves as a function of
the photoelectron energy for ω = 0.32 a.u. with T = 8 fs. The iso-
lated points are extracted from the β parameters and the bold curves
are directly obtained from the TDSE calculation. (b)–(d) Same as
(a) but for ω = 0.35, 0.4, and 0.39 a.u.

energy where the π phase jump occurs for the d wave. From
Eq. (7d) and the expression of A, one can find that when cd

is small, the values of β4 and A will also be tiny. At this
time, the accuracy of the extracted β4 and A from the PADs
is greatly affected. Since the amplitudes, cs and cd , retrieved
by Eqs. (8c) and (8d) are sensitive to these two terms, the inac-
curacy of β4 and A will finally be transferred to the extracted
cs and cd . Combined with the nonlinear Cooper minimum of
the s wave, we can speculate that a similar local minimum
may exist for the d wave near the E0 when ω = 0.4 a.u. To
avoid the inaccurate extraction of the amplitudes, we attempt
using ω = 0.39 a.u. with the same intensities as ω = 0.4 a.u.
In this case, the results become consistent again, as illustrated
in Fig. 3(d). Although the minimum is unable to be found with
this laser frequency, it is discovered that there is a specific
point in the energy domain where the dominance of the s or d
wave reverses. The trend of change for the d wave is in line
with the assumption that a local minimum exists at ω = 0.4
a.u.

To validate our assumptions, the TPI cross section in hy-
drogen atoms is calculated. Figure 4 depicts the respective
cross sections for the s wave, d wave, and their summation,
as referenced in the work by Benda and Karule [57,58]. The
photon energy in this figure can be converted to the photoelec-
tron energy by E0 = 2ω − Ip. The trend of the ionization cross
section aligns with that of cs and cd . One can observe that
the nonlinear Cooper minimum appears for the s wave near
ω = 0.32 a.u. Therefore, it is clear that the d wave dominates
near ω = 0.32 a.u. and the splitting peak of cs directly reflects
the minimum for the s-wave ionization cross section. Near
ω = 0.39 a.u., the ionization cross sections of two partial
waves intersect. Modulated by the spectrum of the fundamen-
tal pulse, the intersection is mapped onto the partial-wave
energy spectra. Around ω = 0.4 a.u., there is indeed a non-
linear Cooper minimum for the d wave, which can adequately

FIG. 4. Two-photon ionization cross section in hydrogen atoms
for s wave, d wave, and their summation.

explain the π phase jump as well as the poor extraction of
amplitudes. By comparing the extracted results and the TPI
cross section, our method to unravel the concealed structures
in atoms is validated. For other atoms, their ionization cross
sections are usually unable to be separated analytically. The
method proposed here paves the way for the experimental
measurement of partial-wave-resolved hidden structures. An
example of extracting the phases and amplitudes of different
partial waves for the two-photon nonresonant ionization in
neon is presented in Appendix B.

B. Two-photon resonant ionization

When an electron is ionized by two photons via an interme-
diate resonant state, the phase will be significantly altered. We
apply a pulse pair with ω = 0.375 a.u., the resonant frequency
between the 1s and 2p states, to study two-photon resonant
ionization. The laser intensities are Iω = 4 × 1010 W/cm2

and I2ω = 2 × 1010 W/cm2. The pulse width is varied in the
same way as in the previous section. Figure 5(a) illustrates
the phases of different partial waves in this case. The red
dots represent the phases for the s wave extracted from the
β parameters, while the blue squares correspond to the phases
for the d wave. The bold lines show the Coulomb phase shifts.
One can observe that the phases for the resonant case differ

FIG. 5. (a) Extracted σs and σd from the β parameters and calcu-
lated Coulomb phase shifts �s and �d for ω = 0.375 a.u. The data
points are calculated for T from 6 fs to 10 fs. (b) The time delays
τs and τd are calculated from the extracted σs and σd , respectively.
The orange and green dashed lines are the results calculated by the
second-order perturbation theory.
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from their Coulomb phase shift counterparts. In addition, the
phases change slightly as a function of T .

Since phase accumulation is closely associated with time,
we can infer that the time required for TPI can be strongly
modulated by an intermediate resonant state. To gain a more
straightforward insight into this phenomenon, we examine the
associated time delay. The time delays for the s and d waves
are shown in Fig. 5(b). The delays are proportional to the pulse
duration. The results presented here are consistent with the
findings of Su et al. [41]. As a compliment to the previous
study, the s and d wave contributions here can be separated.
The behaviors of both partial waves look similar and their time
delays are much larger than their respective EWS delays. As
a result, one can infer that the additional time delay stemming
from the two-photon resonant ionization is much larger than
the EWS delay, which makes the difference between the two
partial waves less significant.

By employing the second-order perturbation approach, we
aim to replicate the phenomenon analytically. The initial state
1s, an arbitrary intermediate state, and the final continuum
state are labeled as |i〉, |m〉, and | f 〉, respectively. For a laser
pulse with the central frequency ω, only the final state with
the expected photoelectron energy E0 is considered, where
E0 = 2ω − Ip. If the laser pulse is polarized in the z direc-
tion, the ionization amplitude c f for the TPI process can be
approximately calculated in length gauge as [10]

c f =
∑∫

m

∫ ∞

−∞
dt

{
μ f mei�E f mt f (t )

[ ∫ t

−∞
dt ′μmie

i�Emt ′
f (t ′)

]}
,

(10)

where μ f m = 〈 f |z|m〉 and μmi = 〈m|z|i〉 are the transition
dipole moments, �E f m = E0 − Em − ω, �Em = Em + Ip −
ω, and f (t ) is the pulse envelope. According to the relation
between ω and E0, �E f m = −�Em. In length gauge, the
Gaussian pulse envelope applied in our scheme can be written

as f (t ) = E0 exp ( − 2 ln 2
t2

T 2
), where E0 is the electric field

intensity. Define T0 as T/2
√

ln 2, the integral can be analyti-
cally calculated as

c f = πE2
0 T

2

0

∑∫
m

{
μ f mμmi

[
e−(�EmT0 )2 − i

2√
π

F (�EmT0)

]}
,

(11)

where F (x) is the Dawson’s integral [59].
When a resonant frequency is applied, the ionization via

the resonant state within the spectral width, labeled as |r〉,
will dominate the entire process. If other intermediate states
are disregarded in the summation of the states, the ionization
amplitude can be simplified as [41]

c f = πE2
0 T

2

0 μ f rμri

[
e−(�Er T0 )2 − i

2√
π

F (�ErT0)

]
. (12)

Since |i〉 and |r〉 are bound states, μri is real, and the phase of
μ f rμri is essentially the Coulomb phase shift originating from
the continuum state | f 〉. As a result, the phases of the resonant
ionization pathway for different partial waves at E0 is

σ r
l (E0) = arg[c f (E0)] = �l (E0) + θ (E0), (13)

where

θ (E0) = − arctan

[
2√
π

e(�Er T0 )2
F (�ErT0)

]
. (14)

Since θ is a function of E0, from Eq. (9), the time delay from
this phase term, denoted as τ ∗, can be calculated by its partial
derivative with respect to E0. Based on

∂θ

∂�Er
= − 2e(�Er T0 )2

T0√
π{1 + Erfi[(�ErT0)2]} , (15)

we can calculate that

τ ∗ = ∂θ

∂E0
= ∂θ

∂�Er

∂�Er

∂E0
= e(�Er T0 )2

T0√
π{1 + Erfi[(�ErT0)2]} ,

(16)

where Erfi(x) is the imaginary error function. As a result,
the time delays for different partial waves of the resonant
transition pathway can be written as

τ r
l = ∂σ r

l

∂E0
= ∂�l

∂E

∣∣∣∣
E=E0

+ τ ∗. (17)

For ω = 0.375 a.u., the pulse is resonant with the 1s and 2p
states. At this time, �Er = 0 and τ ∗ = T0/

√
π . The calculated

τ r
s and τ r

d are the orange and green dashed lines in Fig. 5(b).
The results from the β parameters agree well with the ana-
lytical results obtained from the perturbation approach. This
proves that the time delay in two-photon resonant ionization is
proportional to the pulse width applied and mainly originates
from the resonant ionization pathway. In Eq. (17), only one
frequency component is considered. However, for short pulses
with large spectral widths, the effect of other frequency com-
ponents is not negligible. Therefore, there exists a difference
between τd and τ r

d when T is small. In Appendix B, the ana-
lytical model developed here agrees well with the time delay
in the two-photon resonant ionization in neon, indicating the
universality of this analysis.

C. Two-photon above-threshold ionization

The CC delay in the RABBITT or ASC technique is typ-
ically regarded as the coupling between the NIR field and
the long tail of the Coulomb potential. As for the case of
two-photon ATI, the absorption of the second XUV photon
in the TPI process also involves a CC transition, resulting
in an additional phase shift, φs

cc and φd
cc, in the partial-wave

phase. The red dots and blue squares in Fig. 6(a) show the
extracted values of σs and σd , respectively, for ω ranging from
0.56 a.u. to 0.64 a.u. with T = 8 fs. The applied intensities are
Iω = 1 × 1012 W/cm2 and I2ω = 2 × 1010 W/cm2. The cor-
responding red and blue solid curves represent the two-photon
ATI phases calculated by the analytical scattering states of
hydrogen atoms [60]. One can see that the two results are in
good agreement with each other.

By subtracting the Coulomb phase shift at ω − Ip from the
extracted partial-wave phase, we can calculate the CC phase
accumulated in absorbing the second photon. The calculated
and analytical results are shown in Fig. 6(b). The s and d
waves accumulate different phases during the CC transition.
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FIG. 6. (a) Extracted σs (red dots) and σd (blue squares) for ω

from 0.56 a.u. to 0.64 a.u. with T = 8 fs. The red and blue solid
curves correspond to the analytically calculated values. (b) Same
as (a), but for the CC phase calculated by subtracting the Coulomb
phase shift from the partial-wave phase.

Both of them decrease at a slower and slower rate as the
increase of photoelectron energy.

IV. CONCLUSION

By utilizing the ω − 2ω pulse pair, we propose a scheme
to distinguish the amplitudes and phases of the s and d partial
waves in TPI of hydrogen atoms. The interference of different
partial waves in the PAD allows for the determination of
their phase difference and amplitude ratio. By plugging in the
partial-wave amplitude and phase in one-photon ionization,
the mixed s and d wave contributions can be decoupled.

This method is applied to study the case where the ω pulse
is nonresonant with any intermediate state, resonant with a
specific state, or the ATI occurs. For the nonresonant case,
the partial-wave phase is the Coulomb phase shift. Some
hidden structures, like the nonlinear Cooper minimum, can
be found by a sudden π phase shift in the energy domain or
the extracted partial-wave amplitudes. For the resonant case,
the time delays of both partial waves in two-photon resonant
ionization are proportional to the pulse widths applied. When
two-photon ATI occurs, the electron will accumulate an addi-
tional CC phase.

In hydrogen atoms, the partial-wave phase in one-photon
ionization can be calculated by the Coulomb phase shift.
For other atoms, the phase can be measured by a scheme
supported by the RABBITT technique. So, this method of
decoupling the complex amplitudes of partial waves can
be extended to more complex atoms. In addition to the
partial-wave amplitudes and phases, such interferometric
schemes with bichromatic fields, mω − nω, can be further
applied to study other effects in atoms, like the circu-
lar dichroism and the dependence of ionization rate on
polarization [61,62].
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APPENDIX A: DECOUPLING OF PARTIAL WAVE
INFORMATION FOR p0 ELECTRONS

For atoms like neon and argon, the outer shell electrons lie
in p orbitals. After absorbing two photons, the p electron can
be ionized to the p wave or f wave. With a similar ω − 2ω

pulse pair technique introduced in Sec. II B, the amplitudes
and phases of the p and f partial waves can be decoupled
in TPI processes. Here we consider the electrons in the p0

orbital, which leads the ionization of p orbitals. Since only
ω − 2ω pulse pairs with linear polarization are considered,
only states with m = 0 are considered. Therefore, the sub-
script 0 for different partial waves is omitted in the following
discussion. Unlike the simpler s electron case, s and d waves
co-occur for the p0 electron with the absorption of one linearly
polarized 2ω photon. The PAD induced by an ω − 2ω pulse
pair with relative phase φ at energy E is calculated as

I (θ ) = |cse
i(ηs+φ)Y00(θ ) + cpeiηpY10(θ )

+ cd ei(ηd +φ)Y20(θ ) + c f eiη f Y30(θ )|2, (A1)

where cl and ηl (l = s, p, d, f or 0,1,2,3) are the amplitudes
and phases of different partial waves. The PAD can be sim-
ilarly expanded as Eq. (6), but with Legendre polynomials
up to order 6. The corresponding six β parameters can be
calculated as

β1 = 1

C

[
18√
35

cd c f cos(ηdf + φ)

+ 4

√
3

5
cd cp cos(ηd p + φ) + 2

√
3cscp cos(ηsp + φ)

]
,

(A2)

β2 = 1

C

[
2
√

5cd cs cos(ηds) + 10

7
c2

d

+ 6

√
3

7
c f cp cos(η f p) + 4

3
c2

f + 2c2
p

]
, (A3)

β3 = 1

C

[
8

3

√
7

5
cd c f cos(ηdf + φ)

+ 6

√
3

5
cd cp cos(ηd p + φ) + 2

√
7csc f cos(ηs f + φ)

]
,

(A4)

β4 = 1

C

[
18

7
c2

d + 8

√
3

7
c f cp cos(η f p) + 18

11
c2

f

]
, (A5)

β5 = 20

3C

√
5

7
cd c f cos(ηdf + φ), (A6)

β6 = 100

33C
c2

f , (A7)

where C = c2
s + c2

p + c2
d + c2

f and ηll ′ = ηl − ηl ′ .
The six β parameters can be obtained in the same way

as the s electron by projecting the calculated PAD onto the
Legendre polynomials. Although the one-photon ionization
for the p electron involves two different partial waves, it is
possible to distinguish between them. In the TDSE simulation,
where a model potential is applied, the phases for different

063117-7



MAO, ZHANG, CHEN, YAO, LI, AND HE PHYSICAL REVIEW A 109, 063117 (2024)

partial waves can be directly calculated, leading to a combina-
tion of the Coulomb phase shift, �l , and phase shift induced
by the short-range potential, δl . As for the amplitudes, they
can be directly extracted separately. In experiments, both the
phases and the amplitudes can be acquired through the RAB-
BITT technique [14]. Therefore, the amplitudes and phases
from the one-photon ionization can be taken as a reference
and the separation of the p and f wave contributions can be
realized.

cs, cd , ηs, and ηd are now considered as known parameters.
From the fitting of β5 with respect to φ, ηdf , and cd c f /C can
be calculated. Then η f and α f = c f /C are calculated if the d
wave contribution is plugged in. Now β3 can be reformed into
β̃3 by

β̃3 = β3 − 14

25
β5 − 2

√
7csα f cos(ηs − η f + φ)

= 6

C

√
3

5
cd cp cos(ηd − ηp + φ). (A8)

Similarly, both ηp and αp = cp/C can be extracted with the
fitting of β̃3. The amplitudes can be calculated as

c f = 33β6

100α f
, (A9)

cp = 33β6αp

100α2
f

. (A10)

The ηl extracted can be connected with the phases excluding
the centrifugal potential, σl , with

σl = ηl + lπ

2
. (A11)

APPENDIX B: TWO-PHOTON IONIZATION
FOR p0 ELECTRONS IN NEON

By using the TDSE simulation, we apply this scheme to
study the TPI processes in neon. The Hamiltonian is in the
same form as Eq. (1) but with

V (r) = −1 + a1e−a2r + a3re−a4r + a5e−a6r

r
, (B1)

where a1 = 8.359, a2 = 2.500, a3 = −4.750, a4 = 8.283,

a5 = 0.625, and a6 = 0.640. It is Tong-Lin’s model potential
for neon atoms [63,64]. The parameters of the potential are
chosen from Ref. [64] for more accurate description of the
excited states. By directly diagonalizing the Hamiltonian, it is
calculated that the energies of the 2p state and 3s state of this
model potential are −0.793 a.u. and −0.187 a.u., respectively.
The 2p state is selected as the initial state in the following
calculation. The envelope of the vector potential and the grid
parameters are the same as in the case of the s electrons in
hydrogen atoms, except that the number of B-spline functions
is chosen as 8000. Due to the form of Tong-Lin’s potential, an
additional phase shift induced by the short-range potential, δl ,
is added to the Coulomb phase shift, �l . The summation of
these two terms can be directly obtained from the QPC-TDSE
program.

For two-photon nonresonant ionization in neon, we apply
ω = 0.681 a.u. as the fundamental frequency. The intensities
of the pulse pair are Iω = 1 × 1013 W/cm2 and I2ω = 6.3 ×
1010 W/cm2. The FWHM is 8fs. By applying the method

FIG. 7. (a) Extracted σp and σ f from the β parameters, denoted
by isolated points, in the energy domain for ω = 0.681 a.u. with
T = 8 fs in neon. The bold curves show the calculated partial-wave
phase shift �p + δp and � f + δ f . (b) The amplitudes of the p and f
waves as a function of the photoelectron energy under the same laser
conditions. The isolated points are extracted from the β parameters
and the bold curves are directly obtained from the TDSE calculation.

introduced in Appendix A, the amplitudes and phases of the p
and f waves are decoupled. The phases are shown in Fig. 7(a),
while the amplitudes are shown in Fig. 7(b). The information
of the p and f waves is denoted by red dots and blue squares,
respectively. The phases agree well with �l + δl and the am-
plitudes coincide with the cp and c f directly obtained from
the TDSE calculation. Therefore, the phases of two-photon
nonresonant ionization of the p0 electron in neon are simply
the summation of the Coulomb phase shift and the phase shift
induced by the short-range potential. This also indicates the
validity of our decoupling scheme for electrons in the p shell.

As for the two-photon resonant ionization, we choose the
3s state as the intermediate resonant state. The fundamental
frequency of the pulse pair is selected as 0.606 a.u. The inten-
sities are Iω = 1 × 1011 W/cm2 and I2ω = 1 × 1010 W/cm2.
The FWHM ranges from 6 fs to 10 fs. Based on Eq. (9), the
extracted phases for p and f waves are converted to their cor-
responding time delays. Both the phases and the time delays
are shown in Fig. 8. It is discovered that the time delay for the
p wave increases linearly with the FWHM, while the one for
the f wave remains almost unchanged. We then compare the
results with our model developed in Sec. III B. Equation (17)
is now modified as

τ r
l = τ 0

l + τ ∗, (B2)

FIG. 8. The time delays for ω = 0.606 a.u. τp and τ f are calcu-
lated from the extracted σp and σ f , respectively. The orange dashed
line shows the value of τ r

p and the green dashed line shows the result
from τ 0

f .
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where

τ 0
l = ∂ (�l + δl )

∂E

∣∣∣∣
E=E0

. (B3)

We can find that τ r
p fits well for the time delay of the p wave,

while the one of the f wave aligns with τ 0
f . This shows that

the intermediate resonant state only affects the final p-wave

contribution. As for the f wave, it is still a two-photon non-
resonant ionization process. This is in accordance with the fact
that if the electron is ionized via the intermediate s state, the
resonant ionization pathway only leads to the p wave based
on the selection rule. The f wave completely originates from
the nonresonant ionization pathway despite the occurence of
the resonant transition.
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