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Earlier research highlighted the absence of certain bright peaks in Autler-Townes laser excitation spectra of
alkali-metal atoms and attributed this phenomenon to a specific architecture of adiabatic (or “laser-dressed”)
states in hyperfine (HF) components. Here we have studied the dressed states’ properties in several two-photon
excitation schemes where constructive and destructive interferences between HF excitation pathways limit the
available two-photon transitions. The analysis reveals a mechanism by which this interference reduces the
conventional two-photon selection rule for the total angular momentum F, from AF =0,+1 to AF =0.
Our discovery presents a practical method for selectively controlling the populations of unresolvable HF F
components of ns;;, Rydberg states in alkali-metal atoms. Using numerical simulations with sodium and
rubidium atoms, we demonstrate that by blocking the effects of HF interaction with a specially tuned auxiliary
control-laser field, the deviations from the ideal selectivity of the HF components population can be lower than

0.01% for Na and 0.001% for Rb atoms.
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I. INTRODUCTION

Previous work on the properties of laser excitation schemes
in the presence of hyperfine structure [1,2] has led us to
consider coherent control methods for single-state creation
with high fidelity, that could be applied to quantum computing
(QC) [3]. Development of QC, one of the rapidly emerg-
ing modern technologies, faces several critical challenges in
producing a reliable quantum computing device. Coupling
to the environment and the generally high sensitivity of
quantum systems to external influences lead to decoherence,
measurement noise, and computation errors. In fault-tolerant
approaches to QC, the majority of physical qubits are used
by error correction [4], where they have to be initialized and
read out repeatedly during the computation. Development of
high-fidelity qubit manipulation techniques can alleviate the
resource-heavy error correction by reducing the error rates.
Preparation of quantum objects into a desired state seems to
be one of the today’s biggest challenges [5]. Indeed, we can
only trust the results of computations when qubits are consis-
tently initialized exactly in the required state. The preferred
preparation process depends on the physical implementation
of the qubit. In the case of neutral atoms, coherently controlled
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electronic excitation into a Rydberg state is often preferred as
it allows to manipulate the excited state conveniently [6,7].
Although a variety of coherent techniques such as the stim-
ulated Raman adiabatic passage technique (STIRAP) [8,9]
have enabled nearly 100% efficient excitation of the selected
target quantum state [10], for alkali-metal atoms the perfect
level addressing problem remains unsolved due to existence
of hyperfine (HF) splitting of the atoms’ energy levels. HF
structure of highly excited levels with large principal quan-
tum numbers n can not be resolved due to the small energy
separation (~n~3) between sublevels. Thus, no separate HF
sublevel can be populated by any tuning of the exciting laser.
Our research presented here (see Secs. II and IV B)
demonstrates that selective excitation can still be achieved
for a few two-photon excitation schemes of type 3(5)si, —
3(5)p32.1/2 — nsip in 2Na and ®Rb atoms (see Fig. 1).
Throughout this paper, the principal quantum numbers and the
HF energy level splitting values placed in parentheses refer to
rubidium atoms. In these excitation schemes, the total angular
momentum F” of a well-resolved ground 3(5)s;,, state has
to remain the same for the final ns;/, state. As long as the
P laser couples all HF components F’ of a 3(5)p3/2,1/> state
in the first excitation step (AFps = 0, £1 according to the
one-photon selection rule), while in the second step the S
laser couples both HF components ' = 1,2 of ns;,, state
(AFsp = 0, 1), one of which turns out to be unpopulated, we

©2024 American Physical Society
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FIG. 1. Excitation schemes in 2Na (and ¥ Rb, the numbers in
parentheses). The weak probe laser P excites the transition between
the ground state g and the intermediate state i, whereas the strong
field S couples the intermediate state i to the final state f, forming the
adiabatic (laser-dressed) states. The detunings Ag p of the laser fields
with the frequencies wy, wp are defined relative to the resonance fre-
quencies of the respective HF transitions between components with
F' =2 and F = 2. For instance, Ay = w5 — Wsyr=2)3pF'=2), While
Ap = wp — W3pFr'=2), 357", SO that Ag p, as shown in the schematic,
have negative signs.

can speak of a specific two-photon selection rule AFgsps = 0
observed instead of the expected AFgps = 0, £1.

We study the emergence of this “modified” selection rule
for certain two-photon transitions in alkali-metal atoms, fo-
cusing on sodium and rubidium due to their widespread use
in applied fields of physics. As will be shown later, the set
of suitable excitation schemes may be extended to rsi;; —
kp3j2,1/2 — nsi/2, where the principal quantum numbers k >
r; n > k. For our purpose, we will employ an Autler-Townes
(AT) spectroscopic experiment as it allows observing popula-
tions of the intermediate (i) and the highest (final, f) states of a
two-step excitation scheme [11]. In a typical AT arrangement
(see Fig. 1 for the corresponding energy diagram), a strong
(S) laser couples intermediate and final levels, producing adi-
abatic (“laser-dressed”) states, while a weak probe (P) laser
couples ground (g) and intermediate levels, providing a mod-
est population of the adiabatic states.

The simultaneous interaction of multiple HF and Zeeman
components leads to a complicated and difficult to analyze
excitation spectrum, due to the presence of a number of dif-
ferent Rabi frequency values. Authors of work [12] developed
the so-called Morris-Shore (MS) transformation for finding a
special set of basis wave vectors (MS basis), which reduces
a coupled two-level system with degenerate sublevels (Zee-
man sublevels for instance) to a set of coupled “bright” pairs
(BS) and single decoupled “dark” states (DS) (see also in
[13]). Noticeable HF splitting (especially in Rb) introduces
a fundamental limitation for practical use of the MS method.
However, if the S-laser coupling is much stronger than the HF
interaction between sublevels (see i — f transition in Fig. 2),
then adiabatic states are formed by pairs of coupled BS (i, f)
states in Fig. 2) and by a set of single noninteracting DS (|d)
states in Fig. 2). As it was shown in works [1,2], some BS
(termed “chameleon” states) acquire features of dark states
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FIG. 2. The same level scheme as in Fig. 1 but under RWA in
the semihyperfine basis of the Morris-Shore type with broken HF
coupling in the intermediate i subspace. The sets of bright [i, f), ,,
chameleon |, fy. ,), and dark |dy ) states in the i or f spaces Ay
or A; depend on the magnetic quantum number M and on the f
and 7 states’ quantum numbers F and F’ respectively. The index
n = 1, 2 that is used with states |g, i, f), denotes the first component
of the double index n =F"M (see its definition in Sec. II C) while the
second component M is shown on the figure itself. The RWA energies
&; of i states are chosen as zero, while those g, = Ap, e;(F =2) =
—Ag of gand f states are determined by laser detunings Apj.

provided that their (|fy), ..., |fy) states in Fig. 2) are not
directly coupled to the ground state.

The fluorescence radiation of adiabatic states bears infor-
mation about the states’ populations, and measuring it while
scanning the P-laser frequency yields AT spectrum that re-
veals a set of levels: the fluorescence peak positions and
heights correspond to energies and populations of the adia-
batic states (see the corresponding spectra in Sec. III). Due to
the large HF splitting in the ground state, the adiabatic states
are probed from either the F” = 1 or F” = 2 HF level of the
g state.

The key result of our work is that upon probing, one is
in fact addressing independent (orthogonal) sets of adiabatic
states representing separate three-level ladderlike sequences:
one set is selectively excited from F” = 1, and a different set
from F” = 2 (Fig. 2). If the selection rule AF = 0 is satisfied
for the final nsy /, state, then only one F’ sublevel, namely F' =
F”, is populated and the AT spectrum will contain only two
peaks that correspond to a single bright states pair. And in-
deed, the spectrum associated with the 351/, — 3p3/2 — 5512
sequence in Na is found to be just as expected (see Fig. 7 in
Sec. IID).

In our previous works [1,2], devoted to numerical experi-
ments with sodium atoms, we performed calculations of AT
spectra for two of the excitation schemes, namely, 3512 —
3p3j» — 4ds)n 3. It was found there empirically, that, after a
special, MS-like transformation in HF sublevels of the inter-
mediate 3p3/, state, the excitation scheme is reduced to a set
of independent simple three-, two-, and single-level blocks (as
shown in Fig. 2), provided that HF splittings of intermediate
i states may be ignored. In this work, we demonstrate analyt-
ically two fundamental facts which hold for any alkali-metal
atom. (i) The simplification revealed in [1,2] is a characteristic
feature (Sec. II) of all linkage diagrams in the case of linear
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polarization of the P- and S-laser fields. (ii) The two-photon
selection rules AF = 0 are satisfied regardless of the P- and
S-laser intensities, provided that the last ladder step is nsi/»
state and the proper elimination of HF interaction at the step
i is performed using special manipulation instruments, such
as an additional control laser and properly adjusted laser de-
tunings (Sec. IVB and Appendix C). The physical reasons
for our findings are associated with the specific properties
of linearly polarized laser fields, namely, with the fact that
the corresponding operators of their interaction with atomic
states turn out to be semiunitary in a sense, partially retaining
the orthogonality property when acting on the atomic wave
functions. The exact formulation and algebraic proof of this
fact are given in Sec. IIB and in Appendix A. Noteworthy,
linearly polarized lasers are widely used to create optical
dipole traps due to uniform ac Stark (light) shifts that do not
depend on the magnetic quantum numbers M [14,15].

The rest of paper is organized as follows. Section II C is
devoted to the construction of a special MS basis of wave
functions at each step of ladder excitation, demonstrating that
the HF operator turns out to be diagonal (or negligible for nd
states) in the basis of the ground and final steps. To take into
account HF interaction at the intermediate i step, the matrix
form of the HF operator is provided (Sec. II D), which makes
it possible to estimate both HF splitting and HF mixing for
elements of the MS i basis. The latter is a key for finding
the necessary parameters for the auxiliary laser, which is used
(Sec. IV B) to partially block HF mixing within MS i basis
and, thus, to control the two-photon selection rules. In Sec. III
after a brief discussion of the basic terms and a formalism
through which bright, chameleon, and dark states manifest
themselves in fluorescence, we will illustrate our theoretical
findings with numerically calculated AT spectra for a few
excitation schemes at hand. The mechanism underlying the
AT spectra reduction and its connection with selection rules is
described in the next Sec. IV. Following the method used in
the phenomenon of electromagnetically induced transparency
[16], Sec. IVB demonstrates how the correct tuning of an
auxiliary control laser can bypass the limitations imposed by
the HF interaction effects on the degree of selectivity upon
excitation of the HF components of Rydberg ns;,, states.
The paper ends with a conclusion and acknowledgments.
Appendix A gives mathematical formulations of the field op-
erators semiunitarity, while Appendix B gives survey of the
numerical technique and atomic data used in our AT spectra
calculations. Finally, Appendix C is devoted to assessments of
the selectivity factors depending on parameters of the control
laser used for blocking the HF effects.

Atomic units are used throughout this paper unless stated
otherwise.

II. TWO-STEP EXCITATION SCHEMES
WITH HYPERFINE STRUCTURE

Dynamics of atomic systems under the influence of pe-
riodic or polychromatic control fields can be accurately
described using various modifications of the Floquet tech-
nique [17-19]. A useful tool for theoretical analysis in the
case of nearly resonant monochromatic laser fields E cos(wyt)
is the rotating-wave approximation (RWA) [20]. In this

framework, the problems of light-matter interactions are
reduced to solving the quasistationary optical Bloch equa-
tions for evolution of the atomic density matrix, with
characteristic timescales being determined by the duration of
laser pulses, i.e., the temporal behavior of the electrical field
amplitudes E(z). A key component of the theoretical analy-
sis is the concept of adiabatic (“laser-dressed”) atomic state
basis, which often allows to develop quantitative description
of the phenomena at hand for relatively simple systems and to
predict possible evolution scenarios in the case of multidimen-
sional configurations [9,21]. The latter have been considered
as promising physical objects for quantum processing on the
so-called qudits (multidimensional extension of qubits), per-
mitting to design effective algorithms for the implementation
of universal gates via adiabatic passage processes [22,23]. In
this section we develop an approach that enables identifying
dressed states in multidimensional two-step ladder excitation
schemes, in the specific case of alkali-metal atoms interacting
with linearly polarized laser light.

A. Notation and assumptions

Under the framework of RWA, the adiabatic states |«) are
obtained as eigenfunctions Hrw|o) = o|er) of the quasista-
tionary RWA Hamiltonian

Hpw =HO+HM L AOD Ao _p® p@ (1
which describes interaction of atomic systems with external
electromagnetic fields. The Hamiltonian H® of intra-atomic
interactions up to the fine structure interaction, together with
the HF operator H™) determine the energy structure of the
diabatic (bare) states of an isolated atom. The field operators

V&P — —%&E“’P) )

describe the coupling of the atomic dipole moment d with
the slowly varying amplitudes E®-*) of linearly polarized S-
and P-laser fields. The direction of the quantization axis is
chosen along the polarization unit vector e, common to both
laser fields, i.e., ES") = ES-Ple,. Importantly, the magnetic
quantum numbers M are dynamic invariants due to the az-
imuthal symmetry of the “atom + laser fields” system [24].
This feature allows us to treat each subset of mutually opti-
cally coupled HF levels with the same M as an independent
multilevel system Ay,.

Matrix representation of the field operators in a specifi-
cally chosen quantum states basis reveals important algebraic
properties, that are instrumental for studying the structure
of the adiabatic states. For all two-step excitation schemes
in alkali-metal atoms depicted in Fig. 1 and their analogs,
the field operators act on the wave-vector space A = A, @
A; @ Ay, which is a direct sum of subspaces A,, corre-
sponding to the three y = g, i, f ladder steps and consisting
of Zeeman and HF sublevels |y, F, M). We sometimes
omit the symbols of the quantum numbers in wave-vector
notation, indicating that the vectors belong to a specific
ladder step by the parameter y = g, i, f equivalent to y =
ks1/2, kp12,3/2, {ns1/2, nds n 5,2}, respectively. Although the
operators V® (3 = S, P) are self-adjoint, it is beneficial to
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FIG. 3. Two-photon ladder excitation schemes in the fine-
structure basis of alkali-metal atoms, without taking into account
the HF interaction. Under RWA, the energies ¢, of the y states
(y = g i, f) are determined by the laser detunings Apy, in the same
manner as in Fig. 2. The principal quantum number k of the ground
states is 3 for Na and 5 for Rb atoms, respectively.

use the following notation:

VON— Ay, VOTA— A,

VON,— A, VOTA - A, 3)
implying that the laser-atom interactions should be inter-
preted as mapping operations between excitation manifolds.
The operator V& (V") maps the intermediate subspace A;
(the ground subspace A,) onto the final subspace Ay (the
intermediate subspace A;) and vice versa for the conjugated
operator VT (V1) Remarkably, the mappings (3) partially
preserve orthogonality of wave vectors, i.e., they can be called
semiunitary. We expand on this property in the following
subsections. A more rigorous formulation of a semiunitary
operator provided in Appendix A will allow us to find in
Sec. I C an algorithm for constructing a special Morris-Shore
basis shown in Fig. 2.

B. Dipole matrix elements

The dipole matrix elements of the field operators (2) are
associated with their Rabi frequencies [25]

(v . F.M12VO |y F' M) =9QU (M8,

(VL F M2V Py FM )y =00 M)y (4)

which are presented in Appendix B in the HF basis |y, F, M)
[see Egs. (B3) and (B4)], helpful for numerical modeling
of AT spectra. Algebraic features of the operators V()
for linearly polarized laser fields, along with their spectral
properties, are more naturally displayed in the fine-structure
(FS) basis. At each ladder step y it consists of the prod-
uct |y, lJmymy)=|y, Jm;)|m;) of basis vectors of electron
|y, {Jmy) and nuclear spin |my).

The main advantage of the FS y basis is that it presents
the natural Morris-Shore bases for the field operators V)
provided that we entirely ignore the HF interaction (see
Fig. 3). This statement follows from the corresponding Rabi

frequencies of transitions

p, Lmgimg} [25]

G \_(_pye-ma VL LS
Qfx,fi (my)=(=1) IQ\s{j ] 1}

X /(2] +1)(2J + 1)

J 1 J
X <_ O m]> 3”1]’h15m[ﬁ1]’ (5)

my

the optical {y, lUmym; —

where linear laser polarizations imply that magnetic quan-
tum numbers 77; = my. Optical transitions do not affect the
nuclear spin variables, therefore, also 7iz; = m;. The phase
®=[+s5+14+J+J incorporates the electron spin s= % and
orbital / quantum numbers, the index J stands for the P- or S-
laser excitation, my=—J,—J +1,...,J,and my=—1I, —1I +
1,...,I (pay attention that in the HF basis M = m; + my).
The multipliers Q25 are the reduced Rabi frequencies, deter-
mined by Eq. (B3) in Appendix B. They are not essential for
the present discussion.

The relation (5) indicates that both laser fields couple only
the levels with the same quantum numbers my, m;, and the
corresponding linkage diagram shown in Fig. 3 is reduced
to a set of separate, noninteracting (independent) three-level
ladders

|ks1omy) — |kp3j2,120my) — Indsj2 3/2, nsiomy),  (6)

similar to those depicted in Fig. 2. Importantly, Eq. (5) deter-
mines the effective Morris-Shore Rabi frequencies (MSF) Q‘j(“

[12] of the operators V®:

eff ¥ _ 1| .l
Q= Q) =37 m)]. (7

If we change the sign of m;, then, due to the equality [25]

J 1 j o J+J+1 J 1 j
<—mj 0 mj)_( b (mj 0 —mj) ®)

and Egs. (5) and (7), it follows that Q(“) =Q). In other
words, the coupling between subspaces A, A has a singular

effective MSF value QEIZ, while for the i — f coupling there
are two possible MSF values

13
(S) (r.1J) _Z
Qy ij (mj = 2 2)

depending on whether |m;| =

)
Q1/2 32 =

(©))

1 3
50['5.

C. Building the Morris-Shore basis vectors

Although Eq. (7) is obtained for a specific fine-structure
basis, it can be expressed in an alternative invariant operator
form related to important semiunitarity features of the field
operators: V("9 provide the mappings (3) of subspaces A,
while maintaining fully (in the case y =i=kp,») or partially
(y =i=kps;,) orthogonality of wave vectors. The corre-
sponding mathematical discussion is given in Appendix A,
with a statement of what semiunitarity means in the paragraph
immediately after Eq. (A4).

That semiunitarity enables one to reduce the complex ex-
citation diagrams for alkali-metal atoms (of the type shown in
Fig. 1) to combinations of simple ladder excitation schemes
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TABLE 1. The structure of subspaces A, of wave vectors, related
to three g, i, f steps of the ladder excitation scheme, depending on
the i- f configurations of the ladder.

Configuration i-f A, A; A,
(])kpl/z — NSy A?S A?S A?S
(2) kp1jp — ndsp A?s AP ABS S ADS
(3) kp3jp — nsy 2 A?S A?S @ ADS ABS

(4) kpsjp — nds A?s ABS o ACs
(5) kp3jp — nds» ABS

Al?S @ A(;S
BS CS DS
Af EBAf @Af

due to applying two sequential semiunitary mappings of
ground HF sublevels:

V(P)|g, F//M> g QY/Z”)F”M?

5(S)|: ($) (10)
VP Aidpm — Q1) rme

Here |g, F”M) =|g)r»y is the initial diabatic vector from the
HF g basis (see in Fig. 2), while the unit vectors |i)py and
| f)Frm are its images in the A; and A subspaces. Since two
vectors |g), 5 with different double indices n=F"M and 7=
F"M are orthogonal, their images li),5 and | f), 5 at both i-
and f-excitation steps should be mutually orthogonal as well
and have unit magnitudes in accordance with Eqs. (A1), (A2),
and (A4). Therefore, each three-step ladder (10) represents a
unique and independent (orthogonal to others) excitation path,
predefined by the choice of the index 5, with the effective MS
Rabi frequencies Q(]P’ZS) related to the P and S lasers.

The above ladder basis levels |y), (y =1, f), being di-
rectly coupled to the ground states (see Fig. 2), constitute the
manifolds AES of bright states in the subspaces A, (see Ta-
ble ). Since ABS = VP A, then ABS = A; 1 [see Eq. (A5)],
where the manifolds A; ; are defined after Eq. (A3) as consist-
ing of all eigenvectors corresponding to the eigenvalue |Q§S> 2
of the operator V®TV® Tt is obvious that ABS = V& APS,

In the case of Fig. 3(a) (i=3p3/2), the intermediate A; sub-
space includes another manifold A, 3/>, orthogonal to A; 15.
We can choose in A; 3/, a complete set of basis vectors |igy)
(¢ =0,1,..., x), where the number x of possible values of
the integer index £ depends on the magnetic quantum number
M. Tables II-V show the possible sets of |igpr) with different
M’ using Na and Rb as an example. Note that the number M’ is
excluded from the notation of wave vectors if M’ is explicitly
indicated, as it done in captions to Table II and to Fig. 2.

As mentioned above, the set of vectors |f)ry (10) con-
stitute the manifold A of bright states in the final ladder
subspace A . If f=nsi/, then Ay =AJ]§S. Otherwise (f =nd)
we should supplement the bright f vectors by maps of the
basis vectors from the manifold A, 3/,:

VOligy) — Q) fem)- (11)

Due to the semiunitarity (A4) of the operator V), the vectors
| fenr) along with bright vectors | f) r7y have two main proper-
ties of their preimages |igpr), |i)Frar: (1) they have unit length
and (2) they are all mutually orthogonal.

Note, that, formally, the basis vectors entering Eq. (11)
are involved in the laser-atom interaction with the effective

TABLE II. Matrix elements of the HF operator in the MS basis
of A; subspace 3p;,, for manifolds with different M, in units of MHz
for the case of Na atoms. The diagonal elements give the shifts ¢; of
the initial RWA energies ¢; = 0 resulted due to the HF interaction,
while the off-diagonal elements are Rabi frequencies Qyur of HF
mixing between MS states.

M=0

States 1) #)> lio) li1)
i), —25.08 0.000 25.08 0.000
i), 0.000 49.06 0.000 27.80
lip) 25.08 0.000 —25.08 0.000
liy) 0.000 27.80 0.000 —25.08
M =41

States i), i), lig)

i), —-21.47 —7.44 14.87

i), —7.44 44.09 28.48

lip) 14.87 28.48 1.36

M =42

States 1), lip)

i), 29.16 29.16

lip) 29.16 29.16

MS Rabi frequency 9(3‘;)2 For this reason they may be called
“bright.” On the other hand, it is impossible to excite |igp)
or |fem) directly from the ground states (see Fig. 2). There-
fore, they should belong to the class of “dark™ [12]. In other
words, the basis vectors |igpr), |fem) share the features of
both “bright” and “dark” states, which gave reason to assign
them the name “chameleons” [1] and associate the manifolds
A; 32 with subspaces ACS of chameleon states. As a conse-

quence, A; f=AP} @ ACS (see Figs. 2 and 3) as it indicated
in row 4 of Table I.
Note, however, that for the ladder conﬁguration corre-

sponding to row 3) of the table, the value 2 3 /2 =0 [see
Eq. (8)] and, according to Eq. (11), Ay = A?S. In other words,

TABLE III. Matrix elements of the HF operator in the MS basis
of A; subspace 3p), for manifolds with different M, in units of MHz
for Na atoms.

M=0

States i) i),
i)y 0 0
i), 0 —188.9
M = +1

States i), i),
i), —47.22 81.79
i), 81.79 —141.7
M= +£2

States [i),

063116-5



ARTURS CININS et al.

PHYSICAL REVIEW A 109, 063116 (2024)

TABLE IV. Matrix elements of the HF operator in the MS basis
of A; subspace 5p3,, for manifolds with different M, in units of MHz
for Rb atoms.

M=0

States i), i), lio) li1)
I, ~114.6 0 114.6 0
i), 0 224.3 0 127.1
lip) 114.6 0 —114.6 0
lir) 0 127.1 0 ~114.6
M = +1

States i), |i), lio)

i), —98.1 —34.0 68.0

i), —34.0 201.6 130.2

lio) 68.0 130.2 6.25

M= +£2

States i), lig)

li), 1333 133.3

lio) 1333 1333

the chameleon states |ig)) are not associated here with any
laser interaction and should be treated as “dark.”

The configurations in rows 2 and 5 of Table I require
additional consideration. In the case of row 5, the direct sum

Afjm & AS;S/Z is part of the subspace A,q, (see Fig. 3).

Therefore, it has an orthogonal complement AnDdS; " such that

BS cs DS
A”dS/z = And5/2 S Ands/z @ AndS/z' (12)
The arbitrarily chosen basis vectors |dye) (6 =0, ..., k) inthe

manifold AEdSm are in no way coupled with either the ground
or intermediate states (see Fig. 2), i.e., are dark.

In the case of configuration 2 in Table I, when subspace
A consists of the direct sum of the subspaces A}“ and the
orthogonal complement A_]?.C to it, the basis vectors |dp)
from A?C also belong to the dark class.

TABLE V. Matrix elements of the HF operator in the MS basis
of A; subspace 5p,,, for manifolds with different M, in units of MHz
for Rb atoms.

M=0

States i), i),
i), 0 0
i), 0 —814.5
M = =1

States i}, 1%
li), ~203.6 352.7
i), 352.7 —610.9
M =42

States i),

)2 0

D. Accounting for hyperfine interaction

A remarkable property of the MS basis vectors built above
and depicted in Fig. 2 is a comparatively simple inclusion of
the HF interaction at the first and last steps of the ladder exci-
tation scheme. The g-basis vectors of the first ground step are
specially chosen as a set of eigenvectors |g)ry =g, F”"M) of
the HF operator, where it is diagonal. Accordingly, taking into
account the HF interaction is reduced, therefore, to tabular HF
energy shifts of g sublevels |g), depicted in Fig. 2.

When dealing with ns; / state at the third f step, the formal
mathematical description of the linkage diagram in Fig. 3
implies

5 (S)Y) S) P
VOVE Q) Q8. s1/0m]) Im))

= |f7 S1/2ml>|ml>8mjm}’8mlm}’- (13)

It is seen that the operator on the left-hand side of Eq. (11)
preserves the fine-structure basis vectors when mapping the
subspace A, to A ;. Therefore, V&V ® must also preserve the
quantum indices F”’M of HF basis vectors, i.e., map |g, F”"M)
to |f, F = F’M), how it is depicted in Fig. 2. This fact cor-
responds to the two-photon selection rules AF = 0, which
opens up perspectives for the selective excitation of the HF
components, as it is discussed in the Introduction. The HF
operator results in the conventional HF energy shifts egp of the
f-basis vectors | f) gy =|f, F = F”M) without mixing them.

In the case where the last step subspace A s corresponds to
nd states, the HF relative energy shifts turn out to be rather
feeble [less than 0.3 MHz even for n=4 for Na atoms (see
Table VII in Appendix B) and less than 2 MHz for n=10 in
Rb case] and may be ignored.

Importantly, the MS i basis of subspaces A;, related to the
intermediate ladder step, does not, unfortunately, diagonalize
the HF operator. This is well seen from Tables II-V which
represent the matrix elements of the HF operator in MS i bases
for Na and Rb atoms. The diagonal elements of the tables give
the shifts ¢; of the initial RWA state energies &; = 0 (see the
notations in Fig. 2), while the off-diagonal elements are Rabi
frequencies of mixing between different MS i states induced
by the HF interaction.

III. AUTLER-TOWNES SPECTRA

The simple architecture of the excitation schemes we are
dealing with in Fig. 2, allows, within the framework of
perturbation techniques for the HF interaction, an explicit
description of the adiabatic states structure formed by a strong
S laser (in what follows, we will assume the probe P laser
to be weak). We will show in Sec. III A an interesting speci-
ficity of dressed-state energies dependent on the reduced
Rabi frequencies that result in the formation of AT multiplet
peaks structure. Various aspects of dressed-state manifestation
(dark, bright, and chameleon peaks) will be demonstrated in
the numerical modeling of the AT spectra in Sec. III B with
focusing on the role of the HF operator in the appearance of
the main types of AT signals. In particular, special attention
(Sec. IITC) will be paid to the HF mixing of bright and
chameleon states shown in Fig. 2.
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A. Formation of multiplet structure in AT signals

In the zeroth approximation, the part of HF operator related
to off-diagonal (mixing) terms of its matrix at the intermedi-
ate i step of the ladder (see Tables II-V) can be neglected.
The field operator V' is reduced to two-dimension matrices
Mgs) acting within independent sets of two-level combinations
(¢ pairs) of bright |i, f)z., (¢=F") or chameleon |i, fey)
(¢=&) MS states with two MS effective Rabi frequencies
Qegfip, = QS)Z or Qegfié = Q;i)z respectively [see Fig. 2 ind
Egs. (10) and (11)]. The corresponding bare energies €=
e+eyy are determined by the initial RWA energies ¢ along
with the diagonal matrix elements egp of the HF operator (see
the discussion in Sec. II D) which we, unlike the off-diagonal
ones, explicitly take into account.

The diagonalization of the matrix operator M), coupling
¢-diabatic vector pair |i, f), results in ac Stark shift [20,26]

es=H[E+T0% A +(209)). AT =F,F (9

of the pair. The corresponding two eigenvectors [27]

|g+) = cosOli) +sin0|f),
|¢—) = —sinB[i) + cos O] f) (15)

belong to the set of ¢ pairs of repulsive zero-order
adiabatic (dressed) states. Here the mixing angle 26 =
arctan(—ZQ‘;ff/ AE.) (0< 60 < /2) provides a measure of am-
plitudes sharing between ¢-diabatic vectors [i), | f).

Strong coupling implies that both QES )2 32 exceed the bare
energy separations Az, (14) for all coupfing pairs, so that at
large reduced frequency 25 [see its definition in Appendix B,
Eq. (B3)] relation (14) reduces to the simple linear form

7. =E +%)/2 (16)

with the slope coefficients I =Qe§ﬁ/ Qg determined by the
effective MS frequencies. Actually, there are only two values
Iy 5,3/> related to bright (Qis/)z) and chameleon (Qgi)z) pairs.
Since a set of single dark states is not involved in the inter-
action with laser fields, their energies p should not depend
on g, i.e., formally ITp = 0. Noteworthy, the presence of
HF mixing between the MS basis vectors (see Tables 1I-V)
can insignificantly affect the values of both ¢p and g, with
variations of Qg.

The above properties of dressed-state energies are illus-
trated by the data exhibited in Figs. 4 and 6. Two branches of
“repulsive” energies e are clearly visible, the upper (4) and
the lower (—), as well as the horizontal (D), dark (IT, = 0)
branches. Noteworthy, due to the mirror symmetry o, about
any plane containing the quantization z axis, the dressed-state
energies do not depend on the sign of M [24,25].

Each ¢ pair of dressed states (15) results in the formation
of a peaks pair (£) in AT spectra, diverging with an increase
of the Rabi frequency €25, which is well observed in Figs. 5
and 7 (see a more detailed discussion in the next subsec-
tion). Different diverging AT peaks, corresponding to identical
slope coefficients £I1;,, (for bright peaks) or £Il3,, (for
chameleon peaks) in Eq. (16), may partially merge at large g,
forming complex multiplets (see Fig. 5). It is convenient to
label the (£) components of those multiplets by the symbols
Ny, where the integer N takes values N=F" =1, 2 for bright

8§i=:|:1_[§95 + &,
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5 opl234 = i
5 2' 2\-
o 1
S e L 0 \ 1
E-150 ,
: O f
el - lv
< .
300 | RO O D0
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FIG. 4. Energies ¢ of adiabatic (dressed) states in Na vs the S-
laser reduced Rabi frequency Qs [Eq. (B3)] for the 3s,,,(F", M) —
3p3p(F',M)—4ds)»(F, M) excitation Zeeman sequences (M=
0,1,2) in the case of pump laser detuning Ag=-—30MHz. The
dashed vertical lines correspond to €25 values presented in Figs. 5(a)—
5(d). The square brackets indicate the states that transfer into
dark states. The zero-energy positions related to the energy of the
3p3j2(F'=2) state. The curves labeled with quantum numbers F’ or
F refer to the dressed states starting to evolve at Qg = 0 from the
corresponding HF basis vectors |y, F, M) (y =i, f).

(¢=F") and N=0 for chameleons (¢ =£) ¢ pairs. In the
case of Figs. 4 and 5, two values of Il., namely, IT;/, for
(14, 24) and I3/, for (0+) multiplets, can be distinguished.
Their ratio turns out to be I,/ l'[3/2:«/ﬁ in accordance
with Egs. (9) and (5). In the figures, we also denote multiplets
related to dark states with the symbol D. In what follows, the
multiplet symbols are combined into one “Y,” which runs
through the meanings Y = 14, 24 for bright (Yg;), O+ for
chameleon (Y¢y), and D (Yp) for dark multiplets. The block
of dressed states involved in the formation of a multiplet Y
will be termed a “Y” block.
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FIG. 5. The total number N; of photons emitted by the final
4ds, state of Na atoms vs probe-field detuning for the 3s;,,(F") —
3p3;2 = 4ds, excitation sequences with F” = 1 (black solid curves)
and F” =2 (brown dashed curves). The vertical lines show the
expected AT peaks (see in Fig. 4): the green squares indicate en-
ergies of adiabatic states with M = 0, the blue circles with |[M| =1,
and the red arrows with |M| = 2. If several expected lines partially
merge and form a complex multiplet at Qg = 1500 MHz they are
incorporated with braces into a block of numbers. The blocks refer
to resolved AT components which are marked with symbols N, as
defined in Sec. III A. The “D” symbol indicates “dark™ components.

A semiquantitative account of the effects of hyperfine in-
teraction on AT spectra is possible within the framework of
perturbation theory under assumptions that (i) the splitting be-
tween the components of the multiplets is small and (ii) the HF
mixing rate between the dressed states, incorporated in two
different blocks T and Y’, can be replaced by one effective
Rabi frequency QT ~+- The latter is the average value (Qyr)
for the correspondmg frequencies presented in Tables I1-V.

Without HF interaction, the probe laser is capable of ex-
citing only one bright N pair (for instance, N =2 in the case
F” =2), resulting in the appearance of two multiplets Y, =
N.. The visualization of another multiplet Y’ 1, 0) occurs
due to the HF mixing of states from blocks Y’ and Yg,. The
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N ~ ,
E-zooz (a) [M=2 @) \2(31) 0
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3(|)0 6(|)0 I 9(l)0 I 12|00
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FIG. 6. The same as in Fig. 4 in the case of 3s,,(F" =2) —
3p3n — 5512 excitation sequence in Na for different S-laser reduced
Rabi frequencies 2. The corresponding RWA linkage diagrams are
shown in (al), (bl), (c1). Simulations are performed using parame-
ters Qp = 0.87 MHz, Ag = —115MHz.

corresponding ratio

Q) )
( T ,TBr) (17)

IY//I’YBr %R = |A8T,T |2
> IBr

of the multiplets intensities can be estimated as the factor R
that determines the distribution of the population between the
blocks with the energy shift Aey v, and the rate coupling
QN [1.24].

The numerical experiments presented below detail our
theoretical findings.

B. Numerical simulation

The Autler-Townes spectra are an important source of in-
formation about the atomic systems under study. Here we
simulate the Doppler-free experimental conditions of work
[28] where a supersonic beam of Na atoms, having the mean
flow velocity of 1160 m/s, is excited by two counterpropa-
gating S- and P-laser beams of the same linear polarization.
The amplitudes E?) space distribution of the laser electrical
fields corresponds to Gaussian switching of the Rabi laser
frequencies (B3): 2p— Qspexp(—2t2/12 ) with charac-
teristic times ts = 1050 ns and tp = 350 ns of flight of
atoms through the S- and P-laser beams. The simulations with
Rb atoms correspond to Doppler-free experiments with cold
atoms in optical dipole traps [7], while the time dependen-
cies of laser Rabi frequencies 2 p are identical to those for
Na atoms.

In our numerical simulations (the corresponding algorithm
is described in Appendix B), we studied the temporal evolu-
tion of the atomic density matrix p,,zy 574 (f) when the zone
of laser interaction is crossed by a single unexcited atom that
has only one populated HF g component F” with the equilib-
rium population n,(M")= 1/(2F"”+1) of the corresponding
Zeeman sublevels.
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FIG. 7. The same as in Fig. 5 in the case of 35, (F" =2) —
3p32 — 55y, excitation sequence for different S-laser reduced Rabi
frequencies 25. Simulations are performed for Na atoms using pa-
rameters Q2p = 0.87 MHz, Ay = —115 MHz. The expected AT peaks
(the vertical lines) are consistent with the data in Fig. 6.

C. Bright and chameleon multiplets

Typical AT spectrum for Na atoms, used as an example in
this section, are exhibited in Fig. 5 where one can observe
bright Yg; (14, 24+) and chameleon Yy, (0+) multiplets. The
characteristic feature of these two types of AT peaks, which
makes them related, is increasing separation between their (+)
brunches with increasing 2.

However, the chameleon 0. components arise due to the
HF interaction that shares the population between the bright
|i) prpy and chameleon [ig »s) diabatic states enabling thus that
the latter be excited from the ground state with a probe laser
(see Table II).

The intensities Iy, of the chameleon multiplets are eval-
uvated by Eq. (17), where the values of the mixing rates
Q%?TBr:(QHF) do not exceed 30 MHz as follows from
the data in Table II. Importantly, the frequency and energy
shifts Aevy,, v, between the bright and chameleon AT mul-
tiplets behave as Agy/3/2 ~ (IT3/2 — I1;/2)Q2 in accordance

to Eq. (16). Consequently, the 01 peaks associated with the
chameleon states should fade with increasing 2g, which is
confirmed by the graphs in Fig. 5. The latter feature is a char-
acteristic property of dark states, which is discussed below.

A more detailed study of the chameleon states is presented
in [2], where their two main types are defined, namely, “slow”
and “fast.”

D. Dark multiplets

As can be seen from Figs. 2 and 4, all dark states re-
lated to the 3p3/» — 4ds), transitions lie in the final Ay
subspace, where, in the case of Na atoms, they have negligible
HF mixing frequencies Qyr with both bright and chameleon
states. For this reason, the corresponding dark multiplets are
not visible according to Eq. (17). Another excitation scheme
3s12(F" =2) — 3p3» — 5512 is more convenient for ob-
serving the dark states since all of them are situated in the
intermediate A; subspace (see Table I and Fig. 6).

Importantly, formally the Morris-Shore frequencies Qgs/)z
(9) turn out to be equal to zero, so that the states |iz) shown
in Fig. 2 and referred to above as chameleons change their
status (“color”) to dark. The HF mixing rates Qyg in Table II
between the bright and now dark states reach values 30 MHz,
which makes it possible to observe the dark multiplets D, pro-
vided that their shifts Aep, p from the bright multiplets 1.4, 24
do not exceed these 30 MHz. It is worth bearing in mind
that since the dark states are excluded from the laser-atom
interaction, their energies are not significantly changed upon
growth of Qg in contrast to the bright states, which quickly
run away to the left and right spectral edges (see Fig. 6) with
a simultaneous increase in the shifts Agg,p ~ I112Q. As a
result, the dark multiplets are washed out from the AT signals
for large Q5.

Our theoretical predictions are illustrated by the data pre-
sented in Figs. 6 and 7. Figure 6 depicts [(al)—(c1)] the linkage
diagrams associated with the 3p3,, — 5512 couplings by §
laser for three possible Zeeman numbers |M| = 0, 1, 2, while
Fig. 7 gives AT spectra for several values of the Rabi fre-
quency £2s. Figure 6 exhibits also the calculated dressed-states
energy diagrams versus g, which are then used in Fig. 7 to
indicate the expected positions of the AT peaks. It is clearly
seen that dark multiples disappear with increasing S-laser
intensity.

IV. CONTROL OF SELECTIVE EXCITATION
OF UNRESOLVED HF COMPONENTS

Three features of the discussed results of numerical sim-
ulations should be noted. (i) The initial AT spectrum at very
low 25 demonstrates a typical two-step excitation pattern with
one (Fig. 5) or two (Figs. 7 and 8) peaks due to two-photon
resonances arising when the RWA energy ¢, of the ground
wave vector |F”M) coincides with that ¢, for any HF sub-
levels |FM) of the final state.

(i1) The value 2y introduced by Eq. (B3) is a rather formal
frequency associated with optical transitions between inter-
mediate and final quantum states |nl). Both fine and hyperfine
interactions significantly diminish the partial Rabi frequencies
(B4) along with the MSF szgs/; 32 [Eq. (9)], which are actually
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FIG. 8. The same as in Fig. 5 in the case of 3s,,(F" =2) —
3pi2 — Ss1;2 excitation sequence for Na atoms with parameters
Qp = 1.22MHz, Ay = 12 MHz. Vertical lines show the expected AT
peaks, obtained from calculated dressed-state energies.

involved in the coupling of diabatic wave vectors and the
formation of repulsive adiabatic state pairs (14). It can be seen
from Fig. 5 that, for example, the value 253 = 1500 MHz corre-
sponds to 293)2 ~550 MHz, which is equal to the frequency
shift between the two bright sidebands 2. [see Eq. (14)]. In
the case of subsequent Fig. 8, 23 =2450 MHz corresponds
to 29(15)22820 MHz, which is noticeably less than the HF
splitting of 1772 MHz in Na. A similar situation occurs for Rb
atoms, where the reduced Rabi frequency Q¢ = 4000 MHz
of the auxiliary control laser (see x axis of Fig. 13) results in
a value of ~1500/2 MHz for the corresponding actual MSF
Qg“). For this reason, the control laser is unable to couple
both ground HF components at the same time.

A. Spectral composition and selection rules

Before proceeding to the analysis of the third, interesting,
and important from the practical point of view, feature of
the discussed AT spectra, let us consider one more excita-
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FIG. 9. Energy-level diagrams (in MHz) for the states |i)zy,
from the Morris-Shore basis in A; subspace 3p; ;. The HF energies
of the MS i states along with HF mixing frequencies Qur are pre-
sented in Tables III and V for Na and Rb atoms. The dashed lines
depict the RWA positions of the ground sublevels |g)z~ ,, when the
auxiliary control laser, (a) tuned to the transition 3(5)s;,(F"=1)—
3(5)p1,2, has the detuning Acp =—141.7(—610.9) MHz; (b) tuned
to the transition 3(5)s; 2 (F” =2)— 3(5)p\ 2, has the detuning A, =
—47.22(—203.6) MHz (see Table VI).

tion scheme 3(5)s1,2(F” =2) — 3(5)pi2 — nsi2. In this
sequence, the configurations of the corresponding linkage di-
agrams in Fig. 3 imply the absence of dark states (see also
Tables I, III, and V), so that only bright peaks 1., 2, should
be observed. The data in Fig. 8 confirm that expectation. The
crucial difference from the two previous cases (see Figs. 5
and 7) at large coupling laser intensities lies in the noticeable
resolution of all possible eight singlet AT peaks, resulting
from excitation of eight (see below) dressed states.

Such an essential property of AT spectra is amazing in
view of a rather poor structure of the HF sublevels of the
intermediate 3(5)p;,, states and is explained by the relatively
large [189(816) MHz] HF splitting. Figure 9 reproduces the
data of Tables III and V in graphical form. It is seen that
three bright state (BS) pairs, namely [i, f)pr—5 y7—0.1.2> can
be directly excited by P laser upon its probing the transi-
tion 3(5)s1,2(F"=2)— 3(5)p1,2. As aresult, the AT spectra
should contain six bright Y, picks 2. (M =0, 1, 2), which
form six well-resolved singlets due to significant HF shifts.
Noteworthy, all three final BS are elements of the HF basis
| )=y =|F =2, M) since, as it was shown in Sec. IID the
elementary excitation sequences (10) provide a specific two-
photon selection rule AF =0 in the case of ns;; final states.

An essential HF coupling between BS’s (M =1) may vi-
olate, however, the selective excitation of HF components
with F'=2. Note that because all Yg; have the same slope
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TABLE VI. The Agc, Ag“) detunings used in our calculations
for strong, control, and probe lasers (see Figs. 10—-13) upon selective
excitation of the HF F component of Rydberg states 12(14)s,,, in
units of MHz.

i-state kp; kps)» kpsp kpi1 kpi2
HF component F=2 F=1 F=2 F=1
Na, Ag —44.09 21.47 141.7 47.22
Na, AGY 44.09  —2147  —1417 —47.22
Na, Acp Absent Absent —141.7 —47.22
Rb, Ag —201.6 98.1 610.9 203.6
Rb, AYY 201.6 —98.1 —610.9  —203.6
Rb, AcL Absent Absent —610.9 —203.6

coefficient Iy, (16), their HF shifts Ae; ¢ p (Where ¢ =
F” =1, 2) stabilize at large Qg at the values of 50 +~ 150 MHz
(see Fig. 8) in accordance with the HF energy shifts Ag;y o mr
of the corresponding BS |i), 5, depicted in Fig. 9. In particular,
this shift of 94.5 MHz for [i),_; y—; and |i),_, y—; BS turns
out to be close to the HF mixing rate Qur = 81.8 MHz, i.e.,
HF interaction leads to a strong population sharing between
these BS’s with the factor R(M =1)~1 in Eq. (17).

This means that the excitation of 2, (or 2_) (M=
1) singlet must be accompanied by other additional 1.
(or 1_) (M=1) one and vice versa. The corresponding
dressed state is a mixture of two zero-order adiabatic states
| =24), ¢ =14) M=1) (15) of approximately equal
weights and, hence, equal populations of two HF sublevels
F=1,2;M=1 of the final state. Figure 11(a) illustrates well
the composite structure of the relevant fluorescent signal (see
the further discussion in the next subsection). Note that in the
case of M =0 the HF coupling of BS’s is absent. The latter
results in the preservation of the two-photon selection rule
AF =0 when two singlets 1., 1_(M =0) become invisible in
Fig. 8.

(iii) Now we can formulate the third important feature
of the AT spectra: the depletion of the AT spectra, which
manifests itself in (a) the merging of its components into
multiplets with (b) the simultaneous absence of some bright
peaks, makes it possible to ignore the HF mixing between
bright states.

With regard to the spectra of Figs. 5 and 7, one cleanly
sees both signs of spectra simplification, namely, (a) multiplet
structure and (b) lack of all AT multiplets 1. related to the
excitation scheme 3s;,2(F”=1) — 3p3,,. Bright multiplets
24 and 14 turn out to complement each other, i.e., their vi-
sualization occurs during independent probing from different
initial HF components F” =2, 1 of the ground state. The data
in Table II do show that HF interaction poorly couples all
|i); and |i), BS: the corresponding Qyp rates are Qup=0 for
M =0, 2 while for two BS with M =1 the sharing parame-
ter (17) R=(7.44/65.6)> =0.0129. Practically the same thing
happens in the case of Rb atoms, as can be seen from the
corresponding data in Table I'V: for both M =0, 2 the values of
Qur=0 and the sharing parameter (17) R=(34.0/299.7)*> =
0.0128 for two BS with M =1.

Bypassing the effects of HF mixing leads to an important
result: the proper choice of the initial wave vector |gF" M)

0 20 40 60
Probe-laser detuning A, (MHz)

Photon Number N, (arb. units)

170 180 190 200 210 220 230
Probe-laser detuning A, (MHz)

FIG. 10. The total numbers Nyr of photons emitted by the hy-
perfine components F=1,2 of the final ns;;, Rydberg state vs
the probe-field detuning for the ks, (F" = 2) — kps;» — nsi ex-
citation sequences with the following parameters. (a) The case
of Na atoms: k =3,n =12, Qp = 0.1 MHz, Ay = —44.09 MHz,
Qs = 10 MHz. At resonance (Ap ~ 44 MHz), infidelity factor (18)
Ry, = 7.8 x 107*. (b) The case of Rb atoms: k =5, n = 14, Qp =
0.1 MHz, Ag = —201.6 MHz, 25 = 10 MHz. At resonance (Ap =~
202 MHz), infidelity factor (18) R, = 9.7 x 107+

selects excitation of one of the independent (mutually or-
thogonal) blocks of three-level sequences (10). This finding
remains valid for arbitrary P- and S-laser intensities, and
allows, as an example, stimulated Raman adiabatic passage
(STIRAP) unitary transfer [8] of initial populations from the
ground state to the desired target Rydberg states (see details
below). Another application is related to the formation of an
independent set of polaritons [16,29,30] involving different
three-level sequences (10) as their carriers.

B. Manipulations of HF interaction effects

Importantly, when nsj/, states are used as final states, the
sequences (10) implement a specific two-photon selection
rule AF =0, with the possibility of selective excitation of
unresolved HF components of the final Rydberg states. Mod-
ern applied problems require accurate information about the
quantum numbers of the states under study. In this subsec-
tion, we will consider some ways to eliminate unwanted HF
interaction effects (in the case of excitation sequences with
M ==1) that reduce the precision of selective excitation.

Since we are concerned with Rydberg states which have
small oscillator strengths (~n~3 [25]), the reduced Rabi fre-
quencies g should be confined within the value of ~10 MHz
[31]. In modeling the AT spectra, we choose the 125/, state
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FIG. 11. The same as in Fig. 10(a) for the 3s,,(F"=2) —
3pi2 — 125y, excitation sequences in Na with parameters Qp=
0.1 MHz, Qs=5 MHz, Ag=141.7 MHz. The auxiliary control laser
has the detuning Ac. =—141.7 MHz (see Fig. 9) with the following
Rabi frequencies (B3): Q¢ =0 MHz (a) and Q¢ =300 MHz (b). At
resonance (Ap >~ —142 MHz), infidelity factor (18) i, =0.24 (a) and
Ry =4.7 x 107* (b).

in Na and 145y, state in Rb as the final Rydberg states with
zero HF splitting between its HF components.

To enhance the population of the Rydberg states ns;, with
the chosen values of quantum numbers F, M under moder-
ate values of Qg and the suppressed influence of the HF
interaction effects (see below), the S laser must be tuned to
a single-photon resonance with the transition |i)gr_g 3, (J) —
|ns1/2) involving a bright MS i state |i)r,,(J) at the interme-
diate i step kp; of the ladder excitation. The required i-states
energy values ¢; are on the diagonals of the matrices in Ta-
bles II-V (frames M = +1), and the above S-laser resonance
tunings correspond to its detunings Ag=—¢; presented in
Table VI. The strongest peak in the AT spectrum will arise
when the probe P laser scans the frequency region in the vicin-
ity of its detuning Ag"‘) =g, responsible for the two-photon
resonance (see Table VI and Figs. 10-12).

The accuracy of excitation selectivity can be judged from
deviation from the ideal 100% selectivity using infidelity fac-
tors N, defined as the ratio

Nep—
Ry=— I
Nip=1+Nir=2

Nir=2

N=—"—"7— (18)
Nep=1+Nfr=2

of the partial AT signals Ny corresponding to the total num-
ber of photons (B2) emitted by each Rydberg HF sublevel
F =1 or 2. The first relation in Eq. (18) is used when we ap-
ply the sequence ks /»(F") — kpi,, — nsi;» with F” =2 for
selective excitation of HF sublevels F' = 2 of nsy, states. The
second relation is applied in the case of selective excitation of
sublevels F = 1, realized at F”" =1.

The coefficients i are determined by the sharing factor
R (17), accounting for population transfer between different

1.0
(a) Rb, F'=2

102

10

106

1084

1.0 T T T

Photon Number N, (arb. units)

220 210 200 1190 1180
Probe-laser detuning A, (MHz)

FIG. 12. The same as in Fig. 10 for the 5s;,(F")— 5pip—
145> excitation sequences in Rb with the following parameters.
(a) F"=2, Qp=0.1 MHz, A3=610.9 MHz, Q3=5 MHz, AcL.=
—610.9 MHz, Q¢ =700 MHz. At resonance (Ap~—611 MHz),
infidelity factor (18) |, =1.30 x 107, (b) F"=1, Qp=0.1 MHz,
AS =203.6 MHZ, QSIS MHZ, ACL:_2036 MHZ, QCL:
700 MHz. At resonance (Ap~—203 MHz), infidelity factor (18)
Ry =2.4 x 107+,

bright i states due to HF interaction. Small values of R result
in higher degree of selectivity. This statement is illustrated by
the data in Fig. 10 where R, (18) reaches the value 7.8 x 10~*
for Na atoms and 9, = 9.7 x 10~* for Rb atoms in the
vicinity of two-photon resonances Ap ~44.1 MHz for Na and
Ap~202 MHz for Rb. Noteworthy, although the HF splittings
of the Na and Rb atoms differ significantly (by a factor of
~4.5), their infidelity factor values turn out to be close due to
almost identical R-factor values.

Importantly, although the state kp3/,, as an intermediate
step in the elementary ladder schemes (10) provides a rather
small N, the presence of dark states |ip) or |i;) coupled with
bright states |i); or |i), (see Tables II-V) can reduce the
expected efficiency of the ladders (10) as independent carriers
of coherent quantum processes. The latter circumstance can
make the sequence of excitations ks (F")— kpi»— nsi
more practically attractive for the experimental implementa-
tion of selectivity due to the lack of any dark state (see Fig. 9)
in the intermediate kp/, step.

To circumvent the problem of strong HF population shar-
ing between BSs i states in the case of M =1, which prevents
selectivity [see Fig. 11(a) and data of Fig. 13 at Q¢ =0],
we will use the idea behind the phenomenon of electromag-
netically induced transparency [16,20], namely, introduce an
auxiliary control laser (CL), as shown in Fig. 9. This laser has
to block the HF coupling of Qpr=_81.8(352.7) MHz between
BSs i) pry p—y and |i) prp py, providing, thus, selective exci-
tation of the final HF components. If one aims to dominantly
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FIG. 13. Infidelity factors Ji;, (18) at the resonance detunings
AQ“) vs the reduced frequency 2¢ of the control laser for excitation
schemes 3(5)s12(F") = 3(5)pi2— 12(14)s1,, in the case of Na
(a) and Rb (b). The choice of F” =2 results in dominant (R, < 1)
population of the final F =2 HF component while F”=1 corre-
sponds to selective (M| < 1) excitation of the =1 component.

populate the HF component F =2 [the case of Figs. 11(b)
and 12(a)], then it is necessary to tune the control laser in
accordance with Fig. 9(a); setting according to Fig. 9(b) leads
to the predominant contribution of the F =1 component to the
AT spectra in Fig. 12(b).

The applied control laser has linearly polarized amplitude
E(D) = E(CDe_ with Gaussian spatial distribution correspond-
ing to the switching time 7t =75=1050 ns, therefore, its
field operator V©1) | the corresponding reduced Rabi Q¢ , and
MS Qﬁ%) frequencies are determined by Eqgs. (2), (B3), and
(7), respectively, when replacing symbols S — CL.

Figures 11-13 exhibit the results of our calculations which
demonstrate significant improvement in selectivity up to the
factors it ~ 107> due to the action of the control laser even at
relatively moderate MS frequencies Qg%) ~ Qyr. Recall [see
point (ii) at the beginning of Sec. IV] that it is the values of the
frequencies Q(l%) ~ QcL./6 that enter the Bloch equation (B1),
thereby determining the evolution of the atomic system under
study.

A discussion of how to assess the infidelity factors (18)
is included in Appendix C, where, in particular, the resulting
(C7) and (C8) make it possible to explain all the features of
the curves M 2(R2cL) presented in Fig. 13. In the region of
moderate frequencies ¢, the factors 91 of deviation from
selectivity associated with the HF mixing of bright states
i) pr—»1 rapidly decrease (according to the power law '\JSZEE)
with an increase in the control-laser intensity blocking the
HF interaction. However, at large Qcr, the fall in i »(Qcr)
slows down, turning into an inverse quadratic relationship [see
Eq. (C8)]. It turns out that an additional channel, namely, the

cascade radiative decay (RD) of excited states, contributes to
the undesirable mixing of BS [i)zr_; ;.

Consider the case of the level system in Fig. 9(a),
when the probe laser is tuned to excite BS |i)z,_,, which,
due to the natural radiative decay into the ground state,
transfers (with the rate Ay,=1/1,) part of its population
to the HF components |g)» in proportion to the branching
coefficients TTr» = (2F”+1)/8 [25]. The acquired population
of the ground |g)r,_; component is immediately, due to the
control laser, transferred to the BS |i)f._,, thus creating an
additional to HF, undesirable RD, mixing between the quan-
tum levels of the intermediate kp;,, state. A similar situation
is inherent in the system of levels in Fig. 9(b).

As the math in Appendix C shows, RD mixing provides
an additional contribution R®P to the infidelity factor [see
Eq. (C8)], which has a quadratic drop in ¢y, and therefore
becomes dominant at large Q2. Note that since the branching
factor I, for the HF |g)._, component is greater than that
I, for |g) pr—; by factor %, the undesirable RD mixing is
more efficient (by a factor of %) in the case of the level
system in Fig. 9(b), which explains the higher position of
the curve N in Fig. 13(a). Since for rubidium atoms (i) the
rate of HF mixing is ~4.5 times higher and (ii) the rate
of RD mixing is %1:51;"/ 73,0 =1.7 times lower compared to
sodium atoms, then the frequency range with dominance of
RD mixing where 91| > %, should shift towards very high Q¢
frequencies, which is clearly seen in Fig. 13(b).

V. CONCLUSIONS

Our paper investigates the formation of optically dressed
states upon two-photon excitation of alkali-metal atoms (see
Fig. 1), focusing on the effects of constructive and destruc-
tive interference of HF atomic sublevels that can result in a
modified and more restrictive two-photon selection rule for
the total angular momentum. We have described a procedure
for finding a special wave-function basis, the Morris-Shore
(MS) basis, for atom interaction with linearly polarized exci-
tation lasers. The MS basis reduces the initially complicated
multilevel excitation structure to a combination of simple
mutually orthogonal three-level ladders, two-level excitation
blocks, and separate isolated states (see Fig. 2). The latter
are associated with dark states, while the ladder sublevels
correspond to bright ones. Two-level complexes at the second
excitation step, not directly coupled to the ground ks, state
by the probe laser, are related to another recently identified
type of dressed states: “‘chameleon states” [1,2].

Experimental observation of Autler-Townes (AT) spectra
enables studying both energies and populations of dressed
states, produced by a strong S-laser coupling on the second
excitation step, via fluorescence response of the system (AT
signal) to a weak P laser probing the first step. Our numerical
experiments with sodium and rubidium atoms demonstrate
that the AT peaks appear when the probe-laser frequency
is resonant with the dressed states. Intensities of the bright
peak pairs are preserved at increased Rabi frequency of the
coupling field, while their resonance frequencies increasingly
shift from the initial (“bare”) values at zero coupling.

Neither dark nor chameleon states contribute to AT signals
since they are decoupled from interaction with the probe laser.
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However, the HF interaction operator ™) in Eq. (1) redis-
tributes population among all the dressed states, leading to the
emergence of additional, formally forbidden singlet “dark”
components set and pairs of “chameleon” peaks in the AT
spectra. For high S-laser Rabi frequencies €25, the operator
H™P can be regarded as a perturbation, with its contribution
to the population transfer becoming smaller and smaller as Qg
increases. As a result, these additional dark and chameleon
components of the AT spectrum lose intensity, until they
effectively vanish at strong coupling. The chameleon pairs,
along with the bright components, belong to the repulsive
(£) branches of AT spectrum (see Fig. 5) and can be fur-
ther categorized into “slow” and “fast” subclasses depending
on their effective Rabi frequencies Q( 5 (9) relative to the

bright ones Qgs/)z [2]. In contrast, the dark peaks tend to pre-
serve their resonance frequencies independently of the S-laser
intensity [1].

An interesting feature of the excitation ladders ks, —
kp3j2,12 — nsi;, manifests as preservation of the HF quan-
tum number F' in transitions between the initial ground ks>
and the final ns; states, resulting in a specific selection rule
AF =F"—F = 0 for the two-photon transitions ks /»(F") —
nsi2(F). The reason for this phenomenon is related to the
physics of the corresponding excitation processes proceeding
through a series of partial two-photon paths with different
intermediate HF sublevels [see Fig. 6(bl)]. The destruc-
tive interference between probability amplitudes forbids the
two-photon transition when Fy # F,. This observation opens
practically important perspectives for artificially introducing
custom selection rules in many-photon interactions both to
manipulate quantum states and to achieve individual address-
ing of HF components of atomic and molecular energy levels.

In the absence of HF interaction, the control radiation of P
and S lasers allows ideal (100%) selective excitation of sin-
gle three-level ladder blocks (10), i.e., excitation of selected
bright n states with a fixed  index (n = F”M). With them, for
example, using the STIRAP technique, it is possible to carry
out some basic quantum operations [8] or, on the basis of these
three n states, to create independent cells for storing optical
information by forming proper n polaritons [8]. Coherent ex-
citation of Rb Rydberg states in three-level [32] or four-level
[33] elementary ladder blocks with F” =2, M = 0 is an im-
portant element of a three-qubit Toffoli gate implementation
[32]. The data presented in Tables IV and V provide useful
information for determining the optimal parameters (Rabi
frequencies and laser detunings) in this type of experiments
[32,33] which use high-contrast Rydberg pulses.

The aforementioned selectivity, however, is violated due
to the HF mixing of states at the intermediate i step, which
results in uncontrolled population leak (or information losses
in applied problems) into other undesirable HF sublevels.
Further analysis presented in Sec. IVB and Appendix C
demonstrates that introduction of a third, “blocking” laser
(control laser) enables active switching off of some off-
diagonal (mixing) HF terms presented in Tables II-V, and
therefore allows tuning between the |AF| < 1 and [AF| =0
regimes of two-photon excitation. As our numerical calcula-
tions for Na and Rb atoms have demonstrated, the deviation
from selective population of HF components achieved in this

way can be less than 0.001% (see Fig. 13). The control-laser
method introduced here thus opens a “window of opportunity”
for manipulating the intra-atomic interactions, in our case
eliminating the HF effects even in Rb atoms with a consid-
erably strong HF coupling.
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APPENDIX A: SEMIUNITARITY OF FIELD OPERATORS

To study features of the mappings (3), take two arbitrary
vectors |a), |@) lying in g subspace A, (or in i subspace A;)
and consider the dot product (8|8) of their images |8) =
VIS, |B) = VPO a):

(BIB) = (@|VIFENTyIPEI gy, (A1)

The positively defined Hermitian quadratic (HQ) operators
VEPTY®) and VETVE act in subspaces A, and A;, respec-
tively. As it seen from Fig. 3, all fine-structure basis vectors in
subspaces A, and A; are eigenvectors of the above HQ oper-
ators With eigenvalues equal to |SZ(112|2 and |§2(1S/)2|2 (i=3p1,2)
or |S2 123 /2| (i=3p3/2), respectively. The presence of only
one eigenvalue implies that the corresponding operator acting
in the subspace A, is proportional to a unit operator fy in this
subspace, i.e.,

A P 2;\ A S 2;\
y@Ip@ — ’Q( )’ AR S . |Q(1/)2
B18) =@ @"le"), (BIB) = \sziig &)
(A2)

in the case of y =i=3py,,. The second line in Eq. (A2) is a
consequence of Eq. (A1) and means that the field operators
preserve the dot product up to a factor

In the case of two eigenvalues |Q 12,3 /2| (i=3p3,2) one
can apply the following spectral decomposition for HQ §
operator [24]:

VOO = Y QOB B, =,
r=1/2.3/2
PipPisp=0, Bap+PBsp=1I. (A3)

Here P, denotes the projection operator to the manifold
Ay =IA’MA,- of all eigenvectors corresponding to the eigen-
value |QRS )|2, while the subspace A, is the direct sum of the
mutual orthogonal manifolds A;;: A;=A; 12 @ A;32 [see
Fig. 3(a)]. Equations (A1) and (A3) yield

(BIB) = | @ 1B 2le) + | QL @ 1B ple).  (AD)

So, if we take two orthogonal vectors in the subspace A;, their
images in the subspace A, remain orthogonal provided that
both vectors belong to (1) the same manifold A;; or (2) to
different manifolds A; 1/, and A;3/2.
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Pay attention, that, as it follows from Fig. 3, the image
of the ground subspace A, = Ag 1), is equal to the manifold
Aj1p:

Aiap =VPOA,. (A5)
APPENDIX B: NUMERICAL SCHEME OF AT
SPECTRA CALCULATIONS

For obtaining AT spectra we make use of numerical cal-
culations of the same kind as in our previous works [1,34],
solving the modified optical Bloch equations [20]

dp

dt
for atomic density matrix p on the base of the split operator
technique [34,35]. The total Hamiltonian H of the atom-
laser system in RWA is determined by Eq. (1). The term R
corresponds to relaxation processes caused by spontaneous
emission and the finite laser linewidths. The matrix represen-
tation of the Hamiltonian H+H" corresponding to isolated
atomic system is a diagonal matrix in HF basis; its eigen-
values should be calculated by accounting for the hyperfine
interaction defined in Eq. (B5) and Tables VII and VIII in Ap-
pendix B 1. The field operators matrix elements (4) describe
a variety of stimulated transitions among the HF and Zeeman
sublevels and also presented below in Eqs. (B3) and (B4). In
modeling rather general situations, laser intensities are chosen
to be not too strong in order not to mix the HF components
F" =1, 2 of the ground states noticeably, but strong enough
to mix the states of intermediate and final levels (see Fig. 1).

In our calculations the Doppler broadening due to atomic
velocity distribution is not taken into account. This approxi-
mation is justified in view of our previous and forthcoming
experimental studies carried out in Doppler-free supersonic
[28] or cold [36,37] atomic beams, as well as in magneto-
optical traps [7].

The registered AT signal I belongs to the type of absorption
spectra, i.e., it is proportional to the number of laser photons
absorbed by one atom. The latter, in turn, can be evaluated by
summing the partial AT signals

Ny=Y " N¢r,
F

—i[Hpl + Rp (B1)

1 00
NfFZ—/ I’lfF(l)dl,
‘L'f —00

npe(0)=")_ prem.peu(t), (B2)
M

TABLE VII. HF and radiative parameters of the coupling states
in Na under consideration.

Levels Aps (MHz) By,; (MHz) T (ns)
3512 885.813 [38] 0 0
3p1 94.44 [39] 0 16.3 [40]
3p3p 18.534 [41] 2.724 [41] 16.3 [40]
5512 78.0 [42] 0 77.6 [43]
4dsp.5/2 0.23 [44] 0 52.4[43]
12512 0 0 1647 [43]

TABLE VIII. HF and radiative parameters of the coupling states
in RB [45], which are used in our simulations.

Levels A (MHz) Bj,s (MHz) T (ns)
5812 3417.3 [46] 0 00
S5pip 408.3 [47] 0 27.70 [48]
S5p3 84.72 [49] 12.50 [49] 26.24 [48]
1451/, 0 0 1609 [43]

each of which determines the total number of photons Nyg
emitted by the HF component F of the atomic final f state
with the lifetime 7. Here, summing over the diagonal ele-
ments of the density matrix for the f state gives populations
nsr of its HF components at the time 7.

1. Rabi frequencies and atomic parameters

We define the parameters (Rabi frequencies, detunings) in
our calculations as follows. Each laser (with amplitudes Epg
and the same unit vector €, of linear polarization along the
quantization z axis) stimulates a variety of transitions among
HF and Zeeman sublevels. It is convenient to characterize the
laser-induced couplings with the characteristic (reduced) Rabi
frequencies Q3 (I = S, P) [34]

Q= Q) =E®|Bs | D || 3p)l,
Qs = Q% =E|nd,ns | D | 3p)l,  (B3)

associated with the unresolved (with respect to both the fine
and HF interactions) g—i (3s —3p) and i — f 3p — ns or
3p — nd) transitions; (nl || D || n'l’) are the corresponding
reduced matrix elements [25]. The Rabi frequencies of in-
dividual fine (J) and HF (F) transitions {{JF — ['J'F’} are
defined then by the tabulated line strengths values. Here [, J,
and F denote the orbital, electronic angular, and total angular
momenta. At last, the partial Rabi frequencies within the
Zeeman components M transitions {{JFM — I'J'’F’M} in the
case of linear laser polarizations are evaluated via the 6 and
3j symbols as

syl | D | n'1'T)
@l | D nl)

{JF
X

QM) = Q

I O+F' +F—M
PO 1}(—1)

x JOF + D2F + ”(jw (1) F)

(nlJ || D || n'l')') = (—=1)/Fs+/+!

x\/(2J’+l)(21+l){Jl, IJ i}(nl | D || nl),

where ® =7/+4+J+1land [ = % is the nuclear spin for both
Na and Rb atoms. The symbol (nlJ || D || #'l'J") gives the
reduced matrix element for the involved fine transition {{J —
I'J'} (the electron spin is s = %). The above expressions (B3)
and (B4) unequally define the dipole interaction operator
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V&5 under RWA for the given values of laser field ampli-
tudes Ep g or, equally, for the reduced Rabi frequencies Q2pg
[Eq. (B3)].

The atomic H, and HF A Hamiltonian’s (1) need for
their definition information about the atomic energy structure
and laser detunings. The energy of each HF level in the system
relative to the center of mass of the respective HS manifold is
given by

1
Agyp = EAhsz

32K(K +1) =21 + 1)J(J + 1)
2020 — 1)2J(2T — 1)

+ By , (B5)

where K = F(F + 1) — I(I + 1) — J(J + 1), while Ay, By
are the magnetic dipole and electric quadrupole constants. The
detunings Apg of the probe and coupling fields are defined
with respect to the energies w”) of specially selected HF
sublevels of the ground (wé(f” ) = waypr—2)), excited (wf‘”’ ) =
w3p(F'=2)) and final (C();Sp) = Wss,44(F=2)) States as it is defined
in the caption to Fig. 1.

The magnetic dipole and electric quadrupole constants, as
well as the radiative lifetimes of the excited states of interest
are presented in Tables VII and VIII. Unless specified other-
wise, the laser linewidth is assumed to be 1 MHz.

APPENDIX C: SELECTIVITY ASSESSMENT UNDER
THE PRESENCE OF A CONTROL LASER

In this Appendix, we restrict ourselves to the analysis of the
coefficient M, [Eq. (18)] in the case of dominant excitation
of the HF component F =2, i.e., for the working scheme of
levels we will choose the scheme shown in Fig. 9(a). Omit-
ted here consideration of the coefficient i, in the system of
levels in Fig. 9(b) with selective excitation of the F =1 HF
component is carried out in a similar way.

The choice of the control-laser (CL) detuning Acp=
—141.7(—610.9) MHz allows in A scheme, incorporated two
bright states (BS) |i) . ,(M =1) along with the RWA bare
ground state |g)r.;, to make equal the energies of its two
low-lying levels shown in Fig. 9(b), frame M =1. In what
follows, for brevity, we will return to the notation adopted
in Fig. 2 for BSs, i.e., write, for example, |i), instead of
i) o (M =1).

Importantly, both frequencies Qpr, QcL exceed the lasers
Rabi frequencies Qp, 25, which, therefore, can only slightly
change the structure of adiabatic states formed in the con-
sidered A scheme. The procedure for finding these adiabatic
states is well known and consists of two steps [1,9,12]. (i)
First, two new types of dark |D) and bright |Br) mutually
orthogonal wave vectors are constructed

(CL)
2 HE . CL)\2
D) = Qeff i), — WL&’)I, Q= QaF"i_(Q(lﬁ)) ’
Br Br
(CL)
QurF . 1/2
IBr) = Q—%ff|z>2+9—e&|g>1, €h
r r

differently related to |i),: completely decouple D vector and
Br vector with coupling Rabi frequency Q%frf (i1) Second, the

R :' T [0+
Ap ] Qb
&) bortag, \ 2
gzﬂ(p)1 kA8D+ 2 _
[ e I )34 85 1417 MH
L Ty | F o109
‘:ASD‘ )
QP—" Qv
} V2

FIG. 14. Energy-level diagrams (in MHz) for three adiabatic
states |D), |i), in subspace 3(5)pi,»(M =1) along with their cou-
plings by § laser with HF sublevels |f), , of a Rydberg ns;/, final
state and by P laser with HF sublevel |g), of a ground state. The
dashed lines depict in RWA g sublevel |g), for the P-laser detuning
Ap and the f sublevels |f), , for the S-laser detuning A s associated
with the transition |f); , — [7),.

pair of coupled diabatic vectors |Br), |i); is taken to find
two repulsive adiabatic states |i), defined in Eq. (15) with
newly acquired energies €;+ [Eq. (14)] due to ac Stark shifts
stimulated by the coupling frequency szf =Q°ff (see Fig. 14).

Importantly, D state does not change the initial dia-
batic energy e;p=—141.7(—610.9) MHz corresponding to
the |i)po(M =1) state, so that its energy separation Aepi
from the other adiabatic |i), states becomes & Q]e{rf provided
that the control laser is intensive enough with Q(l%) > Qpur. In
this case, the diabatic vectors are evenly distributed between
the adiabatic states

|i>i:%(|i>1i|Br>>;

and hence the |i), vectors-related Rabi frequency Q(IS/)Z L of

the S laser drops by «/5, i.e., Q(IS/)H:Q(I%/«/Q as shown in
Fig. 14.

The wonderful property of the D state is complete isolation
from all other adiabatic states. When the probe laser is tuned
to D-state excitation, population leakage due to HF interaction
is impossible, and therefore, one should expect the realization
of ideal selectivity. Figures 11(b) and 12 do show a small value
of 9N, coefficient (18), which, however, is not equal to zero.

Deviation from the ideal behavior arises from the fact that
the only BS [i),, allowed for direct excitation by the probe
laser, is represented, albeit poorly, in both (%) vectors:

Agpy ~ QS (C2)

(CL)
Qpr 12

. 1 . . Q
|l):ﬁ::ﬁ<|l>li9_§?‘ll)2i Q%frf |g>1)~ (C3)

The corresponding Rabi frequencies 2p 4 for the transitions
|g), — |i) 4 stimulated by the probe P laser become

Qyr

_ "_ TP~
Qs (o P/ =DMV Ol 20

Qﬁ’/’;. (C4)
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The two-photon excitation of the unwanted Rydberg HF com-
ponent | f),; from the ground HF component |g), which occurs
via two virtual levels [i),, is described with the following
effective Rabi frequency [16,28]:

QpaQ)y Q)
- 2
(257)
If we take into account now that the two-photon excita-
tion |g), — | f), of the desired Rydberg HF component |f),
at a two-photon resonance goes via the state |D) 2>~ |i), (see
Fig. 14 at the same energies of quantum states | f), and |g),),

the corresponding effective Rabi frequency can be roughly
approximated as

Q). (©3)

Qeff ~
g2,+,f1 Aeps

P) o)
Off Q180 (C6)
RN A S

s lSp/

provided that the Rabi frequency Q(li)z does not exceed half
the natural width I'y, =27 /7,=9.8(5.8) MHz of the in-
termediate kpi;, state [k=3 (5)]. Since the population of
Rydberg components is proportional to the square of effec-
tive Rabi frequencies, the infidelity factor 9, (18) may be
estimated as

BT,

(Q%frf)4 s 1/2 > QHF. (C7)

Ny

At large Q(SZL) , the effective frequency Q¢ [Eq. (C1)] is re-

duced to Qﬁ%), and the factor %, drops ~§, with increasing
control-laser intensity.

So far, we have ignored another process resulting in dese-
lectivity, namely, radiative decay (RD) responsible for optical
pumping, which should introduce a second term into the
factor N,:

Ry =RTHRED, g~ ot

(RD)__ -2
. M Q-

(C8)

Below, in a brief qualitative presentation, an estimate of the
asymptotic (2¢r > Qyr) RD contribution (term SR(ZRD)) to the
undesirable population of the Rydberg HF component |f),
will be given.

The excitation of the BS |[i), is accompanied by its radia-
tive decay into the ground g state with partial population of
the HF component |g);, which, due to strong coupling with
BS [i); [see Fig. 9(a)], shares its population with |i); in the
adiabatic states |i). [Eq. (C3)]. The latter is coupled with
the component |f); by S laser with the effective frequency
Qi ~ Q). Since the energy defect ~ Aep between |f),

and |i), determined by the control laser as Q§$~QCL [see
Eq. (C2)] is large, the undesired f state |f), can only accept
the (955/)2)2 /A&, ~ Qg fraction of population lost by BS
|i), due RD, that yields the third term in Eq. (C8).
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