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229Th3+ as an ionic optical clock for fine-structure-constant variations
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In this paper, we propose the 5 f5/2 → 5 f7/2 transition in 229Th3+ as an ionic clock with accuracy of 10−18

level, which can be also used together with the nuclear clock transition for measuring variations of fine-structure
constant with common-mode rejection of certain systematic effects. The many-body perturbation theory and
Dirac-Fock plus core polarizability method are used to perform theoretical calculations. Calculation results show
that several systematic frequency shifts can be suppressed to 10−18 level or even below. Assuming the accuracy
of ionic clock frequency can be achieved in 10−18 level, 229Th3+ potentially offers a precision of drift of fine-
structure constant of α̇/α in 10−21-yr−1 level by measuring the frequency ratio of nuclear clock frequency and
ionic clock frequency.
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I. INTRODUCTION

In the realm of modern science and technology, atomic
clocks stand as remarkable instruments, serving pivotal roles
in various critical applications. These precision devices metic-
ulously count the quantum oscillations of atoms, underpinning
fundamental aspects of our daily lives [1]. They enable the
accurate synchronization of global navigation systems (GPS),
ensuring the reliability of GPS technology, and play a cru-
cial role in synchronizing communication networks, making
real-time data transmission and international communication
possible [2].

Beyond their practical utility, atomic clocks are also at the
forefront of the search of new physics [3]. By detecting the
shift of the atomic clock frequency over time, it is possible
to check whether the fine-structure constant changes over
time. Even the smallest variations in this constant hold the
potential to reveal profound insights into uncharted realms of
the universe. These insights encompass the search for elusive
dark matter [4] and the exploration of dark energy [5]. Amidst
the potential optical clock candidates, 229Th emerges as an
exceptional luminary [6–14] due to its unique characteristics,
including a nuclear transition energy of a few electron volts
(eV), narrow linewidth, and insensitivity to external fields
[15–17]. The development of a nuclear clock utilizing the
229Th nucleus holds the potential to achieve accuracy levels on
the order of 10−19 [18,19]. The nuclear transition frequency
of 229Th has undergone continuous refinement through nu-
clear physical measurements. Initial measurements indicated
a transition energy of 7.6(5) eV [20], evolving into the present
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measurements of 8.28(17) eV [8], 8.30(92) eV [9], 8.338(24)
eV [11], and a somewhat inconsistent measurement 8.10(17)
eV [10]. Recently, two new results of 8.355 770(29) eV [12]
and 8.355 733(2)stat (10)sys eV [13] were reported, and these
measurements represent the most accurate to date. In addi-
tion to nuclear physical measurements, the unique electronic
bridge process and internal conversion channel provide the
alternative avenue to measure the nuclear transition frequency
through atomic spectrum methods [8,21–24]. These endeavors
pave the way for the development of narrow linewidth lasers
corresponding to the nuclear transition frequency.

Meanwhile, recent studies have indicated high sensitivity
to variations of the fine-structure constant of nuclear transi-
tion frequency in 229Th [26–28]. To probe the variations of
fine-structure constant, the measurement of frequency ratio
between two clocks presents a valuable approach, circum-
venting the limitations associated with Cs primary standards
and offering reduced statistical and systematic uncertainties
compared to absolute frequency shift measurements [5]. Fur-
thermore, as demonstrated in the 171Yb+ ion clock, measuring
the frequency ratio of two distinct clock transitions within
the same ion brings about common-mode rejection of various
systematic effects, such as gravitational redshift and relativis-
tic time dilation [25]. Hence, the possibility of using atomic
transitions in 229Th3+ for fine-structure-constant variation ex-
periments was previously considered [29]. This simplifies the
experimental setup of the measurement, making it a simpler
approach.

In our paper, we show the potential of 229Th3+ as an
ionic clock with accuracy of 10−18 level based on 5 f5/2 →
5 f7/2 transition. Through calculations by the many-body
perturbation theory (MBPT) and the Dirac-Fock plus core
polarizability (DFCP) method, we estimate the blackbody ra-
diation (BBR) shift to be just −3.6 mHz at room temperature,
which is below that of most ionic optical clocks such as Ca+
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and Sr+ [30,31]. Both the superheavy nucleus of 229Th3+ and
low cooling limit temperature Tmin = 13 µK also give a great
advantage in the suppression of motion-induced frequency
shifts. Therefore, 229Th3+ not only provides good clock per-
formance but also exhibits a significantly great sensitivity
to variations of fine-structure constant, potentially offering
a limit of variations of fine-structure constant of α̇/α in
10−21-yr−1 level by measuring the frequency ratio of nuclear
clock frequency and ionic clock frequency.

II. COMPUTATIONAL METHODS

We use two methods for the relativistic atomic structure
calculations on 229Th3+. Both MBPT method and DFCP
method initiate with the V N−1 Dirac-Fock potential.

A. Many-body perturbation theory

In this subsection, we provide a brief introduction to the
MBPT method. We use the AMBIT package for the MBPT
calculation [32]. In the MBPT method, we approximate core-
valence correlation effects using the second-order self-energy
operator �(2)(E ) within the Brillouin-Wigner perturbation
formalism, delivering high-accuracy ab initio results. The
valence-electron equation in this framework is represented as

[Ĥ + �(2)(E )]|ψ〉 = E |ψ〉, (1)

where

Ĥ = cα · p + (β − 1)mc2 + Vnuc(r) + V N−1, (2)

where Vnuc(r) is the nuclear potential and the nuclear model
is the Fermi model. V N−1 describes the direct and exchange
interaction between core electrons and valence electron. The
single-electron orbital is generated by Dirac-Fock procedure.

All the Slater determinants |I〉 with frozen-core configura-
tion form the space P. The projection of the true eigenstate in
P space can be approximated as

|ψ〉 =
∑
I∈P

CI |I〉. (3)

The nonlocal self-energy operator �(2)(E ), found in matrix
form, can be expressed as

�
(2)
IJ =

∑
M∈Q

〈I|H |M〉〈M|H |J〉
E − EM

, (4)

where the Slater determinants |M〉 belong to the space Q
which contains all configurations with core excitations. Sub-
sequently, P and Q form two complementary subspaces within
the many-electron Hilbert space. Diagrammatic techniques
are used in the �(2)(E ) calculation [32]. Importantly, only
one-valence-electron diagrams contribute to �(2)(E ) in the
single-valence system calculation.

Substituting �(2)(E ) into the valence-electron equation, we
arrive at

∑
J∈P

⎛
⎝HIJ +

∑
M∈Q

〈I|H |M〉〈M|H |J〉
E − EM

⎞
⎠CJ = ECI . (5)

The reduced matrix elements (RMEs) of electric dipole
(E1), electric quadrupole (E2), and magnetic dipole (M1)

transition operators are evaluated by the frequency-dependent
form which can be found in the standard relativistic atomic
physics textbook [33]. The relativistic random-phase approx-
imation is taken into account [34].

In our MBPT calculation, we use 50 B splines of order
k = 11 and set Rmax = 50 a0. We expand the true eigenstate
by using 20 spdf orbitals, and 35 spdf ghikl orbitals are used
for the calculation of the self-energy operator �(2)(E ). The
Breit interaction is taken into account.

B. Dirac-Fock plus core polarizability

In this subsection, we provide a brief introduction to the
DFCP method. Further details can be found in Refs. [35,36].
Similar to MBPT method, the DFCP method also initiates
with the solution of the Dirac-Fock equation within the V N−1

potential. It uses a local core polarizability potential Vpol(r)
characterized by an angular � j-dependent form to replace the
�(2)(E ) operator in the valence-electron equation. The Vpol(r)
potential is defined as

Vpol(r) = −αcore

2r4
[1 − exp(−r6/ρ6

� j )], (6)

where αcore is the static electric dipole polarizability of the
core and the cutoff parameter ρ� j is optimized to reproduce
the experimental energy levels using the Newton method.

The RMEs of E1, E2, and M1 transition operators are
evaluated by the following formulas, which are the long-
wavelength limitation of the corresponding RME calculation
formulas in MBPT calculations. In atoms and ions with low-
ionization calculations, the validity of this approximation has
been demonstrated [37]:

〈a||D||b〉 = 〈κa||C(1)||κb〉

×
∫ ∞

0
(PaPb + QaQb)Rmod(r, 1)dr, (7)

〈a||Q||b〉 = 〈κa||C(2)||κb〉

×
∫ ∞

0
(PaPb + QaQb)Rmod(r, 2)dr, (8)

〈a||M||b〉 = −(κa + κb)〈−κa||C(1)||κb〉

×
∫ ∞

0
(PaQb + QaPb)rdr, (9)

where D, Q, and M represent the E1, E2, and M1 transition
operators, respectively. The modified function Rmod(r, �) is
used to approximate the correlation effect and is defined as
follows:

Rmod(r, �) = r�

(
1 − αcore

r2�+1
[1 − exp(−r6/ρ6)]1/2

)
, (10)

where ρ = ρa+ρb

2 .
The RME of the spherical harmonic C(�) can be calculated

analytically:

〈κa||C(�)||κb〉 = (−1)Ja+1/2
√

(2Ja + 1)(2Jb + 1)

×
(

Ja Jb �

1/2 −1/2 0

)
π (la + lb + �), (11)
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TABLE I. Energy levels, lifetimes τ , and Landé g factors in the 229Th3+ ion. Numbers in brackets represent powers of 10. The energy level
of the ground state g is the ionization energy which is listed in the last row labeled “Eion” and the energy levels of excited states i are Ei − Eg.
The subscripts “expt,” “RCC,” and “AO” correspond to experimental energy levels [39] and calculation results of relativistic coupled-cluster
method [40] and all-order method [41], respectively.

Level EDFCP (cm−1) EMBPT (cm−1) Eexpt (cm−1) gDFCP gMBPT gRCC τDFCP (ns) τMBPT (ns) τAO (ns)

5 f5/2 0.85663 0.85659 0.85635
6 f5/2 127824 128767 127269.2 0.85701 0.85699 0.85674 0.306 0.333 0.300
5 f7/2 4325 4324 4325.33 1.14239 1.14244 1.14275 1.070[9] 1.068[9] 1.069[9]
6 f7/2 128333 129176 127815.3 1.14275 1.14278 1.14309 0.308 0.319 0.297
6d3/2 9193 9140 9193.245 0.79966 0.79908 0.79909 1507 1149 1090
7d3/2 120272 120148 119684.60 0.79979 0.79977 0.79949 0.642 0.663 0.667
6d5/2 14486 14440 14486.34 1.19976 1.20008 1.20047 900.0 662.6 676.0
7d5/2 122065 121861 121427.10 1.19988 1.19990 1.20039 0.820 0.837 0.854
7s1/2 23131 23051 23130.75 1.99905 2.00249 2.00414 6.227[8] 6.095[8] 5.70[8]
8s1/2 119497 119151 119621.60 1.99915 1.99971 2.00245 0.686 0.709 0.707
7p1/2 60239 60129 60239.10 0.66578 0.66580 0.66577 1.188 1.164 1.099
8p1/2 134421 134137 134516.50 0.66584 0.66585 0.66586 3.124 3.253 3.194
7p3/2 73056 72976 73055.90 1.33310 1.33323 1.33401 0.656 0.666 0.632
8p3/2 139796 139517 139870.90 1.33314 1.33318 1.33400 1.920 1.884 1.871
Eion 231065 231054 231065

where

π (x) =
{

1, if x is even
0, if x is odd . (12)

By directly diagonalizing the Hamiltonian, we obtain the
complete set of pseudostates, which can be used in sum-
over-states calculations to consider the contributions from
high-excited states and continuum states.

In DFCP calculation, we use 100 B splines of order k = 9
and set Rmax = 100 a0 to make sure we can get enough bound
states. The static E1 polarizability of the core is fixed as 7.7
a.u. [38] and the experimental energy levels from Blaise and
Wyart are used [39]. We use the experimental energy levels of
7s, 7p, 6d , and 5 f in the optimization procedure of the cutoff
parameters.

Table I presents a comprehensive comparison of energy
levels, lifetimes, and Landé g factors in the 229Th3+ ion. We
use the MBPT method and DFCP method in our calculations
and benchmark the results against other high-accuracy calcu-
lation methods [40,41] and experimental values [39].

Remarkably, the DFCP method exhibits exceptional ac-
curacy, with an average relative error of just 0.17% when
compared to experimental energy levels. Even in the most
challenging cases, the largest relative error observed is a mere
0.59% for the 7d5/2 state. These results underscore the supe-
rior performance of the DFCP calculations for energy levels.

For the calculations of lifetimes and Landé g factors, the
results from the MBPT method are closely aligned with those
from other high-accuracy methods, confirming the reliability
of MBPT calculations in transition RMEs. This reliability
is further underscored by the data in Table II. As shown in
Table II, compared with the transition RMEs calculated by the
DFCP method and other high-accuracy relativistic methods,
there are some transition RMEs with large deviation, which
significantly increase the deviation of lifetimes for certain
states, such as 6d3/2 and 6d5/2 states. Despite the inclusion
of these RMEs with large deviations, the mean deviation of

E1 RMEs remains at 6%, indicating a reasonable level of
accuracy in the DFCP calculation of transition RMEs.

III. RESULTS AND DISCUSSION

Here we present our findings on the potential of the fine-
structure transition of 5 f5/2 → 5 f7/2 as a new ionic clock with
accuracy of 10−18 level. The energy-level diagram is shown in
Fig. 1. The narrow clock transition linewidth of � = 0.15 Hz

TABLE II. The transition RMEs between low-lying states in
atomic units. The “RCC” represents calculation results of relativistic
coupled-cluster method [40].

Lower Upper Type DFCP MBPT RCC

5 f5/2 5 f7/2 M1 1.8506 1.8524 1.8514
5 f5/2 5 f7/2 E2 0.0894 1.0674 1.1046
5 f5/2 6d3/2 E1 1.2985 1.4871 1.5616
5 f5/2 6d5/2 E1 0.3559 0.4105 0.4198
5 f5/2 7p1/2 E2 3.5468 2.8550 3.0570
5 f5/2 7p3/2 M1 0.0000 0.0004
5 f5/2 7p3/2 E2 1.7043 1.3058 1.4220
5 f7/2 6d5/2 E1 1.6642 1.8995 1.9530
5 f7/2 7p3/2 E2 4.4486 3.5244 3.7658
6d3/2 6d5/2 M1 1.5466 1.5533 1.5500
6d3/2 6d5/2 E2 3.6819 4.0556 4.0577
6d3/2 7s1/2 M1 0.0000 0.0022 0.0012
6d3/2 7s1/2 E2 6.8769 6.9381 7.0929
6d3/2 7p1/2 E1 2.0394 2.0553 2.1360
6d3/2 7p3/2 E1 0.8415 0.8142 0.8539
6d5/2 7s1/2 E2 8.8826 9.0786 9.1844
6d5/2 7p3/2 E1 2.7048 2.6847 2.7665
7s1/2 7p1/2 E1 2.3297 2.3657 2.4375
7s1/2 7p3/2 E1 3.3011 3.2881 3.3919
7p1/2 7p3/2 M1 1.1298 1.1289 1.1289
7p1/2 7p3/2 E2 14.9453 14.9390 15.0456

063115-3



YU, GAN, HUA, TONG, AND LI PHYSICAL REVIEW A 109, 063115 (2024)

6d3/2

6d5/2

5f5/2

5f7/2

Clock

λ=2312 nm

Γ=0.15 Hz

Cooling&Detection

λ=1088 nm

Γ=153 kHz

Repump

λ=984.2 nm

Γ=215 kHz

FIG. 1. Schematic energy-level diagram of the 229Th3+ ion ex-
cluding hyperfine structure. Energy levels are not scaled.

corresponds to a long lifetime of τ = 1.07 s. These charac-
teristics result in a high quality factor of Q = 8.71 × 1014

and an instability limit of σy(t ) ≈ 3.07 × 10−15/
√

t/s which
is closed to the 171Yb+ E2 clock transition [5,25].

For the cooling of the 229Th3+ ion, we could utilize the E1
transition 5 f5/2 → 6d3/2, aiming to reach the ground state of
oscillation in the trap. The linewidth of cooling transition is
� = 153 kHz, which is well below the typical frequency ν =
1 MHz of the 229Th3+ ion in the trap. In the strong binding
regime � < ν, the cooling temperature limit can be estimated
by

Tmin = hν/kBln(1 + 〈n〉−1), (13)

where 〈n〉 = �2/ν2 ≈ 0.02 represents the mean occupation
number [42]. This estimation yields a cooling temperature
limit of Tmin = 13 µK. Although reaching this temperature
limit is challenging due to cooling efficiency and laser-
induced heating of ions, we can reasonably expect to achieve
a temperature of several tens of µK. In addition, sympathetic
cooling with 86Sr+ is also a feasible option. Because of the
close charge-to-mass ratios of two ions and the mature laser
cooling technology of the Sr+ ion, sympathetic cooling can
be very efficient. The E1 transition wavelengths calculated
by experimental energy levels, transition rates, and branching
ratios calculated by MBPT method are given in Table III,

TABLE III. Transition wavelengths λ and rates A for E1 transi-
tion between low-lying states. Branching ratios for each transition
are also shown.

Upper Lower λ (nm) A (s−1) Branching ratios

6d3/2 5 f5/2 1087.76 8.70 × 105 1
6d5/2 5 f5/2 690.31 1.73 × 105 0.12

5 f7/2 984.15 1.28 × 106 0.88
7p1/2 6d3/2 195.90 5.69 × 108 0.66

7s1/2 269.48 2.90 × 108 0.34
7p3/2 6d3/2 156.59 8.75 × 107 0.06

6d5/2 170.74 7.34 × 108 0.49
7s1/2 200.30 6.81 × 108 0.45

TABLE IV. Hyperfine-structure constants A and B for ground
state 5 f5/2 and clock state 5 f7/2 in 229Th3+. The experiment values
come from Ref. [45].

State AMBPT (MHz) Aexpt (MHz) BMBPT (MHz) Bexpt (MHz)

5 f5/2 80.77 82.2(6) 2247 2269(9)
5 f7/2 26.31 31.4(7) 2622 2550(12)

for enhancing the comprehension of the cooling mechanism
and the potential existence of a dark state. In transition rate
calculations, experimental energy levels are used [39].

The presence of an external magnetic field results in Zee-
man shift in the energy levels, which can be expanded into
linear and quadratic terms:

�EM = CM1B + CM2B2, (14)

where CM1 = μBgJM represents the linear dependence on the
magnetic quantum number M. This linear Zeeman shift can
be suppressed in cases where M = 0 or when the linear Zee-
man shifts in the 5 f5/2 and 5 f7/2 states have a closed value.
The second-order Zeeman shift arises from the interaction
between hyperfine-structure states and can be calculated using
second-order perturbation theory [43]:

CM2(F, M ) = −(μBgJ )2
∑

F ′

〈F ′M|Jz|FM〉2

EF ′ − EF
, (15)

where only terms with F ′ = F ± 1 contribute to the nonzero
value of the second-order Zeeman coefficient. Therefore, se-
lecting adjacent hyperfine-structure states with a large energy
splitting can effectively suppress second-order Zeeman shift.

To estimate second-order Zeeman shift, we calculate the
hyperfine-structure constants A and B for ground state 5 f5/2

and clock state 5 f7/2 in 229Th3+. In hyperfine-structure cal-
culation, we adopt the nuclear magnetic dipole moment
μ = 0.360μN and nuclear electric quadrupole moment Q =
3.11 eb [44]. Table IV presents the calculation results and
experimental values of hyperfine-structure constants. Here,
we exclusively use the MBPT method in the calculation of
hyperfine-structure constants. This choice is based on the fact
that the DFCP method, although excellent in many respects,
is not suitable for this calculation due to its limited reliabil-
ity in characterizing wave-function properties in the vicinity
of the nucleus, particularly for states featuring high angular
momentum. The reason for this limitation stems from the
DFCP method’s utilization of the local core polarizability po-
tential as a substitute for the second-order self-energy operator
�(2)(E ) with strong nonlocal properties at the near nucleus.

Table V presents the calculation results of hyperfine-
structure energy levels and second-order Zeeman coefficients
of the 5 f5/2 and 5 f7/2 states with M = 0 in 229Th3+. For
the transition 5 f5/2, F = 5, M = 0 → 5 f7/2, F = 6, M = 0,
the differential second-order Zeeman coefficient is �CM2 =
−309.0 Hz/mT2. Considering a typical value of B = 1 µT,
this results in a fractional shift of � fM/ fclock = −2.383 ×
10−18. For comparison, we do the same calculation us-
ing experimental values of hyperfine-structure constants, and
the differential second-order Zeeman coefficient changes to
�CM2 = −304.7 Hz/mT2; this shows that even though our
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TABLE V. Hyperfine-structure and second-order Zeeman coeffi-
cients of 5 f5/2 and 5 f7/2 states with M = 0.

5 f5/2 5 f7/2

F EF
h (MHz) CM2 (Hz/mT2) F EF

h (MHz) CM2 (Hz/mT2)

0 866.2 5745.0 1 1108.7 2162.2
1 407.7 −3049.5 2 412.1 936.1
2 −307.1 71.1 3 −351.7 5260.1
3 −873.7 −8858.3 4 −845.8 −18531.7
4 −685.5 5733.8 5 −620.6 −2168.0
5 1066.6 358.0 6 885.7 48.9

hyperfine-structure-constant calculations are not within the
range of experimental uncertainty, the impact of this differ-
ence on our conclusion could be negligible.

Since the magnetic field in the ion trap can be finely con-
trolled with an uncertainty on the order of nT, the fractional
frequency shift uncertainty can be reduced by two or three
orders of magnitude, reaching the level of 10−20 or even lower.

The presence of an external electric-field gradient interacts
with atom states possessing a nonzero quadrupole moment,
resulting in electric quadrupole shift. This shift can be evalu-
ated by

� fQ = −�〈Q0〉
2h

∂Ez

∂z
, (16)

where 〈Q0〉 ≡ 〈γ IJFM|Q0|γ IJFM〉 represents the expecta-
tion value of the quadrupole operator Q0, which can be
calculated as follows:

〈γ JIFM|Q0|γ JIFM〉 = (−1)J+I+F [3M2 − F (F + 1)]

×
√

2F + 1

(2F + 3)(F + 1)(2F − 1)

×
{

J 2 J
F I F

}
〈γ J||Q||γ J〉. (17)

The electric quadrupole moment �(γ J ) also is related to
the diagonal elements of the E2 operator:

�(γ J ) =
(

J 2 J
−J 0 J

)
〈γ J||Q||γ J〉. (18)

To estimate the electric quadrupole shift, we calculate the E2
RME 〈γ J||Q||γ J〉 and electric quadrupole moment �(γ J ) of
the ground state and clock state. Table VI displays the calcu-
lation results obtained by the MBPT method and the DFCP
method, and compares to the calculation results of all-order

TABLE VI. Electric quadrupole moment of ground state and
clock state. The subscript “bare” means the modified function is not
used in DFCP calculation. The subscript “mod” means the modified
function is used in DFCP calculation. The subscript “AO” corre-
sponds to the calculation result of all-order method [46].

State �DF �MBPT �bare �mod �AO

5 f5/2 0.9162 0.6046 0.0875 0.6237 0.624(14)
5 f7/2 1.1175 0.7527 0.0197 0.7815

method [46]. Specifically, we compare the difference between
the MBPT and DF calculations, and whether the modified
function of Eq. (10) is used in the DFCP calculation; the
results show that the modification function greatly improves
the DFCP results, and even changes the order of magnitude.
After using the modified function, the results of DFCP are in
perfect agreement with those of the all-order method.

Using the calculation results of MBPT method and consid-
ering a typical value of ∂Ez

∂z = 500 V/cm2, we estimate the
electric quadrupole shift � fQ = 0.470 Hz for the transition
5 f5/2, F = 5, M = 0 → 5 f7/2, F = 6, M = 0, corresponding
to a fractional shift of � fQ/ fclock = 3.549 × 10−15. By
changing the total angular momentum quantum number F for
the clock state and ground state while keeping the magnetic
quantum number M = 0, we can find the worst-case and best-
case fractional shifts, corresponding to � fQ/ fclock = 7.400 ×
10−15 and 1.782 × 10−15, respectively. For all F states, the
fractional frequency shift consistently remains on the order
of 10−15. Using the calculation results of DFCP method, the
electric quadrupole shift changes to � fQ = 0.460 Hz for the
transition 5 f5/2, F = 5, M = 0 → 5 f7/2, F = 6, M = 0, and
the fractional frequency shift remains on the order of 10−15.

The electric quadrupole fractional shift can reach the order
of 10−19 by suppressing it for three to four orders of magni-
tude, which is experimentally achievable through rotating the
electric-field direction to a magic angle and averaging the mF

sublevels [30,47].
The BBR shift caused by environmental temperature can

be evaluated by

� fBBR = −�αS

2h
(8.319 430 V/cm)2(T/300 K)4. (19)

Here �αS = αS
5 f 7/2 − αS

5 f 5/2 and αS is the scalar static E1
polarizabilities, which can be calculated by summing over the
contributions from bound and continuum states:

αS
g = 2

3(2Jg + 1)

∑
i

|〈i||D||g〉|2
εig

, (20)

where εig denotes the energy difference between state i and g.
For the state with total angular momentum J > 1/2, there

is a tensor component of polarizability:

αT
Jg

= 4

[
5Jg(2Jg − 1)

6(Jg + 1)(2Jg + 1)(2Jg + 3)

]1/2

×
∑

i

(−1)Jg+Ji

{
1 1 2
Jg Jg Ji

} |〈i||D||g〉|2
εig

. (21)

The coupling of angular momentum J of atomic states and
nuclear spin I changes the tensor polarizability. For the state
with total angular momentum F > 1/2, the tensor component
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TABLE VII. Contributions to the scalar and tensor polarizabilities of 5 f5/2 and 5 f7/2 states in the 229Th3+ ion. The “AO” represents
calculation results of all-order method [46].

5 f5/2 5 f7/2

Contrib. (a.u.) αS
g (a.u.) αT

Jg
(a.u.) Contrib. (a.u.) αS

g (a.u.) αT
Jg

(a.u.)

6d3/2 5.866 −5.866 6d5/2 6.494 −6.494
5g7/2 0.048 −0.017 5g9/2 0.097 −0.045
6g7/2 0.035 −0.013 6g9/2 0.044 −0.020
7g7/2 0.027 −0.010 7g9/2 0.030 −0.014
Tail 0.487 −0.243 Tail 0.239 −0.109
Core 7.70 Core 7.70
Total 14.16 −6.15 Total 14.60 −6.68
AO 14.67(60) −6.07(53) AO 14.84(59) −6.95(52)

of polarizability changes to

αT
Fg

= (−1)Jg+Fg+I

{
Fg Jg I
Jg Fg 2

}

×
√

Fg(2Fg − 1)(2Fg + 1)

(2Fg + 3)(Fg + 1)

×
√

(2Jg + 3)(2Jg + 1)(Jg + 1)

Jg(2Jg − 1)
αT

Jg
. (22)

The tensor polarizability has no effect on BBR shifts, but
it affects ac Stark shifts caused by the probe beam. Assuming
that averaging the mF sublevels is used to eliminate the elec-
tric quadrupole shifts, the contribution of tensor polarizability
to ac Stark shifts is also eliminated. The ac Stark shifts can
be suppressed by adopting the hyper-Ramsey interrogation
scheme [30].

The calculation results of static E1 polarizabilities are
shown in Table VII. In this calculation, for RMEs with dom-
inant contribution to polarizabilities, we use the calculation
results of MBPT method and itemize their contributions,
and for the rest of the RMEs we use the calculation results
of DFCP method and treat it as a tail of total polarizabil-
ities, and the energy levels measured by experiment are
used [39]. The combination of MBPT method with DFCP
method enables us to complete the state summation with
both computational accuracy and efficiency, and determines
the polarizabilities with high precision. The differential scalar
static E1 polarizability was calculated as �αS = 0.44 a.u.,
which is consistent with 0.17 ± 1.05 a.u. calculated by all-
order method [46]. For temperatures T = 77 and 297 K,
corresponding to liquid nitrogen temperature and room tem-
perature, respectively, we obtain BBR shifts of � fBBR =
−16 and −3.6 mHz, resulting in fractional frequency shifts
of � fBBR/ fclock = −1.3 × 10−19 and −2.8 × 10−17, respec-
tively. For comparison, we do the same calculation using the
differential scalar static E1 polarizability �αS = 0.17 a.u. cal-
culated by all-order method [46], and the BBR shifts change
to � fBBR = −6.0 and −1.4 mHz for liquid nitrogen tempera-
ture and room temperature, respectively. Both results are still
within the same order of magnitude, and the fact that BBR
shifts of 229Th3+ at low temperature are negligible remains
unchanged.

The micromotion effect induces a Stark shift from the
trapping field, which can be estimated by [49]

� fMM, Stark

fclock
= −3kBT

2

�αS

h fclock

(
m�2

e2

)2

. (23)

The micromotion effect also induces a second-order Doppler
shift, which can be estimated by [49]

� fMM,D2

fclock
= −3kBT

2mc2
. (24)

Since the 229Th3+ ion can be sympathetically cooled by
the 86Sr+ ion, we assume that the 229Th3+ ion at least can
reach the temperature T = 1 mK of the Sr+ ionic clock [31].
In the case of 229Th3+, secular frequency � ≈ 2 MHz. Hence
the fractional shift is � fMM, Stark/ fclock = −1 × 10−22 and
� fMM,D2/ fclock = −6 × 10−19. Therefore, we can expect the
large mass and small differential scalar polarizabilities of the
229Th3+ ion to suppress the micromotion shift to the level of
10−19. Extremely low-temperature limits can further suppress
this frequency shift by one or two orders of magnitude.

Table VIII lists the fractional shifts caused by different
systematic effects in 229Th3+. From the above estimations, we
conclude that the 229Th3+ ion has the potential to achieve an
accuracy level of 10−18.

For probing the variations of fine-structure constant, mea-
suring time variations of the frequency ratio between two
clock transitions has become a common approach [48]. This
method offers lower statistical uncertainty compared to abso-
lute frequency shift measurements. Moreover, when dealing
with two clock transitions within the same ion, both clock
transitions are measured in precisely the same physical sys-
tem; many causes of common-mode noise can be rejected
during the comparison, facilitating the experimental process

TABLE VIII. Evaluation of fractional shifts caused by different
systematic effects.

Effect Fractional shift

BBR shift (77 K) −1.3 × 10−19

BBR shift (297 K) −2.8 × 10−17

Micromotion shift −6 × 10−19

Second-order Zeeman shift −2.383 × 10−18

Electric quadrupole shift −3.549 × 10−15
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[25]. Although the frequency ratio between the 171Yb+ E3
clock and strontium optical lattice clock can achieve better
stability, the efficiency of the experimental process enables a
long-term measurement of the frequency ratio between two
clock transitions on the same 171Yb+ ion, given the state-of-
the-art result of α̇/α = 1.8(2.5) × 10−19/yr [5].

The same frequency ratio measurement method used for
171Yb+ can also be used for 229Th3+. In the case of 229Th3+,
fractional shift of the frequency ratio can be estimated as
follows:

�R/R = 1 + � fn/ fn

1 + � fe/ fe
− 1 ≈ � fn

fn
− � fe

fe
, (25)

where fn and fe correspond to the nuclear transition fre-
quency and electron transition frequency, respectively. � fn

and � fe correspond to the nuclear transition frequency shift
and electron transition frequency shift, respectively. Hence
some frequency shifts which have the same fraction frequency
shifts for two transitions can cancel each other in this ratio,
such as those caused by secular motion and gravitational
effect.

Time variation of the fine-structure constant is linearly
reflected in time variations of the frequency ratio:

Ṙ/R = (Kn − Ke )α̇/α, (26)

where K is the sensitive factor. It has been reported that the
nuclear transition frequency in 229Th3+ is incredibly sensitive
to variations of the fine-structure constant with the sensitive
factor Kn = −(8.2 ± 2.5) × 103, which is greater than that
of most highly charged ions [28]. Calculations by using the
MBPT and DFCP methods have yielded a sensitive factor
Ke = 1.2(4) for the electronic transition, and the uncertainty
was set as the difference between the results of MBPT and
DFCP methods. This result is in agreement with the early
calculation Ke = 1.3 [29].

229Th3+ not only provides good clock performance but
also exhibits a great sensitivity factor difference. This al-
lows for a precise measurement of the time variations of the
fine-structure constant. Given the result Kn − Ke ≈ 103 and
assuming that 5 f5/2 → 5 f7/2 clock transition can achieve the

accuracy level of 10−18, we anticipate that achieving a mea-
surement precision for the time variations of the frequency
ratio Ṙ/R at the 10−18/yr level will allow us to measure
the time variations of the fine-structure constant α̇/α at the
10−21/yr level.

IV. CONCLUSION

In conclusion, we delved into the 5 f5/2 → 5 f7/2 transition
of 229Th3+, showcasing its potential as an ion clock with accu-
racy of 10−18. The 229Th3+ clock exhibits a notable advantage
over other ionic optical clocks—it demonstrates lower BBR
shifts � fBBR = −16 µHz in the liquid nitrogen temperature,
and both the superheavy mass of the 229Th3+ nucleus and
cooling limit temperature of approximately 13 µK provide
a significant advantage in suppressing motion-induced fre-
quency shifts, which is a benefit to improve the accuracy of the
229Th nuclear clock. As a result, 229Th3+ not only performs
well on clock accuracy but also, owing to the distinct sensi-
tivity factor difference, allows for an accurate measurement
of the time variations of the fine-structure constant. Actually,
there are other atomic optical clocks with better accuracy
and stability available for frequency comparison with 229Th3+

nuclear transition to test the variation of the fine-structure
constant. Comparing the 5 f5/2 → 5 f7/2 transition and nuclear
transition in 229Th3+ offers an alternative choice to perform
the measurement on the temporal variation of fine-structure
constant within a single experimental apparatus.
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