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Multicenter continuum-state approach to molecular-frame photoelectron angular distributions:
From plane-wave to twisted photons
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Theoretical characterization of the photoionization mechanism in atoms and molecules necessitates a precise
depiction of the ionization continuum. However, the accurate inclusion of the correlated electronic wave function
at short range, particularly for intricate multicenter molecules, poses a significant challenge. In this study, we
have devised a multicenter continuum-state approach by solving the coupled-channel Schrödinger equation. This
approach enables the computation of molecular frame photoelectron angular distributions (MFPADs) induced
by both plane-wave and twisted photons. To elucidate our methodology, we present calculations focusing on the
CO2 C 1s orbital. Our computations exhibit favorable agreements with experimental observations and established
theoretical frameworks for plane-wave photoionization. For the twisted-photon ionization, the MFPADs demon-
strate independence from the orbital angular momentum (OAM) of the twisted light, provided no restrictions are
imposed on the impact parameters. The MFPADs exhibit varying dependence on the opening angle for varying
propagation directions of twisted photons, when considering linearly polarized vectors lying within the cone
surface. Additionally, for a comprehensive comprehension of the OAM-dependent photoionization process, we
investigate the MFPADs resulting from placing the molecule at the phase singularity in the twisted center.
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I. INTRODUCTION

The developments of x-ray free-electron lasers (XFELs)
delivering extremely short x-ray pulses of a few femtoseconds
[1–4] have paved new pathways to image structural changes
of molecules in chemical reactions, for example, employ-
ing time-resolved x-ray diffraction [5] and ultrafast electron
diffraction [6]. Molecular frame photoelectron angular distri-
bution, containing the most detailed information of molecular
structure and photoionization dynamics, refers to the angular
distribution of photoelectrons emitted from molecules in their
own reference frame upon interaction with photons and has
been used as a fundamental tool to investigate the relevant
dynamics.

In molecular frame photoelectron angular distribution
(MFPAD) experiments, molecules are aligned or oriented
[7,8] in a specific manner before being irradiated with
high-energy photons, such as x-rays or ultraviolet light. Al-
ternatively, the orientation of the molecule can be determined
by detecting the photoelectron in coincidence with charged
fragments [9]. This approach is typically employed after
core-level photoionization, where the dissociation occurs si-
multaneously with prompt Auger decay [10].

In the theoretical aspect, during the past few decades,
numerous theoretical methods have been developed to ad-
dress the issue. Since the pioneering works [11,12], various
theoretical models, including the UK molecular R-matrix
method [13,14], the complex Kohn method [15–17], the
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multiple scattering method [18], the ePolyScat method
[19,20], the multichannel Schwinger configuration inter-
action method [21–23], and most recently, the XCHEM
method [24–28], have been developed to compute the photon
ionization cross sections. However, due to the compli-
cated short-range structure of the correlated electronic wave
functions, it is still a challenge to determine accurate rep-
resentation of the ionization continuum state, especially for
complex multicenter molecules. There is a long history of
investigation of the plane wave photon ionization, as men-
tioned above. However, related research on twisted light is
quite lagging. Matula et al. [29] investigated the angular
distribution of emitted electrons from hydrogen-like ions by
twisted photons, with special attention to the dependence of
the electron emission pattern on the impact parameter of the
ion with respect to the center of the twisted wave front. Then,
in 2015, ionization of H+

2 molecular ions by twisted Bessel
light [30] was investigated with a simple plane-wave descrip-
tion of the ionized electron. Most recently, the photoelectron
angular distributions generated by twisted radiation on atoms
are investigated from a theoretical perspective [31], with spe-
cial emphasis on the dipole and nondipole effects.

In the present work, a multicenter continuum-state ap-
proach is developed to describe the MFPAD induced by
plane-wave and twisted photons by considering the pho-
toelectron moving in the multicenter model potential. The
multicenter continuum state is actually the solutions of the
corresponding coupled-channel Schrödinger equation. The
target electronic structure is constructed by means of single-
center expansion based on the symmetry-adapted spherical
harmonics [32–34]. The advantage of the present approach
to MFPAD is that it is easy to extend to more complex
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polyelectronic atoms and molecules with sufficient accuracy.
As a demonstration, MFPADs for C 1s photoelectrons from
CO2 molecules are presented for the energies of ejected
electron covering from several to 150 eV. Our computations
exhibit favorable agreement with experimental observations
and established theoretical frameworks for plane-wave pho-
toionization. Furthermore, the MFPADs induced by twisted
photons demonstrate independence from the OAM of the
twisted light, provided no restrictions are imposed on the
impact parameters. The MFPAD exhibits varying dependence
on the opening angle for varying propagation directions of
twisted photons, when considering linearly polarized vec-
tors lie in a cone surface. Additionally, for a comprehensive
comprehension of the OAM-dependent photoionization pro-
cess, we investigate the MFPADs resulting from placing the
molecule in the phase singularity in the twisted center.

The paper is organized as follows: in the next section we
briefly outline the theoretical method for plane-wave and
twisted photoionization. The results and discussion will be
presented in Sec. III, followed by the summary in Sec. IV.
Atomic units are used throughout the paper unless explicitly
stated otherwise.

II. THEORETICAL METHODS

A. General form of molecular frame photoelectron
angular distribution

1. Plane-wave photons

The core physics of MFPADs has been covered extensively
in the literature; here, only a brief introduction is provided
with sufficient detail to introduce the reconstruction of MF-
PAD. In the nonrelativistic region, for a plane-wave photon
with wave vector k, energy ω = k/α, the transition operator
reads

V̂ (pl) = αA(pl)
λ (r) · p̂, (1)

where α is fine-structure constant, p̂ = −i∇ is the linear mo-
mentum operator, and the vector potential is expressed as

A(pl)
λ (r) = ekλeik·r, (2)

where ekλ denotes the polarization vector with λ = ±1, and λ

is associated with helicity of the incident wave. Then, the pho-
toionization differential cross section [35] with plane-wave
photon is

d2σ (pl)

d�dk̂
= 2π

jpl
ni

∣∣〈F (−)
ke

(r)
∣∣αeik·rekλ · p̂|ϕi(r)〉∣∣2

, (3)

where jpl = k/(2π ) is the flux of the incident plane photon ra-
diation [36], ni denotes the occupation number of the ionized
orbital, then

d2σ (pl)

d�d k̂
= 4π2αni

ω

∣∣M (pl)
f i (k)

∣∣2
, (4)

and M (pl)
f i (k) is the plane-wave transition amplitude,

M (pl)
f i (k) = 〈

F (−)
ke

(r)
∣∣eik·rekλ · p̂|ϕi(r)

〉
; (5)

� defines the molecular orientation with respect to the labo-
ratory frame, and ke is the momentum vector of the ionized

FIG. 1. The schematic of photoionization process induced by
linearly polarized plane-wave photons, with propagation direction
along y-axis.

electron. ϕi(r) and F (−)
ke

(r) are the initial bound and final
multicenter continuum states of the active electron, respec-
tively. In the dipole approximation, eik·r ≈ 1, then Eq.(4) can
be simplified to the usually adopted formula in the length form
[35,37]

d2σ (pl)

d�d k̂
= 4π2αωni

∣∣〈F (−)
ke

(r)|ekλ · r|ϕi(r)〉∣∣2
. (6)

λ = 1 and -1 correspond to the right and left circular light,
respectively, with propagation direction along the z axis. For
linear polarized light, the vector potential can be denoted as

A(pl)
x (r) = 1√

2

[
A(pl)

λ=1(r) + A(pl)
λ=−1(r)

]
,

(7)

A(pl)
y (r) = i√

2

[
A(pl)

λ=1(r) − A(pl)
λ=−1(r)

]
,

with a linearly polarized vector along the x and y axis, re-
spectively. Then, the transition amplitude induced by linearly
polarized light can be composed of a superposition of the
transition amplitudes of right and left circular polarized light.

In the present work, we consider ionization induced by
linearly polarized photons, as shown in Fig. 1. In order to
calculate the transition amplitude, the bound and the final
multicenter continuum state are expanded on the symmetry-
adapted angular function X pμ

h	
(θ, φ) [32–34] by utilizing the

point-group symmetry of the molecule, where p and μ la-
bel one of the relevant irreducible representations and one
of its components, respectively. The bound wave functions
of the molecular orbitals (MOs) are calculated using the
GAUSSIAN09 [38] program with the density functional theory
employing the B3LYP functional [39,40] and cc-pVTZ [41]
basis set. The numerical processes for the transition amplitude
in length and velocity forms are presented in Appendix B.

2. Twisted photons

In order to describe the twisted-photon ionization pro-
cess, the spatial part of the vector potential in the transition
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FIG. 2. Overview of the twist light incidents on a molecular
target with impact parameter ρ.

operator [Eq.(1)] should be changed from plane wave to
twisted wave. Twisted photons with intrinsic OAM mγ h̄ and
energy ε can be described in the cylindrical coordinates
r = (r⊥, z) = (r⊥, φr, z). The momentum vector of twisted
photon is defined as k = (k⊥, kz ) = (k⊥, φk, kz ), which lays
on the surface of a cone with an opening angle θk =
arctan(|k⊥|/kz) = arctan(κ/kz). φk is defined as the rotation
angle. In the present work, we adopt the Bessel state descrip-
tion of twisted photons; in the real space, it is expressed as
[36,42,43]

〈r | kzκmγ 〉 = eikzzψ
κmγ

tr (r⊥), (8)

and the transverse component of the wave function equals to

ψ
κmγ

tr (r⊥) = √
κ

eimγ φr

√
2π

Jmγ
(κr⊥), (9)

where Jmγ
(κr⊥) is the mγ th Bessel function of the first kind.

The momentum representation of the stationary Bessel solu-
tion is

ψ
κmγ

tr (k⊥) =
∫

eimγ φr

√
2π

√
κJmγ

(κr⊥)e−ik⊥·r⊥dr⊥

= (−i)mγ eimγ φk

√
2π

k⊥
δ(k⊥ − κ ). (10)

So, the Bessel state of Eq. (8) can be written as

〈r | kzκmγ 〉 = eikzz
∫

ψ
κmγ

tr (k⊥)eik⊥·r⊥ dk⊥
(2π )2

= (−i)mγ

√
κ

2π

∫ 2π

0
eimγ φk eik·r dφk

2π
. (11)

Then, a Bessel state of light is characterized by the vector
potential [36,42,43]

A(tw)
kzκmγ λ

(r, ρ) = eikzz
∫

ekλψ
κmγ

tr (k⊥)eik⊥·r⊥ dk⊥
(2π )2

= (−i)mγ

√
κ

2π

∫ 2π

0
ekλeimγ φk−ik·ρeik·r dφk

2π
,

(12)

where the exponential term e−ik·ρ specifies the displacements
of the twisted photons relative to the molecular target, and
ρ is defined as impact parameters, as shown in Fig. 2. As

can be seen from these expressions, such a Bessel beam can
be understood as a superposition of plane waves whose wave
vectors

k =

⎛
⎜⎜⎝

k sin θk cos φk

k sin θk sin φk

k cos θk

⎞
⎟⎟⎠ (13)

form the surface of a cone and with the polarization vectors
[29,30]

ekλ = −λ√
2

⎛
⎜⎜⎝

cos θk cos φk − iλ sin φk

cos θk sin φk + iλ cos φk

− sin θk

⎞
⎟⎟⎠. (14)

Combining Eqs. (12) and (5), the transition amplitude for the
twisted photon is expressed as

M (tw)
f i (k, ρ) = (−i)mγ

√
κ

2π

∫ 2π

0
eimγ φk−ik·ρM (pl)

f i (k)
dφk

2π
.

(15)

In the practice, the impact parameter ρ is usually not available,
as a macroscopic target of an atom or molecule is assumed
to be randomly distributed over the extent of the incident
twisted light beam in a large radius R. In the theoretical
aspect, we must integrate the impact parameters of cross sec-
tions to achieve agreement with the experiment. Therefore, by
integrating |M (tw)

f i (k, ρ)|2 over all the impact parameter ρ in
the transverse plane in a large radius R, the photoionization
differential cross section induced by twisted photons can be
determined:

d2σ (tw)

d�d k̂
= 2πα2ni

jtw

∫
0<|ρ|<R

dρ

πR2

∣∣M (tw)
f i (k, ρ)

∣∣2

= 2πα2ni

jtw

2π

κ

∫
0<|ρ|<R

dρ

πR2

×
∫

eimγ φk δ(κ − k⊥)M (pl)
f i (k)e−iρ·k⊥ dk⊥

(2π )2

×
∫

e−imγ φk′ δ(κ − k′
⊥)M (pl)∗

f i (k′)eiρ·k′
⊥

dk′
⊥

(2π )2
,

(16)

where jtw = kcosθk/(2π3R) denotes the flux of the incident
twisted-photon radiation [36]. With the help of the following
integral,∫

0<|ρ|<∞
d2ρeiρ·(p′′−p′ ) = (2π )2δ2(p′

⊥ − p′′
⊥), (17)

for a large R (R → ∞), Eq.(16) can be simplified by integrat-
ing dρ and dk′

⊥,∫
0<|ρ|<R

dρ

πR2

∣∣M (tw)
f i (k, ρ)

∣∣2

= 1

2πκ

1

πR2

∫ ∣∣δ(κ − k⊥)M (pl)
f i (k)

∣∣2
dk⊥. (18)
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Then, by using the expression of the delta function squared
fromRefs. [36,44],

δ2(k⊥ − κ ) = R

π
δ(k⊥ − κ ), (19)

and performing the integration over k⊥, finally, the twisted-
photon-induced differential cross section yields

d2σ (tw)

d�d k̂
= 4π2αni

ωcosθk

∫ ∣∣M (pl)
f i (k)

∣∣2 dφk

2π
. (20)

The equation shows that twisted-photon-induced photoion-
ization cross sections do not depend on the OAM of
twisted photons, provided that no restrictions are im-
posed on the impact parameters. We here note that if
the opening angle θk = 0◦, the expression of Eq. (20)
will simply degenerate into formulation of the photoion-
ization differential cross section induced by plane-wave
photons.

B. Multicenter continuum state

In order to obtain the multicenter continuum state, the
photoelectron is regarded as moving in the anisotropic field
of the residual ion. In this work, a model potential is
adopted [45]:

V m = V st + V cp + V ex, (21)

where V st is the electrostatic potential between the electron
and residual molecular ion. V cp is the correlation-polarization
potential [34,45,46]. V ex is the free electron gas (FEGE)
model exchange potential [34,45,46].

In the molecular coordinate, the multicenter contin-
uum orbital based on the single active electron ap-
proximation for particular irreducible representations and
its component pμ satisfies the following Schrödinger
equation:

[ − 1
2∇2 + V m − Eke

]
F pμ(r) = 0. (22)

The multicenter continuum orbital F pμ(r) is expanded on the
symmetry-adapted angular function X pμ

h	
(r̂) [32–34]:

F pμ(r) =
∑
h′	′

1

r
f pμ
h′	′ (r)X pμ

h′	′ (r̂); (23)

insert the formula into the Schrödinger equation and project
on X pμ

h′l ′ (r̂) by utilizing its normalization relationship,[
d2

dr2
− 	(	 + 1)

r2
+ 2

r
+ k2

e

]
f pμ
h	

(ke, r)

=
∑
h′	′

U pμ
h	;h′	′ (ke, r) f pμ

h′	′ (ke, r), (24)

where the potential matrix element is

U pμ
h	,h′	′ (ke, r) = 2

〈
X pμ

h	
(r̂)

∣∣V m(ke, r)
∣∣X pμ

h′	′ (r̂)
〉 + 2

r
δhh′δ		′ .

(25)

The multicenter model potential V m leads to the coupling for
different angular momentum. In general, if a cutoff of N terms
for the maximum of angular momentum 	 is applied, there
are N independent solutions for the N differential equations.
Therefore, the multicenter continuum orbital consists of N
independent solutions:

F pμ
h′′	′′ (r) =

∑
h	

1

r
f pμ
h	,h′′	′′ (r)X pμ

h	
(r̂), (26)

which leads to the following coupled equations:[
d2

dr2
− 	′′(	′′ + 1)

r2
+ 2

r
+ k2

e

]
f pμ
h	;h′′	′′ (ke, r)

=
∑
h′	′

U pμ
h	;h′	′ (ke, r) f pμ

h′	′;h′′	′′ (ke, r), (27)

The coupled equations are further solved by an im-
proved log-derivative method [47], and the detailed nu-
merical processes are displayed in Appendix A. In order
to solve the equation, the radial wave functions f pμ

h	;h′′	′′
must match the physical asymptotic conditions of the K
matrix [48]:

f pμ
h	;h′	′ (ke, r)

r→0→ N	r	+1δh	;h′	′

f pμ
h	;h′	′ (ke, r)

r→∞→ F	(ker)δh	;h′	′ + G	(ker)Kpμ
h	;h′	′ ,

(28)

where F	 and G	 are the regular and irregular Coulomb func-
tions.

The multicenter continuum wave function for momentum
k is the linear combination of the multicenter continuum or-
bitals:

F (−)
ke

(r) =
∑

pμ;h′′	′′
F pμ

h′′	′′ (r)apμ
h′′	′′ . (29)

In order to obtain the coefficient apμ
h′′	′′ , we have to inspect

the physical asymptotic conditions at r → ∞. By utilizing
Eq. (28) and F	 and G	 at r → ∞,

F (−)
ke

(r)
r→∞→

∑
pμ;h′′	′′

1

r

[
sin θlδh	;h′′	′′ + cos θ	Kpμ

h	;h′′	′′
]
apμ

h′′	′′X
pμ

h	
(r̂)

=
∑

pμ;h′′	′′

1

r

[
eiθ	

1

2i

(
δhl;h′′	′′ + iKpμ

h	;h′′	′′
) + e−iθ	

−1

2i

(
δh	;h′′	′′ − iK pμ

h	;h′′	′′
)]

apμ
h′′	′′X

pμ
h	

(r̂), (30)
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where θl = ker − lπ
2 + σl − η ln 2ker, η = z/ke, σl = arg�(l + 1 + iη) is the Coulomb phase shift. Here, F (−)

k (ke, r) satisfies
the ingoing boundary condition. Let ϕ(−)

c (ke, r) denote the continuum wave function of electrons in the Coulomb potential and
satisfy the ingoing boundary condition, then

ϕ(−)
c (ke, r)

r→∞→ 1

(2π )
3
2

∑
pμ

∑
h	

4π i−	eiσ	
1

ker
F	(ke, r)X pμ

h	
(k̂e)X pμ

h	
(r̂)

= 1

(2π )
3
2

∑
pμ

∑
h	

4π i−	eiσ	
1

ker

[
eiθ	

1

2i
+ e−iθ	

−1

2i

]
X pμ

h	
(k̂e)X pμ

h	
(r̂). (31)

The coefficient apμ
h′′	′′ can be determined by setting the same of

the the outgoing spherical part of Eqs. (30) and (31),

apμ
h′′	′′ = 1

(2π )
3
2

4π

ke

∑
h′	′

([I + iKpμ]−1)h′′	′′;h′	′

× i	
′
e−iσ	′ X pμ

h′	′ (k̂e). (32)

So, the multicenter continuum wave function of the photoelec-
tron can be expressed as

F (−)
ke

(r) = 1

(2π )
3
2

∑
pμ

∑
h1	1;h2	2

4π i−	1 eiσ	1
1

ker

× φ
pμ
h1	1;h2	2

(ke, r)X pμ
h1	1

(k̂e)X pμ
h2	2

(r̂) (33)

and

φ
pμ
h1	1;h2	2

(ke, r) =
∑

h	

f pμ
h1	1;h	

(ke, r)([I + iKpμ]−1)h	;h2	2
;

(34)
the short-range phase shift is included in the expression of
Eq. (34).

III. RESULTS AND DISCUSSION

In order to evaluate the validity of the present model,
for plane-wave photoionization, MFPADs for C 1s photo-
electrons from CO2 molecules are presented for the energies
of ejected electron covering from several to 150 eV. Our
computations exhibit favorable agreements with experimental
observations and established theoretical frameworks. For the
twisted-photon ionization, the MFPADs show independence
from the OAM of the twisted light, as long as no restrictions
are placed on the impact parameters. This finding highlights
the unique features of MFPADs across different propagation
directions of twisted photons, when considering linearly po-
larized vectors lying within a cone surface. Furthermore, to
fully understand the OAM-dependent photoionization pro-
cess, we examine the MFPADs generated when the molecule
is positioned in the phase singularity at the twisted center. In
the practical calculations, the equilibrium geometry of CO2

possesses a D∞h point group with a bond length of RCO =
1.163 Å. To ensure the convergence for the numerical calcula-
tions, in the practical calculations, the upper limit of the partial
wave expansion for the multicenter photoelectron continuum
state is lcmax = 18, while the upper limit of the initial bound
state of the C 1s orbital is lbmax = 10.

A. Plane-wave photons

Figure 3 shows the two-dimensional (2D) density plots
of MFPADs for C 1s from CO2 molecules with ejected
electron energies of Ee = 6.2, 9.4, 14.6, 23.3, and 32.2 eV
(corresponding to photon energies of 303.8 eV, 307 eV,
312.2 eV, 320.9 eV, and 329.8 eV, the C 1s ionization energy
is 297.63 eV [49]), obtained by the present calculations. γ0 (x
axis) is defined as the angle between the molecular orientation
and polarization of photons, and θe is the direction of photo-
electrons emitted from the fixed molecule. For the equilibrium
linear CO2 molecule, due to the molecular symmetry, the
distribution of photoelectrons exhibits isotropy for azimuthal
angle φe, which will not be presented as a variable. The calcu-
lated MFPADs in Fig. 3 are in agreement with the calculations
and the experimental data reported by Liu et al. [50], which
are not displayed in the present work. Experimentally [51], the
shape resonance located at approximately 14.6 eV is assigned
to the promotion of an electron from the 2σg (C 1s) core orbital
to the 4σu unoccupied molecular orbital. As a result, the final
state can be described as 2σ−1

g (2�+
g )4σu

1�u. This photoexci-
tation from �g → �u represents a parallel transition, where
the ejected electron predominantly exhibits σu symmetry. In
Fig. 3, γ0 = 0◦ and 90◦ correspond to parallel (� → �)
and perpendicular (� → �) transitions, respectively. For the
other polarization direction, such as γ0 equal to 45◦, it is
actually the mixtures of � → � and � → � transitions. The
observed electron emission at approximately 14.6 eV mainly
occurs at γ0 = 0◦, aligned along the molecular axis. With the
increasing of ejected electron energy from 14.6 eV to 23.3 eV,
most of the photoelectrons come from the parallel transition,
with a nodal plane at γ0 = 90◦ in this energy region. For
the ejected electron energy of 32.2 eV, the perpendicular
transition is strongly enhanced, as shown in Fig. 3(e). These
findings are consistent with the expectation that the shape
resonance represents a parallel �g to �u transition, emitting
photoelectrons with σu symmetry. These results additionally
serve as evidence of the accuracy of the current calculations.
At equilibrium geometry, the MFPAD for the parallel transi-
tion, i.e., γ0 = 0◦, will always possess symmetric distribution
relative to the center in the calculations. The experimental
data reported by Liu et al. [50] exhibits asymmetric shapes
except for Ee = 32.17 eV, as shown in Fig. 4. Our calculations
of MFPADs at equilibrium and asymmetric geometries are
also presented for comparison. The asymmetric geometry is
adopted at CO distances of 1.136 and 1.193 Å, respectively,
which are determined by the root-mean-square displacements
in the harmonic asymmetric-stretch potential and were de-
rived by Miyabe [16] from a normal mode analysis of the
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FIG. 3. 2D plots of MFPADs for C 1s photoelectrons from CO2

molecules at Ee = 6.2, 9.4, 14.6, 23.3, and 32.2 eV. γ0 is defined
as the angle between the molecular orientation and polarization of
photons.

ground-state CO2 potential calculated at the MP2 level with a
triple-zeta plus polarization basis. It shows that the asymmetry
is clearly evident in MFPADs. Present calculations for the

FIG. 4. Polar plots of C 1s MFPADs of CO2 with molecular
orientation parallel to the ê vector at photoelectron energies 9.37,
14.17, 14.57, 21.77, 23.27, and 32.17 eV. The dots correspond to
measurements reported in Ref. [50]. Solid red and dashed blue
curves are present calculations with equilibrium (RCO = 1.136 Å)
and asymmetric (CO distances are 1.136 and 1.193 Å) geometries,
respectively.

asymmetric geometries (dashed blue lines) are in excellent
agreement with the calculations by Miyabe [16], and are in
better agreement with the measurements at Ee = 14.17 and
14.57 eV. However, the disagreement between the measured
and calculated spectra at Ee ∼ 20 eV becomes apparent, while
for Ee = 32.17 eV, the calculations at equilibrium geometry
are getting better again compared with experimental data. This
suggests that the observed asymmetry in the MFPADs could
be linked to the asymmetric geometry, but also influenced by
the particular photon energies, thereby indicating the influ-
ence of the resonance effect.

By considering the energy shift of the �u shape reso-
nant peak and taking into account fixed-nuclei cross sections
averaged over asymmetric stretch and bending modes, Miyabe
[16] obtained relatively good agreement with experimen-
tal data. The same problem is encountered in the present
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FIG. 5. Polar plots of C 1s MFPADs of CO2 with molecular
orientation parallel to the ê vector. The dots correspond to measure-
ments reported in Ref. [50] at Ee = 23.27 eV. Solid red, dashed blue,
and dash-dotted green curves are present calculations at Ee = 24.27,
25.27, and 26.27 eV, respectively. (a) Calculations at equilibrium
geometry; (b) calculations at asymmetric geometry. (CO distances
are 1.136 and 1.193 Å, respectively.)

calculations. Figure 5 shows the comparison between exper-
imental data [50] measured at Ee = 23.27 eV and present
calculations with energies shifts to Ee = 24.27, 25.27, and
26.27 eV. The experimental data is normalized to the calcu-
lation at Ee = 26.27 eV with the best visual fit. Apparently,
calculations with asymmetric geometry achieve a better
agreement with experimental data. With the increasing of
photoelectron energies from Ee = 24.27 to 26.27 eV, the
agreements between experiment and calculations become bet-
ter. It also reflects that the shift of the shape resonant peak
is ∼3 eV for the present approach, the same as the complex
Kohn method [16]. The resonant peak shift of calculations can
be attributed to the incomplete multicenter model potential, in
which the continuum state of a photoelectron is obtained.

Figure 6 depicts the polar plots of MFPADs correspond-
ing to C 1s photoelectrons emitted from CO2 molecules at
electron energies of Ee = 50, 100, and 150 eV. The molecular
axis, aligned along the z axis, serves as the reference for
the photon polarization directions considered in this study,
namely, γ0 = 0◦ (ê ‖ z), 45◦, and 90◦ (ê⊥z), represented re-
spectively in the first, second, and third columns. In the
plot, the solid red and dashed blue lines denote calculations
conducted under the dipole approximation in the length and
velocity forms, respectively. The dotted orange line incorpo-
rates the nondipole effect. Notably, small deviations between
the calculations in the length and velocity forms are ob-
servable. The nondipole effect in the present work exhibits
negligible contribution to the cross sections within the current
geometric configuration, wherein the emitted photoelectron
and the molecular axis lie within the plane orthogonal to the
propagation direction of incident photons. The figure does
not include multiple-scattering x-ray photoelectron diffraction
(XPD) calculations utilizing muffin-tin approximation the-
ory, as presented by Kazama et al. [52]. Nevertheless, upon
comparison, the lobular and nodal structures of the MFPADs
align with our calculations, albeit with minor differences in
lobe magnitudes. Despite these slight variations, the results
exhibit satisfactory agreement, underscoring the validity of
our present model.

It must be noted that there are still some small discrepan-
cies if one closely investigates on the detailed distributions

when comparing the present calculations with the density-
functional [50] and multiple-scattering XPD [52] theories.
The discrepancies can be ascribed to the adoption of a dif-
ferent incomplete multicenter model potential when solving
the coupled-channel radial Schrödinger equation, and thus
may lead to the insufficient description of the correlations
between the continuum electron and residual ion, especially
in the short-range region. It is a strenuous problem when
encountering with the electron continuum state for the model-
potential-dependent approach, especially for the multicenter
molecular target. As far as we are concerned, theories of com-
plex Kohn [15,17] and XCHEM [24] methods were proposed
to address this issue, and often without corrections. However,
discrepancies between calculations and experimental data still
exist in the literature. It also reflects that accurately describing
the ionization continuum state is a very difficult task. The ad-
vantage of the present multicenter continuum-state approach
to MFPAD is that it is easier to extend to more complex
polyelectronic atoms and molecules with sufficient accuracy.
Based on this point, the molecular vibrational degrees of free-
dom can also be taken into account straightforwardly without
high theoretical and technical barriers.

B. Twisted photons

Firstly, we posit a scenario wherein a macroscopic tar-
get comprising atoms or molecules is uniformly distributed
across the spatial extent of the incident twisted light beam.
Consequently, the differential cross sections for photoelectron
emission remain unaffected by the OAM of the twisted pho-
tons. However, the resultant formula, depicted in Eq. (20),
incorporates parameters pertaining to the twisted light, no-
tably, the opening angle θk alongside the rotation angle φk

which undergoes integration. In addition, the polarization
structure of twisted light also plays an important role in deter-
mining the MFPADs. The pattern of polarization of such light
has a quite complicated structure for large values of opening
angle. Interesting ideas and discussions on the polarization
structure complexity of twisted Bessel light can be obtained
from papers [53,54]. Here, we note that the concept of linear
polarization of twisted light, throughout this paper, refers to
linear polarization for a specific direction of wave vector,
while the overall polarization structure is not linear. In this
study, two linearly polarized structures of twisted Bessel light
with an opening angle θk are considered. One is illustrated
in Fig. 7, representing a polarization cone surface, which
possesses an opening angle of 90◦ − θk , while the other is
depicted in Fig. 8, representing a polarization plane.

Figures 7(b) and 7(e) and Figs. 7(c) and 7(f) illustrate
the MFPADs for C 1s photoelectrons emitted from CO2

molecules at electron energies of 50 and 100 eV, respec-
tively, upon interaction with twisted Bessel light. As depicted
in the kinematic configurations outlined in Figs. 7(a) and
7(d), the molecular axis aligns with the z axis, while pho-
toelectron detection occurs within the xz plane. The linearly
polarized vector lies within a polarization cone surface, indi-
cated by purple lines. The various line styles in Figs. 7(b),
7(c), 7(e), and 7(f) denote distinct opening angles θk of the
twisted Bessel beams (solid black line: θk = 0◦; dash-dot
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FIG. 6. Polar plots of MFPADs for C 1s photoelectrons from CO2 molecules at Ee = 50, 100, and 150 eV, with the photon energy Eph in
the bracket. Both the polarization vector and molecular axis lie in the xz plane, and the photons propagate along the y axis, as shown in Fig. 1.
γ0 is defined as the angle between molecular orientation and polarization of photons. The first, second, and third columns display the MFPADs
for γ0 equal to 0◦, 45◦, and 90◦, respectively. The solid red and dashed blue lines indicate present calculations under dipole approximation in
the length and velocity forms, respectively. The dotted orange line is the present calculation including the nondipole effect. The results are in
good agreement with previous XPD calculations (not shown) [52].

orange line: θk = 10◦; dashed blue line: θk = 20◦; solid red
line: θk = 30◦).

In Fig. 7(a), the propagation direction of twisted Bessel
light aligns with the z axis. When θk = 0◦, the twisted Bessel
light reverts to a plane wave. Consequently, the polarization
vector ekλ lies within the xy plane, resulting in zero intensity
for photoelectrons emitted at θe = 0◦ and 180◦, satisfying the
orthogonality condition ke⊥ekλ. In Figs. 7(b) and 7(c), as
θk increases from 0◦ to 30◦, the intensity of emitted photo-
electrons at θe = 0◦ and 180◦ gradually rises. This trend is
more pronounced for photoelectron energies at Ee = 50 eV.
The polarization vector of twisted light exhibits a nonzero
z component in the directions of θe = 0◦ and 180◦. With a
larger opening angle, the projection of the polarization vector
of twisted light increases, leading to a higher probability of
photoelectron emission at θe = 0◦ and 180◦.

Consider another kinematic condition, where the propaga-
tion direction of twisted Bessel light aligns with the y axis,
as the illustrated kinematics in Fig. 7(d), akin to the setup
depicted in Fig. 6. In Figs. 7(e) and 7(f), the MFPADs are
presented for various opening angles θk = 0◦, 10◦, 20◦, and
30◦. Although for θk = 0◦ the twisted light reverts to a plane
wave, the MFPADs in Fig. 7 do not align with any of the
distributions in Fig. 6. This difference arises from the random
distribution of the polarization vector directions within the
xz plane for twisted light ionization. The cross sections for
feasible polarization directions are integrated in practical cal-
culations. As the opening angle increases from θk = 0◦ to 30◦,
the absolute value of the cross section gradually increases
[dominated by 1/cosθk in Eq. (20)], while the shapes of MF-
PADs remain nearly identical. Notably, even at θk = 1◦, this
trend persists (not shown).
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FIG. 7. Polar plots of MFPADs for C 1s photoelectrons from CO2 molecules at Ee = 50 and 100 eV, induced by twisted Bessel light, with
polarized vectors lying on a cone surface. As shown in Figs. 7(a) and 7(d), the photoelectron is detected in the xz plane, and the propagation
direction of twisted Bessel light is along the z and y axis for the first and second row, respectively. The different types of lines indicate the
different opening angle θk of twisted Bessel photons in (b), (c), (e), and (f). (Solid black line: θk = 0◦; dash-dot orange line: θk = 10◦; dashed
blue line: θk = 20◦; solid red line: θk = 30◦).

FIG. 8. Same as Fig. 7, except that the polarization vector lies at the perpendicular plane with respect to twisted light propagation.
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It must be noted that the polarization structure of twisted
light also plays an important role in determining the MFPADs,
as mentioned before. Here, we present MFPADs resulting
from twisted Bessel light similar to Fig. 7, but with a special
polarization structure of twisted light. As shown in Figs. 8(a)
and 8(d), the linearly polarized vector of twisted light lies
in the perpendicular plane with respect to the twisted light
propagation direction. Different from the results in Fig. 7, the
shapes of MFPADs are not sensitive to both of the kinematic
conditions and the opening angle of twisted light.

It can be inferred that both the kinematic conditions and
the polarization structure of twisted light play pivotal roles in
determining the MFPADs. In the case of the first polarization
structure depicted in Fig. 7, when the propagation direction
of twisted Bessel light is parallel to the molecular axis of
CO2, the MFPADs exhibit significant variations depending
on the opening angle of the twisted light. Conversely, when
the propagation direction of twisted Bessel light is perpen-
dicular to the molecular axis, the shapes of MFPADs remain
unaffected by the parameters of twisted Bessel light. These
findings underscore the distinct characteristics of MFPADs
under different kinematic conditions during the interaction of
molecules with twisted photons. Regarding the second polar-
ization structure illustrated in Fig. 8, the MFPADs’ shapes
demonstrate insensitivity to both kinematic conditions and the
opening angle of twisted light.

When implementing restrictions on impact parameters, the
OAM of twisted Bessel light becomes influential in the pho-
toionization process. The spatial distribution of the twisted
light beam within the coordinate system manifests as a ring-
like structure, characterized by a node at the beam axis where
a phase singularity is present. The significant spatial hetero-
geneity complicates the mathematical representation of the
interaction between twisted light and matter, particularly in
proximity to the phase singularity, rendering the conventional
dipole-moment approximation inapplicable [53,55–58]. As
demonstrated in practical experiments [55], the utilization of
an ion trap stands as the prevalent methodology for acquiring
experimental data with atoms positioned at the phase sin-
gularity. For theoretical computations, this condition can be
achieved by setting ρ = 0 in Eq. (15):

M (tw)
f i (k, ρ = 0) = (−i)mγ

√
κ

2π

∫ 2π

0
eimγ φk M (pl)

f i (k)
dφk

2π
.

(35)
The OAM associated with twisted photons remains unalter-
able within the expression, as no integration is performed
across the spatial extent of the incident twisted light beam.
The transition amplitude prompted by twisted photons within
the phase singularity can be conceptualized as a coherent
superposition of plane-wave transition amplitudes, each with
distinct propagation directions within the cone surface, mod-
ulated by an OAM-correlated phase eimγ φk . Consequently, the
OAM of twisted light assumes a pivotal role in determining
the transition amplitude of the twisted photoionization pro-
cess. Subsequently, the differential cross section is derived by
squaring the magnitude of Eq. (35) while utilizing the same
normalization factor as Eq. (20). To attain a more quantitative
comprehension of the underlying physics, the MFPADs for
C 1s photoelectrons emitted from CO2 molecules at Ee =

FIG. 9. Polar plots of MFPADs for C 1s photoelectrons from
CO2 molecules at Ee = 100 eV, induced by twisted Bessel light with
orbital angular momentum of (a) mγ = 1 and (b) mγ = −1 in the
phase singularity in the twisted center. The kinematic condition is
the same as Fig. 7(d), the photoelectron is detected in the xz plane,
and the propagation direction of twisted Bessel light is along the y
axis. The opening angle of twisted Bessel photons is θk = 10◦.

100 eV under the influence of twisted Bessel light possessing
an OAM of mγ = ± 1, and an opening angle θk = 10◦ in
proximity to the phase singularity at the twisted center, are
depicted in Fig. 9. The kinematic conditions mirror those of
Fig. 7(f). Within Fig. 9, the MFPADs exhibit significantly
distinct shapes compared to the outcomes in Fig. 7(f). This
discrepancy primarily arises from the coherent superposition
of plane-wave transition amplitudes with diverse propaga-
tion directions within the cone surface, modulated by an
OAM-associated phase eimγ φk . Moreover, the MFPADs for
mγ = ± 1 display a mirror-symmetric nature, which stems
from the absorption of twisted photons bearing opposite
OAM values. Consequently, the MFPADs serve as a means
to discern the left and right helicity of twisted photons.
The phenomenon described, commonly referred to as cir-
cular dichroism for the absorption of twisted photons [59],
presents a distinct mechanism when contrasted with the
circular dichroism [60,61] observed in circularly polarized
plane-wave light, a topic extensively studied over numerous
years. The circular dichroism pertaining to the absorption of
twisted photons garners significant interest due to the addi-
tional OAM inherent in twisted photons, offering a promising
avenue for investigating the structural, electronic, and mag-
netic characteristics of atoms, molecules, and materials.

IV. SUMMARY

In the present work, we have developed a multicenter
continuum-state approach uses the single-center expansion
technique to describe the ionization continuum. By solving
the coupled-channel Schrödinger equation in the multicenter
model potential using an improved log-derivative method,
the electron correlation of continuum electrons with resid-
ual ions is included through the entire interaction region.
This approach enables the computation of MFPADs induced
by both plane-wave and twisted photons. This approach to
MFPAD can be straightforwardly extended to more complex
polyelectronic atoms and molecules with sufficient accuracy.
Therefore, it is expected to act as a different approach to
compute MFPADs.
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For the plane-wave photons, as a demonstration, the MF-
PADs for CO2 1s photoelectron emission in the energy range
of several to 150 eV are presented. The calculations achieve
favorable agreement with experimental data and established
theoretical models, indicating the validity of the present
model. In addition, the asymmetry of MFPAD observed in the
experimental data is also confirmed through the calculations
under asymmetric geometry by considering the resonant en-
ergy peak shifts.

For the twisted photons, the MFPADs demonstrate inde-
pendence from the OAM of the twisted light, provided no
restrictions are imposed on the impact parameters. This ob-
servation underscores the significance of both the kinematic
conditions and the polarization structure of twisted light in
determining MFPADs. The investigation explores two distinct
polarization structures of twisted Bessel light to elucidate MF-
PADs. Specifically, when considering linearly polarized vec-
tors lying within the cone surface, characterized by an opening
angle of 90◦ − θk , the MFPAD exhibits varying dependence
on the opening angle with respect to different propagation
directions of twisted photons. However, when the linearly
polarized vectors lie in the plane perpendicular to the prop-
agation direction, the discernible characteristics diminish.

Additionally, for a comprehensive comprehension of the
OAM-dependent photoionization process, we investigate the
MFPADs resulting from placing the molecule at the phase sin-
gularity in the twisted center. The MFPADs for mγ = ± 1 dis-
play a mirror-symmetric nature, which stems from the absorp-
tion of twisted photons bearing opposite OAM values. The
phenomenon, commonly referred to as circular dichroism for
the absorption of twisted photons, presents a distinct mecha-
nism when contrasted with the circular dichroism observed in
circularly polarized plane-wave light, offering a promising av-
enue for investigating the structural, electronic, and magnetic
characteristics of atoms, molecules, and materials.
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APPENDIX A: IMPROVED LOG-DERIVATIVE METHOD

In order to solve the coupled equations [Eq. (27)], we
employ an improved log-derivative method developed by
Manolopoulos [47]. Here, we only outline the basic ideas of
the method. Equation (27) can be rewritten to the following
Matrix form:

�′′(r) = W (r)�(r), (A1)

in which

�h	;h′	′ (r) = f pμ
h	;h′	′ (r)

Wh	;h′	′ (r) = U pμ
h	;h′	′ (r) + 	(	 + 1)

r2
− k2

e .
(A2)

The superscript pμ is omitted. The improved log-derivative
method directly solves the following log-derivative matrix
rather than the wave function and its derivative:

Y (r) = �′(r)�−1(r). (A3)

Taking the derivative of the equation and utilizing Eq. (A1)
will give rise to

Y ′(r) = W (r) − Y 2(r). (A4)

Matrix Y (r) is symmetrically inherited from the symmetric
W (r). In order to solve Eq. (A4), Manolopoulos defined a
propagator at interval [r′, r′′] based on the invariant imbedding
principle:(

�′(r′)
�′(r′′)

)
=

(
Y1(r′, r′′) Y2(r′, r′′)
Y3(r′, r′′) Y4(r′, r′′)

)( −�(r′)
�(r′′)

)
.

(A5)
Then, the recurrence relation of matrix Y (r) satisfies

Y (r′′) =Y4(r′, r′′) − Y3(r′, r′′)[Y (r′) − Y1(r′, r′′)]−1

× Y2(r′, r′′). (A6)

From the asymptotic boundary conditions of Eq. (28),

Y (r → 0)h	;h′	′ = (	 + 1)r−1δh	;h′′	′′ . (A7)

Combining the asymptotic boundary condition and the recur-
rence relation, Y (r) can be obtained at arbitrary r using the
propagator.

In the original Manolopoulos improved log-derivative
method [47], the propagation sector [a, b] is uniformly di-
vided to two half-sectors, [a, c] and [c, b] with c − a = b −
c = h. In the following expressions, [r′, r′′] denotes both [a, c]
and [c, b] intervals. And, a piecewise constant diagonal refer-
ence potential is adopted:

Wref (r)i j = δi j p2
j, r ∈ [a, b]; (A8)

with this analytical reference potential, the homogeneous
equation

�′′(r) = Wref (r)�(r) (A9)

is easily solved analytically. Then, the corresponding propa-
gator for the half-sector [r′, r′′] is also easily obtained:

y1(r′, r′′)i j = y4(r′, r′′)i j = δi j

{ ∣∣p j

∣∣ coth
∣∣p j

∣∣h, p2
j � 0∣∣p j

∣∣ cot
∣∣p j

∣∣h, p2
j � 0

y2(r′, r′′)i j = y3(r′, r′′)i j = δi j

{ ∣∣p j

∣∣csch
∣∣p j

∣∣h, p2
j � 0∣∣p j

∣∣ csc
∣∣p j

∣∣h, p2
j � 0

.

(A10)

For the complete potential, the propagator is related to the
above analytical reference propagator:

Y1(r′, r′′) = y1(r′, r′′) + Q(r′),

Y2(r′, r′′) = y2(r′, r′′),

Y3(r′, r′′) = y3(r′, r′′),

Y4(r′, r′′) = y4(r′, r′′) + Q(r′′).

(A11)

If we define the residual coupling matrix,

U (r) = W (r) − Wref (r), (A12)
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then the quadrature contributions from the three grid points
are given by

Q(a) = h

3
U (a),

Q(c) = 4

h

[
I − h2

6
U (c)

]−1

− 4

h
I,

Q(b) = h

3
U (b),

(A13)

which are identical to those used in the modified Simpson’s
rule integration.

After the entire propagation of the log-derivative matrix,
according to the following matrix form of boundary condi-
tions,

�(r) = F (r) + G(r)K
�′(r) = F ′(r) + G′(r)K,

(A14)

the corresponding reaction K-matrix can be extracted,

K = −[Y (r)G(r) − G′(r)]−1[Y (r)F (r) − F ′(r)], (A15)

where r represents the asymptotic boundary value rmax. F (r)
and G(r) are diagonal matrices, whose diagonal terms are
F (ker) and G(ker), respectively. F ′(r) and G′(r) are their
derivative matrices.

APPENDIX B: NUMERICAL PROCESS FOR TRANSITION
AMPLITUDE

1. Length form in dipole approximation

Except for the multicenter continuum state, the dipole tran-
sition amplitude depends on the initial bound orbital ϕi(r),
which is also expanded with the symmetry-adapted angular
function:

ϕi(r) = 1

r

∑
h3	3

uh3	3 (r)X iμ
h3	3

(r̂). (B1)

In addition, the dipole transition amplitude also depends on
the polarization of electric field; let ekλ denotes the polariza-
tion vector, then the interaction can be expressed in terms of
rotation operator,

ekλ · r =
√

4π

3
r

1∑
m=−1

Y1m(r̂)D1
mλ(φk, θk, 0). (B2)

D1
mλ is the big Wigner rotation matrix with the Euler angles

� = (φk, θk, 0), which defines the rotation from the molec-
ular to the photon frame. Y1m(r̂) is the spherical harmonics
with 	 = 1. Inserting Eqs. (33) and (B1) into dipole transition
amplitude,

〈F (−)
ke

(r)|ekλ · r|ϕi(r)〉

= 1

(2π )
3
2

∑
pμ

∑
h1	1

∑
h2	2

∑
h3	3

4π i	1 e−iσ	1
1

ke

×
∫ ∞

0

∑
h	

f pμ
h1	1;h	

(ke, r)([I + iKpμ]−1)
∗
h	;h2	2

ruh3	3 (r)dr

×
√

4π

3

∑
m

∫
X pμ

h2	2
(r̂)X iμ

h3	3
(r̂)Y1m(r̂)d r̂

× D1
mλ(φk, θk, 0)X pμ

h1	1
(k̂e), (B3)

in which the spherical harmonics Y1m(r̂) can be expressed in
terms of real spherical harmonics S1m(r̂)

Y11(r̂) =
√

2

2
[S11(r̂) + iS1−1(r̂)], Y10(r̂) = S10(r̂),

Y1−1(r̂) =
√

2

2
[−S11(r̂) + iS1−1(r̂)]. (B4)

The symmetry-adapted angular function X pμ
h	

(r̂) is defined
as a linear combination of real spherical harmonics S	m(r̂)
[32–34],

X pμ
h	

(r̂) =
	∑

m=−	

bpμ
h	mS	m(r̂). (B5)

The angular integration part in Eq. (B3) is directly related
to the real GAUNT coefficient [62], determined by quantum
numbers.

2. Velocity form

Here, we start from the plane-wave transition amplitude
of Eq. (5) in the velocity form by including the nondipole
term. For convenience, we specify a coordinate system,
in which the wave vector k of the incoming photon is
adopted along the quantization axis, z ‖ k. As the photon
polarization and wave vectors are orthogonal to each other,
ekλ · k = 0, then the transition amplitude of Eq. (5) can be
expressed as

M (pl)
f i (θk = 0, φk = 0) = 〈F (−)

ke
(r)|eikz∇λ|ϕi(r)〉, (B6)

where ∇λ refers to the spherical components of the nabla
operator with λ = ±1, and λ is associated with the helicity
of the incident wave.

By considering the expansion of initial wave function of
Eq. (B1), a crucial step to numerically evaluate its gradient in
Eq. (B6) is

∇λϕi(r) =
∑
h3	3

∑
m3

biμ
h3	3m3

∇λ

[
Rh3	3 (r)S	3m3 (r̂)

]
, (B7)

where

Rh3	3 (r) ≡ 1

r
uh3	3 (r). (B8)

By utilizing the relation between real spherical harmon-
ics S	m(r̂) and symmetry-adapted angular function X pμ

h	
(r̂)

[32–34] (m � 0),

S	m(r̂) = 1√
2

[Y	m(r̂) + (−1)mY	−m(r̂)], S	0(r̂) = Y	0(r̂),

S	−m(r̂) = i√
2

[−Y	m(r̂) + (−1)mY	−m(r̂)], (B9)

the gradient of initial wave function expanded by the real
spherical harmonics in Eq. (B6) can be expressed as a linear
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combination of the gradient associated with complex spherical
harmonics [36,63],

∇λ

[
Rh3	3 (r)Y	3m3 (r̂)

] =
∑

�i=	3±1

Aλ
�im3

R̃�i (r)Y�im3+λ(r̂),

(B10)

where

A±1
	3+1m3

=
√

(	3 ± m3 + 1)(	3 ± m3 + 2)

2(2	3 + 1)(2	3 + 3)
,

A±1
	3−1m3

=
√

(	3 ∓ m3 − 1)(	3 ∓ m3)

2(2	3 − 1)(2	3 + 1)
. (B11)

R̃	3+1(r) = ∂Rh3	3 (r)

∂r
− 	3

r
Rh3	3 (r),

R̃	3−1(r) = ∂Rh3	3 (r)

∂r
+ 	3 + 1

r
Rh3	3 (r). (B12)

Combining Eqs. (B7), (B9), and (B10) will give rise to a
classification discussion. When m3 > 0,

∇λ[Rh3	3 (r)S	3m3 (r̂)]

= 1√
2
{∇λ[Rh3	3 (r)Y	3m3 (r̂)]

+ (−1)m3∇λ[Rh3	3 (r)Y	3−m3 (r̂)]}

= 1√
2

∑
�i=	3±1

R̃�i (r)
[
Aλ

�im3
Y�im3+λ(r̂)

+ (−1)m3 Aλ
�i−m3

Y�i−m3+λ(r̂)
]
; (B13)

when m3 = 0,

∇λ[Rh3	3 (r)S	3m3 (r̂)] = ∇λ[Rh3	3 (r)Y	3m3 (r̂)]

=
∑

�i=	3±1

Aλ
�im3

R̃�i (r)Y�im3+λ(r̂);

(B14)

when m3 < 0,

∇λ[Rh3	3 (r)S	3m3 (r̂)]

= i√
2

{ − ∇λ

[
Rh3	3 (r)Y	3−m3 (r̂)

]
+ (−1)m3∇λ

[
Rh3	3 (r)Y	3m3 (r̂)

]}
= i√

2

∑
�i=	3±1

R̃�i (r)
[− Aλ

�i−m3
Y�i−m3+λ(r̂)

+ (−1)m3 Aλ
�im3

Y�im3+λ(r̂)
]
. (B15)

Overall, we can define

∇λ

[
Rh3	3 (r)S	3m3 (r̂)

] ≡
∑

�i=	3±1

R̃�i (r)Bλ
�im3

(r̂), (B16)

where

Bλ
�im3

(r̂) = 1√
2

[
Aλ

�im3
Y�im3+λ(r̂)

+ (−1)m3 Aλ
�i−m3

Y�i−m3+λ(r̂)
]
, m3 > 0

= Aλ
�im3

Y�im3+λ(r̂), m3 = 0

= i√
2

[−Aλ
�i−m3

Y�i−m3+λ(r̂)

+ (−1)m3 Aλ
�im3

Y�im3+λ(r̂)
]
, m3 < 0. (B17)

Finally, the gradient of the bound state can be expressed in a
brief form:

∇λϕi(r) =
∑
h3	3

∑
m3

biμ
h3	3m3

∑
�i=	3±1

R̃�i (r)Bλ
�im3

(r̂). (B18)

We can rotate the vector k to an arbitrary direction k̂ = k/k =
(θk, φk ) by a rotation of the initial bound and multicenter
continuum states through a matrix, which acts on the real
spherical harmonics R	

m′m [64],

S	m(r̂) =
∑

m′
S	m′ (r̂′)R	

m′m(φk, θk, 0). (B19)

Considering the following expansion,

eikz =
√

4π
∑
	4

i	4
√

2	4 + 1 j	4 (kr)S	40(r̂), (B20)

and combining Eqs. (B1), (33), and (B19), after sim-
plification, the transition amplitude of Eq. (5) with an
arbitrary direction of wave vector k̂ = (θk, φk ) can be
expressed as

M (pl)
f i (k) = 4

ke

∑
pμ

∑
h1	1

i−	1 eiσ	1 X pμ
h1	1

(k̂e)

×
∑
h2	2

∑
h3	3

∑
�i=	3±1

∑
	4

i	4
√

2	4 + 1

×
∫

φ
pμ
h1	1;h2	2

(ke, r) j	4 (kr)R̃�i (r)rdr

×
∑
m2

bpμ
h2	2m2

∑
m3

biμ
h3	3m3

×
∑

m′
2,m

′
3

R	2
m′

2m2
(φk, θk, 0)R	3

m′
3m3

(φk, θk, 0)

×
∫

S	2m′
2
(r̂)S	40(r̂)Bλ

�im′
3
(r̂)dr. (B21)
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