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Relativistic equation-of-motion coupled-cluster-theory analysis of blackbody radiation
shift in the clock transition of Zn I
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We employ the equation-of-motion coupled-cluster (EOM-CC) method in the four-component relativistic
theory framework to understand the roles of electron correlation effects in the ab initio estimations of electric
dipole polarizabilities (α) of the states engaged in the clock transition (1S0 → 3P0) of the zinc atom. The roles
of basis size, inclusion of higher-level excitations, and higher-order relativistic effects in the evaluation of both
excitation energies of a few low-lying excited states and α are analyzed systematically. Our EOM-CC values are
compared with the earlier reported theoretical and experimental results. This demonstrates the capability of the
EOM-CC method to ascertain the preciseness of the blackbody radiation shift in a clock transition, which holds
paramount importance for optical clock-based experiments.
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I. INTRODUCTION

An in-depth understanding of atomic properties that dictate
an atom’s reaction to an external perturbation has attracted the
attention of generations of theoreticians and experimentalists.
Quantum mechanical calculations for accurate estimations of
these properties have witnessed a significant surge in recent
times due to their crucial applications in high-precision ex-
periments [1–3], particularly in the realm of atomic clocks [4].
Atomic clocks are considered the most accurate time-keeping
instruments on Earth today [5–7]. They are at the heart of all
satellite-based navigation systems, i.e., the Global Navigation
Satellite System (GNSS) [8], including deep space naviga-
tion [9,10], and also find their utility in quantum computing
[11,12] and telecommunication networks [13,14]. Based on
their frequency of operation, atomic clocks can be divided into
two broad categories: microwave and optical clocks. The most
common and well-understood atomic clocks operate in the
microwave regime are based on the Cs and Rb atoms, and also
the H maser [6]. Their stabilities are inherently limited owing
to their frequencies, and thus, to achieve higher stabilities,
exploring the optical transitions has become the better pos-
sible bet [15]. The present-day state-of-the-art optical clocks
can reach stabilities of the order of (10−21) [16–18], and this
number is ever decreasing with proper understanding of the
systematic effects and development of adequate equipment
[19]. In comparison to the most precise microwave clocks,
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these optical clocks promise comparable or better natural line
widths, allowing for orders of magnitudes better performance
in terms of oscillator quality factors and, hence, clock accu-
racy [20].

The most modern atomic clocks will lose only one second
in 300 billion years [19,21]. Since the atomic clocks rely on
the fundamental interactions between the elementary particles
for their operation, their output frequency values must remain
the same irrespective of their location or time of measurement.
However, in practice, they exhibit instability and reproducibil-
ity limitations due to environmental perturbations, which can
shift their measured frequencies from their unperturbed nat-
ural atomic frequencies [22,23]. This, in effect, can result in
uncertainties in their output frequencies and can mislead the
subsequent applications; for instance, it can result in major
issues during navigation [24]. It is of utmost importance to
estimate the systematic effects in the optical clock frequency
measurements. This demands performing additional precise
measurements to study the sensitivity of atoms with external
perturbations, which can also be challenging. However, ade-
quate many-body methods that are capable of incorporating
both electron correlation effects and relativistic corrections
can help estimate them at a much lower cost.

Among various quantum mechanical methods known to-
day, the relativistic coupled-cluster (RCC) theory [25,26] is
renowned for its balanced inclusion of both relativistic and
electron correlation effects, making it a potent and versa-
tile approach. In this theory, major relativistic effects can
be accounted for using the Dirac-Coulomb (DC) Hamil-
tonian. The accuracy of these calculations can be further
enhanced by including higher-order relativistic effects, such
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as frequency-independent Breit interaction and leading-order
QED corrections.

One of the major sources of clock jumps in ultrapreci-
sion optical atomic clocks is the blackbody radiation (BBR)
shift of the clock transition caused by the interaction of the
atomic system with thermal photons that make up the ther-
modynamic environment. In most cases, the BBR shift at
room temperature T ∼ 300 K has a relative magnitude of
10−15–10−16 with respect to the frequency of the reference
optical transition, and the variation in BBR shift is a major
obstacle to reaching the 10−19 level of stability and beyond.
Prior to this, extensive, precise theoretical calculations were
conducted to determine the BBR shifts for several potential
atomic clocks [4,27–32]. However, only limited studies have
been carried out for the Zn atom [33,34]. Precise measurement
of the BBR shift for the Zn atom’s clock transition remains
elusive and lacks reliable determination to date. Ovsiannikov
et al. [34] calculated the BBR shift for the Zn atom using
a model potential method. However, Dzuba et al. [33] de-
termined the fractional BBR shift by using the parametrized
configuration-interaction method combined with the many-
body perturbation theory (CI + MBPT2) [35] scaled with
parameter fitted to the experimental energies. The truncated
CI method suffers from the problem of size extensivity [36];
i.e., the total energy does not scale linearly with the number
of electrons. Moreover, the MBPT2 method cannot give a
proper description for heavy atoms, where valence electrons
strongly interact with core-electrons [37]. One can partly
mitigate the problem using the parametric CI + MBPT2
approach, which uses parameters fitted to the experimental
data. However, such an approach would require the existence
of prior experimental data and may not be equally accurate
for all the properties. The equation-of-motion coupled-cluster
(EOM-CC) method, on the other hand, is systematically im-
provable and an ab initio approach; i.e., does not require any
input from experiments and can provide high-accuracy results
even in the heavier systems. The EOM-CC method is size
extensive only for the single electron attachment or detach-
ment using electron attachment EOM-CC (EA-EOM-CC) and
ionization potential EOM-CC (IP-EOM-CC) method [38,39].
The excitation-energy EOM-CC (EE-EOM-CC) method is
not rigorously size extensive [36]. However, the error intro-
duced by size extensivity error is generally negligible for
atoms [40]. One can restore the size extensivity by including
higher-order excitation operators in the calculation. For exam-
ple, the inclusion of quadrupole excitation in the EE-EOM-CC
will lead to the removal of size extensive errors for an excited
state dominated by single excitation [41]. In this work, we
present a computational protocol for estimating the BBR shift
of atomic clock candidates using the equation-of-motion ap-
proach based RCC (EOM-CC) method and Zn atom as a test
case. We also analyze the effects of the basis-set size, higher-
level excitations, and higher-order relativistic corrections in
the determination of the BBR shift.

II. THEORY

The BBR shift for a transition between the states
i and j can be estimated using the approximation

[42]

δE = −1
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)
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where α0
i and α0

j are the static scalar polarizabilities of the i
and j states, respectively, and η is a small dynamic correction
resulting from the frequency distribution of the BBR field,
which can be neglected for the present interest of accuracy
in the result. The static polarizability can be calculated using
quantum mechanical many-body methods. In the context of
perturbation theory, the energy associated with a specific state
of an atom, when subjected to the influence of an external
weak electric field with strength F, can be described as [1,2]

E (|F|) = E (0) − α

2
|F|2 − · · · . (2)

In the above expression, E (0) represents the energy of the
state without any external electric field and α corresponds to
the dipole polarizability of that particular state. By examining
Eq. (2), it becomes evident that α can be ascertained through
the assessment of the second-order differentiation of E (|F|)
with respect to a small electric field of magnitude, F. i.e.,

α = −
(

δ2E (|F|)
δ|F|δ|F|

)
|F|=0

. (3)

The energy derivative presented in Eq. (3) can be computed
through both analytical and numerical approaches. The pro-
cess of calculating the derivative using an analytical approach,
also known as the analytical gradient method, necessitates
the differentiation of the energy functional with respect to
the external perturbation (electric field in the present case),
which can be tedious for the RCC method and it is neither
variational nor hermitian. The alternative technique, referred
to as the finite-field approach, entails numerically evaluating
the energy derivative at various electric field strengths. By
applying the finite-field (FF) method, the energy eigenvalues
are obtained by perturbing the atomic Hamiltonian with the
interaction Hamiltonian (H ′ = −F · D), where D represents
the induced electric dipole moment in the perturbative Hamil-
tonian. The FF approach offers a significant benefit as it
effortlessly extends to analyze the characteristics of both the
ground and excited states of a system, and the calculations at
different field strengths can be performed in parallel. In the
course of our study, we employed numerical differentiation to
calculate the polarizabilities. We computed the total energies
twice, once with perturbation and once without.

III. METHOD FOR CALCULATION

Relativistic EOM-CC method

In the (R)CC theory formalism, the wave function of the
ground state of an atomic system is expressed as

|�cc〉 = eT̂ |�0〉, (4)

where |�0〉 denotes the reference determinant and T̂ is the
RCC operator that generates different levels of excitations
from the reference state. These excitation levels are denoted
by subscripts as

T̂ = T̂1 + T̂2 + · · · + T̂N , (5)
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where any general n-tuple excitation RCC operator can be
expressed as

T̂n =
(

1

n!

)2 n∑
i j...ab...

t ab...
i j... a†

aa†
b . . . a jai · · · . (6)

In Eq. (6), t ab...
i j... are the cluster amplitudes, indices

(i , j , k . . .) represent occupied spinors and virtual spinors
are shown by (a , b , c . . .). The reference state |�0〉 is
obtained using the Dirac-Hartree-Fock (DHF) method. The
commonly used singles-doubles approximation in the RCC
(CCSD) method is achieved by limiting the cluster operator
to include solely one-body and two-body excitations. The
RCC amplitudes are obtained by solving a set of simultaneous
nonlinear equations 〈

�ab...
i j...

∣∣H̄ |�0〉 = 0, (7)

where |�ab...
i j... 〉 are the excited determinants and H̄ = e−T̂ ĤeT̂

is the similarity transformed Hamiltonian. Ĥ represents the
DC Hamiltonian, which is defined as

Ĥ =
N∑
i

[cαi · pi + βim0c2 + Vnuc(ri )] +
N∑

i> j

1

ri j
. (8)

In Eq. (8), α and β are the Dirac matrices, Vnuc(r) repre-
sents the nuclear potential, m0 is the rest mass of a free
electron, and c stands for the speed of light. Equation (8)
considers only positive energy electrons within the summation
while also ensuring the accurate implementation of the no-pair
approximation. The DC Hamiltonian can be augmented by in-
corporating the Gaunt term, which considers electromagnetic
interactions, or the Breit term, which accounts for both the
electromagnetic interactions and electron retardation effects

Ĥ =
N∑
i

[cαi · pi + βim0c2 + Vnuc(ri)] +
N∑

i> j

(
1

ri j
+ Bi j

)
I4,

(9)
where

Bi j = − 1

2ri j

[
αi · α j + (αi · ri j )(α j · ri j )

r2
i j

]
(10)

is the Breit operator with

Gi j = −αi · α j

2ri j
, (11)

as a Gaunt term and

− 1

2ri j

[
(αi · ri j )(α j · ri j )

r2
i j

]
(12)

as the retardation effect.
The ground-state energy expression in the RCC theory is

given as

〈�0|H̄ |�0〉 = E . (13)

The CCSD method approximation frequently falls short in
delivering precise quantitative accuracy, prompting us to
incorporate additional higher-level excitations in the form
of triples (CCSDT), quadruples (CCSDTQ), and pentuples

(CCSDTQP) to achieve more accurate results of interest.
However, incorporating higher excitation comes with a sig-
nificantly higher computational cost.

The RCC method is extended to obtain the excited states
using the EOM-CC approach [43–45]. In the EOM-CC
method, the kth excited state can be expressed as

|�k〉 = R̂keT̂ |�0〉, (14)

where R̂k is a linear excitation operator with a form of

R̂k = r0 +
∑
i,a

ra
i â†

aâi +
∑

i< j
a<b

rab
i j â†

aâ†
bâ j âi + · · · . (15)

In Eq. (15), ra
i , rab

i j · · · are the amplitudes corresponding to
singly, doubly, and higher excited configurations and r0 is a
constant denoting the overlap with the ground state. The Dirac
equation for the kth excited state in the EOM-CC picture can
be written as

Ĥ R̂keT̂ |�0〉 = EkR̂keT̂ |�0〉. (16)

After following some mathematical algebra and using the
commutative property of the R̂k and T̂ operators, we arrive
at

H̄ R̂k|�0〉 = EkR̂k|�0〉 (17)

and

R̂kH̄ |�0〉 = E0R̂k|�0〉. (18)

Taking the difference of Eqs. (17) and (18), we get

[H̄, R̂k]|�0〉 = ωkR̂k|�0〉. (19)

Here ωk = Ek − E0 is our excitation energy. Similar to the
CCSD method, the EOM-CC equations are generally trun-
cated at the singles and doubles approximation, resulting in
the EOM-CCSD method. Davidson’s iterative diagonalization
method [46] is typically employed to solve the EOM-CC
equation. Because of the non-Hermitian nature of H̄ , it also
exhibits a left eigenvector with the eigenvalue equation as

〈�0|L̂kH̄ = 〈�0|L̂kEk, (20)

where L̂k is a linear deexcitation operator with a form of

L̂k = l0 +
∑
i,a

l i
a â†

i âa +
∑

i< j
a<b

l i j
ab â†

i â†
j âbâa + · · · . (21)

The two sets of eigenfunctions follow the biorthogonality
condition, such as

〈�0|L̂kR̂l |�0〉 = δkl . (22)

For the calculation of energy, it is sufficient to solve ei-
ther of the left or right eigenvalue equations, whereas an
analytical calculation of properties requires a solution of
both left and right eigenvectors. As mentioned before, the
EOM-CCSD method frequently falls short in delivering pre-
cise quantitative accuracy. So, it demands to incorporate
additional higher-level excited configurations such as triples
(EOM-CCSDT), quadruples (EOM-CCSDTQ), and pentuples
(EOM-CCSDTQP) both in the ground and excited states
to achieve more accurate values for the calculated ener-
gies and other properties. The computational cost in the
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TABLE I. Excitation energies of the zinc atom calculated using
the aug-cc-pVTZ basis set in the relativistic EOM-CCSD method.
All the core electrons are used to account for the correlation effects.
The results are compared with the available experimental and previ-
ously reported theoretical values.

Excitation energy (in cm−1)

State This work Experiment [49] Previous work [33]

4s4p 3P0 31 452 32 311 32 348
4s4p 3P1 31 641 32 501 32 546
4s4p 3P2 32 025 32 890 32 950
4s4p 1P1 46 703 46 745 46 908

EOM-CCSDT, EOM-CCSDTQ, and EOM-CCSDTQP meth-
ods scale as O(N8), O(N10), and O(N12), where N is the
typical number of basis functions used in the calculation.
All the relativistic EOM-CC calculations are done using the
DIRAC [47] interface of the MRCC software [48]. The relativis-
tic calculations are performed using the four-component DC
Hamiltonian unless explicitly mentioned otherwise.

IV. RESULTS AND DISCUSSION

Table I displays the excitation energy values for the Zn
atom’s first four excited states; 4s4p (3P0, 3P1, 3P2, and 1P1).
These values were computed using the relativistic EOM-
CCSD method with an uncontracted aug-cc-pVTZ basis set.
The calculation was performed considering all-electron corre-
lation effects. Table I also includes a compilation of excitation
energies for the Zn atom that was reported in an earlier theo-
retical study [33] and experiment [49]. The scaled approach
used in Ref. [33] overestimated the excitation energies with
respect to the experimental values. For the triplet states, there
is a discrepancy of 37−60 cm−1 compared to the experimental
data, while the first singlet state (1P1) exhibits a larger devia-
tion of 163 cm−1. Despite scaling with the experimental data,
the estimated value still exhibits disagreement with the ob-
served results. In comparison to the experimental values, our
results are significantly underestimated. The discrepancies in
the excitation energy values of the first three triplet states are
approximately within the range of 859 to 865 cm−1, whereas
for the 1P1 singlet state, the difference is much smaller, at only
about 42 cm−1. The reasons for such discrepancies in an ab
initio approach are discussed below.

The accuracy of calculated energy, for that matter any
property, in the ab initio approach of a many-body method
in an atomic system relies on three pillars. The accuracy of
the correlation method, completeness of one electron basis
set used, and the nature of the Hamiltonian used. In an ideal
case, one needs to get convergence with respect to all three
factors (see Fig. 1). It is intended to have a relativistic Hamil-
tonian, which includes full quantum electrodynamics, to get
the best possible accuracy. However, in practice, using the
four-component DC Hamiltonian is often sufficient with the
correction included for Gaunt or Breit term for atomic clock
application. We use the EOM-CC method to account for the
electron correlation effects more rigorously. One can improve
the accuracy of the calculated results, including triply or even

FIG. 1. Demonstration of the factors deciding accuracy of a
property in the multielectronic atom using the quantum chemical
approach.

higher-level excited state configurations in the calculations. It
is one of the advantages of the RCC method that the results
can be systematically improved by including a higher-level
excited cluster operator, of course, at the expense of higher
computational cost. However, the use of very accurate wave-
function-based methods like RCC theory leads to very slow
convergence of the results with respect to the size of one
electron basis set. This work considers all these three effects
in a sequential manner, restricting our attention only to the
clock transition state.

A. Effect of basis functions

Table II presents the polarizability values for the ground
state (1S0), the first excited triplet state (3P0), and the exci-
tation energies related to the clock transition (1S0 → 3P0) of
the Zn atom at different basis sets. The polarizability values
were calculated using the finite difference of the total energy
obtained in the presence and absence of an electric field. For
testing purposes, four different field strengths ranging from
0.01 to 0.0001 atomic units were selected. The change from
0.001 a.u. to 0.0001 a.u. is very small. The rest of the polar-
izability calculations in this article are performed with a field

TABLE II. Comparison of the electric dipole polarizabilities of
the states involved in the clock transition and its excitation energy
in the Zn atom calculated using the relativistic EOM-CCSD method.
The aug-cc-pVXZ (X = D, T , Q, and 5) basis sets are used for both
the frozen-core (ten electrons) and complete basis set (CBS) limit
approximations.

Polarizability (in a.u.)

Excitation energy
Basis 1S0

3P0 (in cm−1)

aug-cc-pVDZ 40.23 54.42 30 906
aug-cc-pVTZ 39.30 52.75 31 478
aug-cc-pVQZ 39.41 59.59 31 520
aug-cc-pV5Z 39.53 62.19 31 544
CBS-TZ/QZ/5Z 39.73 64.82 31 578
Experiment 38.8(8)[50] – 32 311[49]
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strength of 0.001 a.u.. We have perform the calculations using
an uncontracted aug-cc-pVXZ (X = D, T , Q, and P) basis set
with a frozen core approximation (keeping ten core electrons
frozen for the calculation) to investigate if the deviation in
results could be attributed to the utilization of a finite-size
basis set.

The analysis of Table II reveals a clear pattern for the
excitation energy: as we move up the hierarchy of the basis
set, the excitation energy decreases. The change from aug-cc-
pVDZ to aug-cc-pVTZ is 572 cm−1. The change is smaller at
42 cm−1 on going from aug-cc-pVTZ to aug-cc-pVQZ. The
excitation energy does not converge even at the aug-cc-pVQZ
basis set, and moving to the aug-cc-pV5Z basis set leads
to a change of 24 cm−1. The extrapolation to the complete
basis set (CBS) limit using the Martin extrapolation formula
[51] leads to an excitation energy of 31 578 cm−1. The CBS
extrapolation can be a major source of potential error and will
be discussed in detail in the error estimation section later. In
contrast to the excitation energy, the polarizability of both
the ground and excited states exhibit an erratic pattern as the
number of basis functions increases. As we make the transi-
tion from the aug-cc-pVDZ to the aug-cc-pVTZ basis set, the
polarizability value of the ground state decreases. However,
upon further advancement to the aug-cc-pVQZ basis, a slight
rise (0.11 a.u.) in the polarizability of the zinc atom’s ground
state is observed compared to the value obtained using the
aug-cc-pVTZ basis. Increasing the number of basis functions
in a basis set will decrease the absolute energy value due to
the variational theorem. However, the validity of this argu-
ment cannot be guaranteed for properties like polarizability.
The increase in the basis set to aug-cc-pV5Z basis leads to
a further increase of 0.12 a.u.. The CBS level values for
polarizability are obtained by extrapolating the total energy in
the presence and absence of the electric field, and the CBS
polarizability for the ground state is 39.73 a.u. In the case
of the first excited state, we observe a similar trend, yet the
decline from the double-zeta (DZ) to the triple-zeta (TZ) and
the subsequent rise from TZ to quadruple-zeta (QZ) occurs at
a much swifter rate compared to the ground state. The change
from aug-cc-pVTZ to aug-cc-pVQZ is large at 6.84 a.u.. The
subsequent change on going to aug-cc-pV5Z is smaller at 2.6
a.u.. However, the excited state polarizability did not converge
even with the aug-cc-pV5Z basis set, and CBS extrapolation
leads to a value of 64.82 a.u..

Therefore, the CBS extrapolation at the EOM-CCSD level
approximation in the RCC theory gives discrepancies of
733 cm−1 for the excitation energy and 0.93 a.u. for the
ground-state polarizability when compared with their re-
spective experimental values. The remaining contribution is
presumably due to the correlation effects arising from the
higher-level excitations and omitted relativistic effects. The
experimental estimate of the polarizability for the excited state
is not available to make a comparative analysis.

B. Roles of electron correlation effects

To observe the impact of the absent correlation effects in
our findings, we integrate the triples, quadruples, and pentu-
ples excitations by conducting calculations using the CCSDT,
CCSDTQ, and CCSDTQP methods. The calculation of the

TABLE III. Demonstration of the effects of the correlations and
higher-order relativistic corrections to the CBS results of the excita-
tion energy and polarizabilities of the Zn atom. Roles of the inner
core electron correlations are also shown explicitly.

Polarizability (in a.u.)

Excitation energy
Method 1S0

3P0 (in cm−1)

CCSD 39.73 64.82 31 578
(CBS–TZ/QZ/5Z)

+ 	T correction −1.49 −0.28 + 729
(aug-cc-pVTZ)

+ 	Q correction + 0.04 + 0.23 + 75
(nonrel)(cc-pVDZ)

+ 	P correction + 0.03 −0.01 −10
(nonrel)(cc-pVDZ)

+ 	core correction + 0.01 −0.07 −20
(d-aug-dyall.ae2z/v2z)

+ 	Gaunt correction + 0.06 + 0.12 −9
(aug-cc-pVDZ)

Composite value 38.38 64.81 32 343

unaccounted correlation contributions to the α values and
excitation energies is presented in the following way:

	T(α/EE ) = CCSDT(α/EE ) − CCSD(α/EE ), (23)

where the subscripts α/EE stand for the polarizability or
excitation energy at a particular basis set arising from the
triple excitations using the CCSDT method. Similarly, 	Q
and 	P notations are used to mention the extra correlation
contributions from the CCSDTQ and CCSDTQP methods,
respectively.

The uncontracted aug-cc-pVTZ basis set was employed for
evaluating the 	T correction with frozen core approximation.
The 	Q and 	P corrections were assessed using the MRCC
program in its nonrelativistic version, employing the cc-pVDZ
basis set with ten inner electrons kept frozen. Table III clearly
demonstrates that the inclusion of full triples has a more sig-
nificant impact on both excitation energy and polarizabilities
of both the ground and excited states. The inclusion of triples
correction leads to an increase of 729 cm−1 in the excitation
energy. The ground-state and the excited-state polarizability
decrease by 1.49 a.u. and 0.28 a.u., respectively. Nevertheless,
it is worth noting that the impact of quadruple excitations is
significantly smaller compared to that of triples in the case
of both polarizabilities and excitation energy. The excitation
energy increases by 75 cm−1 on the inclusion of quadruple
excitation in the calculations. The ground and excited state
polarizabilities increase by 0.04 and 0.23 a.u., respectively.
The inclusion of pentuple excitation leads to a negligible
change in the energy and polarizability values. The results
can be presumed to be converged with respect to the electron
correlation effects. The effects of sextuple and higher-level
excitations can be safely disregarded in the present study.
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C. Inner-core correlation and higher-order relativistic effects

To reduce the computational cost of the calculation,
we utilize the frozen core approximation throughout by
compromising with accuracy of the results slightly. The
aug-cc-pVXZ family of basis sets cannot take care of the
core-correlation effects and are designed to be used with
frozen core approximation [52]. Consequently, to assess the
specific impact of correlation effects attributed to the frozen
inner ten electrons in our analysis, we carried out two sets
of calculations. First, we considered all 30 core electrons
using an uncontracted d-aug-dyall.ae2z basis set, designed to
take care of the core correlation. Second, we repeated the
calculation with d-aug-dyall.v2z basis while freezing the inner
ten electrons. The difference in the results was considered as
	core and was added to our CBS results. It is evident from
Table III that the impact of the core electron correlations on
the polarizability and excitation energy can be regarded as in-
significant and are less than 0.3% and 0.1% for α and energy,
respectively. It is also important to investigate the influence of
higher-order relativistic corrections on the excitation energy.
To account for the Gaunt contribution, the Hamiltonian is
augmented by incorporating the Gaunt operator [as defined in
Eq. (11)]. It should be noted that the Gaunt correction is added
only at the level of DHF wave-function evaluation, but it is not
included in the inclusion of correlation effects. Subsequently,
a relativistic EOM-CCSD calculation is executed using an
uncontracted aug-cc-pVDZ basis. Again, repeating the same
procedure but without adding the Gaunt operator to the Hamil-
tonian. By subtracting the properties of both calculations, we
arrive at the 	Gaunt correction. Based on the data presented
in Table III, it is evident that the impact of Gaunt correction is
not significantly pronounced. The Gaunt correction induces
a redshift in the excitation energy, but its magnitude is so
minimal that it can be regarded as negligible. This further
affirms the insignificance of other higher-order relativistic
corrections in the calculations for the Zn atom. Upon incor-
porating all the necessary corrections into the CBS result,
we obtained a combined value of 32 343 cm−1 for excitation
energy. The composite values for the ground and excited state
polarizability are 38.38 a.u. and 64.81 a.u., respectively. The
ground-state polarizability shows a small 1.1% deviation from
the experiment and within the experimental error bar. The ex-
citation energy shows a negligible error of 0.1%. This implies
high precision estimations of results in our ab initio approach.
One can expect similar accuracy for the other three excited
states reported in Table I when one achieves convergence with
respect to the one-electron basis set, level of correlation, rela-
tivistic effect, and core correlation in EOM-CC calculation.
However, such an investigation is outside the scope of the
present study.

D. Error estimation

Figure 2 represents the contribution of all different correc-
tions added to the excitation energies from the uncontracted
aug-cc-pV5Z basis. It is clear that the major contribution
comes from the triples, making its role pivotal for high-
precision calculations. The effect of the quadruple is small,
and the pentuple excitation leads to a negligible value. Fig-
ure 3 shows contributions from all possible corrections to the
polarizability values of the ground and first excited states.

FIG. 2. Effects of different corrections in the aug-cc-pV5Z re-
sults for the excitation energy of the Zn atom.

It is clear from Fig. 3 that obtaining a precise polarizabil-
ity value for the excited state necessitates going beyond a
finite-size basis. Also, the contribution from the triples on
polarizability can not be ignored for both the ground and
excited states. The nonadditivity of the triples and higher-
order correlation correction over different basis sets can be a
source of uncertainty. The EOM-CCSDT values are available
in two different basis sets: cc-pVDZ and aug-cc-pVTZ basis
sets. The difference of the excitation energy from the two
basis sets in the CCSDT method is 736 cm−1, which is of
the same order as the difference observed in the EOM-CCSD
level (744 cm−1). The difference between the two has been
considered as the uncertainty in 	 CCSDT excitation energy.
Similarly, the uncertainty in the ground state and excited state
polarizability for the 	 EOM-CCSDT method is 0.15 a.u. and
0.35 a.u., respectively. The results for the EOM-CCSDTQ and
EOM-CCSDTQP methods are only available in a single basis
set using a nonrelativistic Hamiltonian. Earlier studies have
shown that the error due to basis set incompleteness in the
higher-level RCC method cannot be more than 50% of the

FIG. 3. Effects of different corrections in the aug-cc-pV5Z re-
sults for the polarizability values of the ground (1S0) and first excited
states (3P0) of the Zn atom.
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TABLE IV. Estimation of the uncertainty caused by various components.

Polarizability (in a.u.)

Excitation energy
Contribution 1S0

3P0 (in cm−1)

	 EOM-CCSDT 0.15 0.35 8
	 EOM-CCSDTQ 0.02 0.12 38
	 EOM-CCSDTQP 0.02 0.01 5
Missing higher order correlation 0.03 0.01 10
Basis set error in EOM-CCSD 0.11 0.3 16
Core correlation 0.01 0.04 10
Higher relativistic effect 0.03 0.06 5
Numerical error 0.10 0.12 0
Final value 0.47 1.01 92

value obtained using the smaller basis set [53]. Therefore, a
conservative estimate will be half of the total correction at
the 	 EOM-CCSDTQ and 	 EOM-CCSDTQP level for both
excitation energy and polarizability.

The change caused by the pentuple excitation is negligible
for both the estimations of the excitation energy and α values
of the ground and excited states. One can consider the results
to be converged with respect to the electron correlation effect
on the inclusion of pentuple excited configuration in EOM-CC
calculations. Therefore, the change caused by the inclusion
of the pentuple excited configuration can be considered un-
certainty due to the missing higher-order correlation effects.
This would lead to 0.03 a.u. and 0.01 a.u., uncertainty for the
ground- and excited-state polarizabilities, respectively. The
uncertainty in the excitation energy will be ten cm−1 due to
missing higher-order correlations (see Table IV).

The next contributor to the uncertainty in the excitation
energy and ground-state polarizability is the incompleteness
of one electron basis set. It is actually the biggest contributor
to the uncertainty for the excited state polarizability. As one
can see, the results have not converged even at the pentuple
zeta basis set. So, one needs to extrapolate it to a CBS limit.
There is no unique way to extrapolate it to the CBS limit. In
this work, we test the four most popular approaches for basis
set extrapolation. The first approach uses the three-parameter
mixed exponential form suggested by Feller [54] to extrap-
olate the DHF energy. The correlation energy is extrapolated
using the Helgaker extrapolation scheme [55], which uses L−3

error formula, with L as the highest angular momentum in
the basis set. The second scheme uses the Feller formula for

the DHF energy, and the correlation energy is extrapolated
using the Lesiuk formula [56], which employs the Riemann
zeta function to recover the missing energy contribution due
to a truncated basis set. We also test the basis set extrapolation
scheme of Martin [51], which uses a Schwartz-type extrapo-
lation formula to extrapolate both the DHF and correlation
energies. The fourth approach advocated by Peterson and
Dunning [57] uses a cardinal dependent mixed exponential
formula for both the DHF and correlation energies.

Table V presents the excitation energy and polarizabili-
ties in various basis set extrapolation schemes. The Peterson
and Dunning scheme gives the smallest excitation energy
of 31 558 cm−1. The Feller and Lesuik formula gives the
highest excitation energy of 31 590 cm−1. The ground-state
polarizability shows a small spread of 0.22 a.u.. However, the
excited state polarizability gives a large spread of 1.34 a.u..
The Peterson-Dunning scheme gives the lowest polarizability
of 63.70 a.u., whereas the Feller-Helgaker scheme gives us
the highest excited state polarizability of 65.04 a.u.. We chose
the results obtained from the Martin scheme for subsequent
analysis here, as its predictions lie between the two extreme
values for the polarizabilities and excitation energy.

Kállay et al. [31] have used an alternate strategy to estimate
the basis incompleteness. They assumed that any property
P (excitation energy or polarizability) calculated using the
Xζ , (X + 1)ζ and (X + 2)ζ basis sets would satisfy the re-
lation P(X+1)ζ −P(X )ζ

P(X+2)ζ −P(X+1)ζ
= 2 for X > 3. As the geometric series

1
2 + 1

4 + 1
8 + · · · converges to 1, the missing contribution due

to the basis set incompleteness to the excitation energy will be
of the same order as the difference between the aug-cc-pVQZ

TABLE V. Effects of various basis set extrapolation schemes used to extrapolate the excitation energy and dipole polarizabilities.
Deviations from the aug-cc-pV5Z values are provided in the bracket.

Polarizability (in a.u.)

Excitation energy
Scheme 1S0

3P0 (in cm−1)

Feller and Helgaker 39.71(0.18) 65.04(2.85) 31 577(33)
Feller and Lesiuk 39.82(0.29) 65.01(2.82) 31 590(46)
Martin 39.73(0.2) 64.82 (2.63) 31 578(34)
Peterson and Dunning 39.60(0.07) 63.70(1.51) 31 558(14)
Spread 0.22 1.34 32
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TABLE VI. Comparison of the electric dipole polarizabilities of
the states involved in the clock transition and its excitation energy
in the Zn atom calculated using the relativistic EOM-CCSD method.
The x-aug-cc-pVXZ (x = s, d , and t, X = D, T , and Q) basis sets
are used for the frozen-core (ten electrons) calculations.

Polarizability (in a.u.)

Excitation energy
Basis 1S0

3P0 (in cm−1)

s-aug-cc-pVDZ 40.23 54.42 30 906
d-aug-cc-pVDZ 40.24 68.15 30 902
t-aug-cc-pVDZ 40.24 68.24 30 903
s-aug-cc-pVTZ 39.30 52.75 31 478
d-aug-cc-pVTZ 39.48 65.76 31 482
t-aug-cc-pVTZ 39.56 66.39 31 477
s-aug-cc-pVQZ 39.41 59.59 31 520
d-aug-cc-pVQZ 39.58 66.17 31 522
t-aug-cc-pVQZ 39.58 66.34 31 522
s-aug-cc-pV5Z 39.53 62.19 31 544
d-aug-cc-pV5Z 39.59 65.87 31 550

basis and aug-cc-pV5Z basis set results; i.e., 24 cm−1. Use
of the same logic will lead to a basis set correction of 0.11
a.u. and 2.6 a.u. to the ground-state and excited-state polar-
izabilities over the values obtained using the aug-cc-pV5Z
basis, which is consistent with the result of the extrapolation
scheme suggested by Martin. The four-basis set extrapolation
scheme leads to a spread of 32 cm−1 for the excitation en-
ergy and 0.22 a.u. and 1.34 a.u. for the ground and excited
state polarizabilities. As the results in Martin’s extrapolation
scheme lie between the two extremes of the range, half of
this spread can be considered uncertainty due to the incom-
pleteness of the one-electron basis set. The deviation of the
aug-cc-pV5Z result for excited state polarizability from all of
the CBS results raises questions about the reliability of the
basis set convergence for excited state polarizability. Larsen
et al. [58] showed that at the nonrelativistic coupled cluster
level of theory, the use of a standard augmented basis set is
not sufficient to achieve convergence of static polarizability
values, and one needs to go for multiply augmented basis
sets. We now include the effect of multiple augmentations
of the basis set in our calculations. It can be seen from Ta-
ble VI that higher augmentation has a negligible effect on the

excitation energy- and ground-state polarizability, and they
can be considered as converged at a single augmented basis
set. However, the excited-state polarizability seems to be ex-
tremely sensitive to the additional augmentation. Due to the
absence of a consistent trend in the excited state polarizability
on a doubly augmented basis, the extrapolated results can be
unreliable. The excited-state polarizability achieves conver-
gence at the d-aug-cc-pV5Z basis set, and therefore, we take
the d-aug-cc-pV5Z result as the CBS result for the excited
state polarizability. The deviation between the EOM-CCSD
excited-state polarizability between the s-aug-cc-pV5Z basis
set and d-aug-cc-pV5Z basis set is 1.07 a.u., which is of
the same order as that of our previous estimate of basis set
incompleteness error of 0.67 a.u. This gives us confidence
about the reliability of our error estimate. Upon incorporating
all the necessary corrections into the CBS (d-aug-cc-pV5Z)
value, we now get an updated composite value for excited
state polarizability of 65.86 a.u. For the revised estimate of
basis set incompleteness error of excited state polarizability,
we take the deviation of d-aug-cc-pV5Z result from the d-
aug-cc-pVQZ result, which is of the order of 0.3 a.u. and is
presented in Table IV.

The maximum magnitude of the uncertainty for the frozen
core approximation and higher-order relativistic effects can
be taken to half of their total contributions. This leads to
an uncertainty of 0.28% to the excitation energy and 0.97%
and 1.94% to the ground- and excited-state polarizabilities,
respectively. Another source of error can be numerical noise.
We find the optimal value of the field strength is 0.001 a.u.
The ground- and excited-state polarizability values show a
very small change on going from 0.001 to 0.0001 a.u. We
added them to the error estimate as errors due to numerical
uncertainty. Table IV tabulates the uncertainty associated with
different corrections.

Our calculated results show very good agreement with the
experimental values. The results are within the experimen-
tal error bar for ground-state polarizability and show less
than 0.1% deviation from the experimental excitation energy
value. There are no experimental results available for the
excited-state polarizability. Our recommended value for the
excited-state polarizability is 65.86 ± 1.01 a.u.. This value is
slightly smaller than that recommended by Dzuba and Dere-
vianko [33], Ye and Wang [60], as well as Ellingsen et al.
[59] (see Table VII). None of these studies have reported

TABLE VII. Comparison of our computed results with the previous theoretical and experimental data.

Polarizability (in a.u.)

Excitation energy
Method 1S0

3P0 (in cm−1)

Dzuba and Derevianko [33] 38.58 66.53 32 348
Gropen and co-worker [59] 39.13 66.50 32 707
Ye and Wang [60] 38.12 67.69 –
Singh and Sahoo [61] 38.666(0.96) – –
Angom and co-worker [62] 38.75 – –
Sahoo and co-worker [63] 38.99(0.31) – –
Final Value 38.38 ± 0.47 65.86 ± 1.01 32 343 ± 92
Experiment 38.8(8) [50] – 32 311[49]
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TABLE VIII. The BBR shift value, calculated by taking the difference between the static dipole polarizabilities obtained using the EOM-
CC method and its comparison with the previously obtained theoretical result.

Zn atom δν (Hz) ν0 (Hz) δν/ν0

This work (−0.236 ± 0.009) 9.68 ×1014 (−2.43 ± 0.09) ×10−16

Previous work [33] −0.244(10) 9.68 ×1014 −2.51 ×10−16

(Scaled method)

uncertainties in their results, which makes it difficult to esti-
mate the quality of the earlier predicted results. However, the
study of Ellingsen et al. shows less favorable agreement with
the experiment for both the excitation energy and ground state
polarizability. Therefore, their prediction for the excited state
polarizability is less trustworthy. The study by Dzuba and
Derevianko showed results comparable to ours for the ground-
state polarizability and excitation energy. Our method has the
additional advantage that they are solely derived from the
ab initio approach within a relativistic framework. These
results are self-reliant, requiring no prior information of ex-
perimental data to predict the required properties. We believe
that the values we obtained through the advanced relativistic
EOM-CC method are highly reliable and can be confidently
applied to estimate uncertainties in the high-precision mea-
surements using the Zn atom. Furthermore, this method has
the potential to be applied to other atomic clock candidates,
enabling high-precision calculations across various atomic
systems in the periodic table.

We would now like to employ the polarizability values ob-
tained for the states participating in the clock transition using
Eq. (1) to estimate the energy shift due to the BBR effect.
The contribution from the dynamic correction η is neglected
as they are generally less than 7 × 10−4 for the Zn atom [33].
Table VIII presents the BBR shift value alongside previously
reported data. The table clearly indicates that our estimated
BBR shift to the clock transition 1S0 → 3P0 is smaller than the
previously calculated value. Moreover, the relative BBR shift
is very precise, and the uncertainty would affect the accuracy
of the clock output in the 17th significant digit. The relative
BBR shift for the Zn atomic clock will be half of the shift
observed in the popular Sr atomic clock [64].

V. CONCLUSION

We calculated very precise electric dipole polarizability
values for the ground and first excited states of the Zn atom

using the relativistic equation-of-motion coupled-cluster the-
ory. These values are immensely useful in estimating the BBR
shift of the 1S0 → 3P0 clock transition in the above atom.
The roles of finite basis size, electron correlation effects,
and higher-order relativistic corrections to both the excitation
energy and electric dipole polarizability values are analyzed
systematically. Our study shows that incompleteness of the
one-electron basis is a critical contributor to the error in the
calculation and the accuracy of the complete basis set result
depends upon the choice of the basis set in the calculations.
Our ground-state polarizability value is well within the ex-
perimental error bar, and the excited state energy value is
within 0.1% of the experimental value. This demonstrates the
potential of our employed method to estimate the properties of
atomic systems, the zinc atom in particular, precisely. Based
on these analyses, we provide the recommended value for the
excited state dipole polarizability to be 65.86 ± 1.01 a.u.,
which is lower than the earlier values reported without any
error bars. This value leads to a smaller BBR shift compared to
the earlier estimation. Our study carries significant importance
for the optical clock experiment pertaining to the zinc atom,
and our result shows that the Zn atom can be an appealing
alternative to optical atomic clocks already in use. The current
protocol is versatile enough to be extended to other atomic
clock candidates to estimate their BBR shifts with similar
accuracy.

ACKNOWLEDGMENTS

The authors acknowledge the support from the Indian
Space Research Organization (ISRO) for financial support
under its RESPOND program, CRG and Matrix project of
DST-SERB, CSIR-India, DST-Inspire Faculty Fellowship,
Prime Minister’s Research Fellowship, IIT Bombay super
computational facility, and C-DAC Supercomputing resources
(PARAM Yuva-II, Param Bramha) for computational time.
The authors declare no competing financial interest.

[1] N. L. Manakov, V. D. Ovsiannikov, and L. P. Rapoport, Atoms
in a laser field, Phys. Rep. 141, 320 (1986).

[2] K. D. Bonin and V. V. Kresin, Electric-Dipole Polarizabilities
of Atoms, Molecules, and Clusters (World Scientific, Singapore,
1997).

[3] C. J. Pethick and H. Smith, Bose-Einstein Condensation in Di-
lute Gases, 2nd ed., (Cambridge University Press, Cambridge,
England, 2008).

[4] B. K. Sahoo, Relativistic calculations of atomic clock, in Hand-
book of Relativistic Quantum Chemistry, edited by W. Liu
(Springer, Berlin, 2017), pp. 611–655.

[5] B. L. S. Marlow and D. R. Scherer, A review of commercial and
emerging atomic frequency standards, IEEE Trans. Ultrason.,
Ferroelect., Freq. Contr. 68, 2007 (2021).

[6] S. A. Diddams, J. C. Bergquist, S. R. Jefferts, and C. W. Oates,
Standards of time and frequency at the outset of the 21st cen-
tury, Science 306, 1318 (2004).

[7] J. Camparo, The rubidium atomic clock and basic research,
Phys. Today 60(11), 33 (2007).

[8] B. Jaduszliwer and J. Camparo, Past, present and fu-
ture of atomic clocks for GNSS, GPS Solutions 25, 27
(2021).

063111-9

https://doi.org/10.1016/S0370-1573(86)80001-1
https://doi.org/10.1109/TUFFC.2021.3049713
https://doi.org/10.1126/science.1102330
https://doi.org/10.1063/1.2812121
https://doi.org/10.1007/s10291-020-01059-x


SOMESH CHAMOLI et al. PHYSICAL REVIEW A 109, 063111 (2024)

[9] E. A. Burt, J. D. Prestage, R. L. Tjoelker, D. G. Enzer, D.
Kuang, D. W. Murphy, D. E. Robison, J. M. Seubert, R. T.
Wang, and T. A. Ely, Demonstration of a trapped-ion atomic
clock in space, Nature (London) 595, 43 (2021).

[10] K.-M. Cheung, H. Xie, C. Lee, P. Carter, W. Jun, and G.
Lightsey, Deep space relay architecture for communications
and navigation, in 2023 IEEE Aerospace Conference (IEEE,
New York, 2023), pp. 1–19.

[11] D. S. Weiss and M. Saffman, Quantum computing with neutral
atoms, Phys. Today 70(7), 44 (2017).

[12] K. R. Brown, J. Kim, and C. Monroe, Co-designing a scalable
quantum computer with trapped atomic ions, npj Quantum Inf.
2, 16034 (2016).

[13] W. Lewandowski and E. F. Arias, GNSS times and UTC,
Metrologia 48, S219 (2011).

[14] P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J.
Ye, and M. D. Lukin, A quantum network of clocks, Nat. Phys.
10, 582 (2014).

[15] J. Vanier and C. Tomescu, The Quantum Physics of Atomic Fre-
quency Standards: Recent Developments, 1st ed., (CRC Press,
Boca Raton, FL, 2015).

[16] S. M. Brewer, J.-S. Chen, A. M. Hankin, E. R. Clements,
C. W. Chou, D. J. Wineland, D. B. Hume, and D. R. Leibrandt,
27Al+ Quantum-logic clock with a systematic uncertainty below
10−18, Phys. Rev. Lett. 123, 033201 (2019).

[17] C. Sanner, N. Huntemann, R. Lange, C. Tamm, E. Peik, M. S.
Safronova, and S. G. Porsev, Optical clock comparison for
lorentz symmetry testing, Nature (London) 567, 204 (2019).

[18] T. Bothwell, D. Kedar, E. Oelker, J. M. Robinson, S. L.
Bromley, W. L. Tew, J. Ye, and C. J. Kennedy, JILA Srl optical
lattice clock with uncertainty of 2.0 × 10−18, Metrologia 56,
065004 (2019).

[19] T. Bothwell, C. J. Kennedy, A. Aeppli, D. Kedar, J. M.
Robinson, E. Oelker, A. Staron, and J. Ye, Resolving the
gravitational redshift across a millimetre-scale atomic sample,
Nature (London) 602, 420 (2022).

[20] A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt,
Optical atomic clocks, Rev. Mod. Phys. 87, 637 (2015).

[21] X. Zheng, J. Dolde, V. Lochab, B. N. Merriman, H. Li, and S.
Kolkowitz, Differential clock comparisons with a multiplexed
optical lattice clock, Nature (London) 602, 425 (2022).

[22] T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti,
B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S.
Safronova, G. F. Strouse, W. L. Tew, and J. Ye, Systematic
evaluation of an atomic clock at 2 × 10−18 total uncertainty,
Nat. Commun. 6, 6896 (2015).

[23] W. F. McGrew, X. Zhang, R. J. Fasano, S. A. Schäffer, K.
Beloy, D. Nicolodi, R. C. Brown, N. Hinkley, G. Milani, M.
Schioppo, T. H. Yoon, and A. D. Ludlow, Atomic clock per-
formance enabling geodesy below the centimetre level, Nature
(London) 564, 87 (2018).

[24] B. W. Parkinson, Global positioning system: Theory and appli-
cations II, Prog. Astronaut. Aeronaut. 164, 3 (1996).

[25] J. Liu and L. Cheng, Relativistic coupled-cluster and equation-
of-motion coupled-cluster methods, WIREs Comput. Mol. Sci.
11, e1536 (2021).

[26] U. Kaldor, E. Eliav, and A. Landau, Relativistic coupled clus-
ter calculations for heavy and super-heavy elements, Reviews
of Modern Quantum Chemistry (World Scientific, Singapore,
2002), p. 260.

[27] A. Kozlov, V. A. Dzuba, and V. V. Flambaum, Optical atomic
clocks with suppressed blackbody-radiation shift, Phys. Rev. A
90, 042505 (2014).

[28] S. O. Allehabi, V. A. Dzuba, and V. V. Flambaum, Atomic
clocks highly sensitive to the variation of the fine-structure
constant based on Hf ii, Hf iv, and W vi ions, Phys. Rev. A
106, 032807 (2022).

[29] K. Beloy, U. I. Safronova, and A. Derevianko, High-accuracy
calculation of the blackbody radiation shift in the 133Cs primary
frequency standard, Phys. Rev. Lett. 97, 040801 (2006).

[30] B. K. Sahoo, R. G. E. Timmermans, B. P. Das, and D.
Mukherjee, Comparative studies of dipole polarizabilities in
Sr+, Ba+, and Ra+ and their applications to optical clocks,
Phys. Rev. A 80, 062506 (2009).

[31] M. Kállay, H. S. Nataraj, B. K. Sahoo, B. P. Das, and L.
Visscher, Relativistic general-order coupled-cluster method for
high-precision calculations: Application to the Al+ atomic
clock, Phys. Rev. A 83, 030503(R) (2011).

[32] B. Arora, D. K. Nandy, and B. K. Sahoo, Multipolar blackbody
radiation shifts for single-ion clocks, Phys. Rev. A 85, 012506
(2012).

[33] V. A. Dzuba and A. Derevianko, Blackbody radiation shift for
the 1S0 - 3P0 optical clock transition in zinc and cadmium atoms,
J. Phys. B: At. Mol. Opt. Phys. 52, 215005 (2019).

[34] V. D. Ovsiannikov, S. I. Marmo, V. G. Palchikov, and H. Katori,
Higher-order effects on the precision of clocks of neutral atoms
in optical lattices, Phys. Rev. A 93, 043420 (2016).

[35] V. A. Dzuba, V. V. Flambaum, and M. G. Kozlov, Combination
of the many-body perturbation theory with the configuration-
interaction method, Phys. Rev. A 54, 3948 (1996).

[36] I. Shavitt and R. J. Bartlett, Many-Body Methods in Chemistry
and Physics: MBPT and Coupled-Cluster Theory, Cambridge
Molecular Science (Cambridge University Press, Cambridge,
England, 2009).

[37] I. M. Savukov, D. Filin, P. Chu, and M. W. Malone, Relativistic
configuration-interaction and perturbation theory calculations
for heavy atoms, Atoms 9, 104 (2021).

[38] L. Meissner and R. J. Bartlett, Transformation of the Hamil-
tonian in excitation energy calculations: Comparison between
Fock-space multireference coupled-cluster and equation-of-
motion coupled-cluster methods, J. Chem. Phys. 94, 6670
(1991).

[39] D. Mukhopadhyay, S. Mukhopadhyay, R. Chaudhuri, and D.
Mukherjee, Aspects of separability in the coupled cluster based
direct methods for energy differences, Theor. Chim. Acta 80,
441 (1991).

[40] M. Musiał and R. J. Bartlett, Charge-transfer separability
and size-extensivity in the equation-of-motion coupled cluster
method: EOM-CCx, J. Chem. Phys. 134, 034106 (2011).

[41] M. Nooijen, K. R. Shamasundar, and D. Mukherjee, Reflections
on size-extensivity, size-consistency and generalized extensiv-
ity in many-body theory, Mol. Phys. 103, 2277 (2005).

[42] S. G. Porsev and A. Derevianko, Multipolar theory of black-
body radiation shift of atomic energy levels and its implications
for optical lattice clocks, Phys. Rev. A 74, 020502(R) (2006).

[43] D. J. Rowe, Equations-of-motion method and the extended shell
model, Rev. Mod. Phys. 40, 153 (1968).

[44] D. Mukherjee and P. Mukherjee, A response-function approach
to the direct calculation of the transition-energy in a multiple-
cluster expansion formalism, Chem. Phys. 39, 325 (1979).

063111-10

https://doi.org/10.1038/s41586-021-03571-7
https://doi.org/10.1063/PT.3.3626
https://doi.org/10.1038/npjqi.2016.34
https://doi.org/10.1088/0026-1394/48/4/S14
https://doi.org/10.1038/nphys3000
https://doi.org/10.1103/PhysRevLett.123.033201
https://doi.org/10.1038/s41586-019-0972-2
https://doi.org/10.1088/1681-7575/ab4089
https://doi.org/10.1038/s41586-021-04349-7
https://doi.org/10.1103/RevModPhys.87.637
https://doi.org/10.1038/s41586-021-04344-y
https://doi.org/10.1038/ncomms7896
https://doi.org/10.1038/s41586-018-0738-2
https://cir.nii.ac.jp/crid/1572824499956313472#citations_container
https://doi.org/10.1002/wcms.1536
https://doi.org/10.1103/PhysRevA.90.042505
https://doi.org/10.1103/PhysRevA.106.032807
https://doi.org/10.1103/PhysRevLett.97.040801
https://doi.org/10.1103/PhysRevA.80.062506
https://doi.org/10.1103/PhysRevA.83.030503
https://doi.org/10.1103/PhysRevA.85.012506
https://doi.org/10.1088/1361-6455/ab4434
https://doi.org/10.1103/PhysRevA.93.043420
https://doi.org/10.1103/PhysRevA.54.3948
https://doi.org/10.3390/atoms9040104
https://doi.org/10.1063/1.460295
https://doi.org/10.1007/BF01119665
https://doi.org/10.1063/1.3511783
https://doi.org/10.1080/00268970500083952
https://doi.org/10.1103/PhysRevA.74.020502
https://doi.org/10.1103/RevModPhys.40.153
https://doi.org/10.1016/0301-0104(79)80153-6


RELATIVISTIC EQUATION-OF-MOTION … PHYSICAL REVIEW A 109, 063111 (2024)

[45] J. F. Stanton and R. J. Bartlett, The equation of motion
coupled-cluster method. A systematic biorthogonal approach
to molecular excitation energies, transition probabilities, and
excited state properties, J. Chem. Phys. 98, 7029 (1993).

[46] K. Hirao and H. Nakatsuji, A generalization of the davidson’s
method to large nonsymmetric eigenvalue problems, J. Comput.
Phys. 45, 246 (1982).

[47] DIRAC, a relativistic ab initio electronic structure program,
Release DIRAC23 (2023), written by R. Bast, A. S. P. Gomes,
T. Saue and L. Visscher and H. J. Aa. Jensen, with contributions
from I. A. Aucar, V. Bakken, C. Chibueze, J. Creutzberg, K.
G. Dyall, S. Dubillard, U. Ekström, E. Eliav, T. Enevoldsen, E.
Faßhauer, T. Fleig, O. Fossgaard, L. Halbert, E. D. Hedegård,
T. Helgaker, B. HelmichParis, J. Henriksson, M. van Horn, M.
Iliaš, Ch. R. Jacob, S. Knecht, S. Komorovský, O. Kullie, J. K.
Laerdahl, C. V. Larsen, Y. S. Lee, N. H. List, H. S. Nataraj,
M. K. Nayak, P. Norman, A. Nyvang, G. Olejniczak, J. Olsen,
J. M. H. Olsen, A. Papadopoulos, Y. C. Park, J. K. Pedersen,
M. Pernpointner, J. V. Pototschnig, R. di Remigio, M. Repisky,
K. Ruud, P. Sałek, B. Schimmelpfennig, B. Senjean, A. Shee,
J. Sikkema, A. Sunaga, A. J. Thorvaldsen, J. Thyssen, J. van
Stralen, M. L. Vidal, S. Villaume, O. Visser, T. Winther, S.
Yamamoto and X. Yuan, DIRAC23 (v23.0), Zenodo, https:
//doi.org/10.5281/zenodo.7670749.

[48] M. Kállay, P. R. Nagy, D. Mester, Z. Rolik, G. Samu, J.
Csontos, J. Csóka, P. B. Szabó, L. Gyevi-Nagy, B. Hégely, I.
Ladjánszki, L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas,
P. D. Mezei, and Á Ganyecz, The MRCC program system:
Accurate quantum chemistry from water to proteins, J. Chem.
Phys. 152, 074107 (2020).

[49] D. Gullberg and U. Litzén, Accurately measured wavelengths
of Zn I and Zn II lines of astrophysical interest, Phys. Scr. 61,
652 (2000).

[50] D. Goebel, U. Hohm, and G. Maroulis, Theoretical and experi-
mental determination of the polarizabilities of the zinc 1S0 state,
Phys. Rev. A 54, 1973 (1996).

[51] J. M. L. Martin, Ab initio total atomization energies of small
molecules - towards the basis set limit, Chem. Phys. Lett. 259,
669 (1996).

[52] K. A. Peterson and T. H. Dunning, Accurate correlation consis-
tent basis sets for molecular core-valence correlation effects:
The second row atoms Al-Ar, and the first row atoms B-Ne
revisited, J. Chem. Phys. 117, 10548 (2002).

[53] A. Tajti, P. G. Szalay, A. G. Császár, M. Kállay, J. Gauss, E. F.
Valeev, B. A. Flowers, J. Vázquez, and J. F. Stanton, HEAT:
High accuracy extrapolated ab initio thermochemistry, J. Chem.
Phys. 121, 11599 (2004).

[54] D. Feller, Application of systematic sequences of wave func-
tions to the water dimer, J. Chem. Phys. 96, 6104 (1992).

[55] T. Helgaker, W. Klopper, H. Koch, and J. Noga, Basis-set con-
vergence of correlated calculations on water, J. Chem. Phys.
106, 9639 (1997).

[56] M. Lesiuk and B. Jeziorski, Complete basis set extrapolation of
electronic correlation energies using the Riemann zeta function,
J. Chem. Theory Comput. 15, 5398 (2019).

[57] K. A. Peterson, D. E. Woon, and T. H.Dunning, Benchmark
calculations with correlated molecular wave functions. IV. The
classical barrier height of the H+H2 →H2+H reaction, J. Chem.
Phys. 100, 7410 (1994).

[58] H. Larsen, C. Hättig, J. Olsen, and P. Jørgensen, A basis set
study of coupled cluster and full configuration interaction cal-
culations of molecular electric properties for BH, Chem. Phys.
Lett. 291, 536 (1998).

[59] K. Ellingsen, M. Mérawa, M. Rérat, C. Pouchan, and O.
Gropen, Dynamic dipole polarizabilities for the ground 4 1S and
the low-lying 4 1,3P and 5 1,3S excited states of Zn. Calculation
of long-range coefficients of Zn2, J. Phys. B: At. Mol. Opt.
Phys. 34, 2313 (2001).

[60] A. Ye and G. Wang, Dipole polarizabilities of ns2 1S0 and
nsnp 3P0 states and relevant magic wavelengths of group-IIB
atoms, Phys. Rev. A 78, 014502 (2008).

[61] Y. Singh and B. K. Sahoo, Correlation trends in the polar-
izabilities of atoms and ions in the boron, carbon, and zinc
homologous sequences of elements, Phys. Rev. A 90, 022511
(2014).

[62] S. Chattopadhyay, B. K. Mani, and D. Angom, Triple excita-
tions in perturbed relativistic coupled-cluster theory and electric
dipole polarizability of group-IIB elements, Phys. Rev. A 91,
052504 (2015).

[63] A. Chakraborty, S. K. Rithvik, and B. K. Sahoo, Relativistic
normal coupled-cluster theory analysis of second- and third-
order electric polarizabilities of Zn I , Phys. Rev. A 105, 062815
(2022).

[64] C. Lisdat, S. Dörscher, I. Nosske, and U. Sterr, Blackbody
radiation shift in strontium lattice clocks revisited, Phys. Rev.
Res. 3, L042036 (2021).

063111-11

https://doi.org/10.1063/1.464746
https://doi.org/10.1016/0021-9991(82)90119-X
https://doi.org/10.5281/zenodo.7670749
https://doi.org/10.1063/1.5142048
https://doi.org/10.1238/Physica.Regular.061a00652
https://doi.org/10.1103/PhysRevA.54.1973
https://doi.org/10.1016/0009-2614(96)00898-6
https://doi.org/10.1063/1.1520138
https://doi.org/10.1063/1.1811608
https://doi.org/10.1063/1.462652
https://doi.org/10.1063/1.473863
https://doi.org/10.1021/acs.jctc.9b00705
https://doi.org/10.1063/1.466884
https://doi.org/10.1016/S0009-2614(98)00597-1
https://doi.org/10.1088/0953-4075/34/12/302
https://doi.org/10.1103/PhysRevA.78.014502
https://doi.org/10.1103/PhysRevA.90.022511
https://doi.org/10.1103/PhysRevA.91.052504
https://doi.org/10.1103/PhysRevA.105.062815
https://doi.org/10.1103/PhysRevResearch.3.L042036

