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Detangling the quantum tapestry of intrachannel interference in below-threshold nonsequential
double ionization with few-cycle laser pulses

S. Hashim ,1 R. Tenney,1,2 and C. Figueira de Morisson Faria 1,*

1Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, United Kingdom
2Department of Mathematics, City, University of London, Northampton Square, London EC1V 0HB, United Kingdom

(Received 2 April 2024; accepted 20 May 2024; published 10 June 2024)

We perform a systematic analysis of single-channel quantum interference in laser-induced nonsequential
double ionization with few-cycle pulses, using the strong-field approximation. We focus on a below-threshold
intensity for which the recollision-excitation with subsequent ionization (RESI) mechanism is prevalent. We
derive and classify several analytic interference conditions for single-channel RESI in arbitrary driving fields
and address specific issues for few-cycle pulses. Since the cycles in a short pulse are no longer equivalent,
there are several events whose dominance varies. We quantify this dominance for single excitation channels by
proposing a dominance parameter. Moreover, there will be many types of superimposed interference fringes that
must be taken into consideration. We find an intricate tapestry of patterns arising from phase differences related
to symmetrization, temporal shifts and a combination of exchange and event interference.
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I. INTRODUCTION

The archetypal example of electron-electron correlation
in intense laser fields is laser-induced nonsequential double
ionization (NSDI) [1,2]. Thereby, a returning electron, upon
recollision, gives enough kinetic energy to its parent ion to
release another electron [3]. While a large amount of studies
interpret this correlation as classical, since the past few years
quantum effects in NSDI have gained increased attention.
This interest started with the theoretical findings that quantum
interference is more robust than initially anticipated [4–6] and,
depending on the circumstances, may survive integration over
several degrees of freedom [4,5] and even focal averaging [6],
followed by experiments [7]. Furthermore, recent work has
shown that entanglement may be unambiguously present in
NSDI [8], by looking at the correlation in the orbital angular
momenta of the freed electrons. In Ref. [9], this has been
discussed as an example of entanglement in a Zerfall process.

The unexpected robustness of quantum interference was
the first evidence that NSDI is not classical. Nonetheless,
before those findings, quantum effects in NSDI have re-
mained largely unexplored (for a few studies see, however,
Refs. [10–13]). This indifference may be justified by the huge
success of classical models in reproducing the key experimen-
tal findings in NSDI for three decades (for reviews see, e.g.,
Refs. [1,2]). Furthermore, early studies of quantum-classical
correspondence have shown that quantum interference gets
washed out upon integration over the electron momen-
tum components perpendicular to the laser-field polarization
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[14–16], which is the typical scenario in experiments. Still,
imprints of the type of electron-electron interaction [14,16],
and of electronic bound states [17–19] are present. Under
particular circumstances, two-center interference in molecules
can also be embedded in classical NSDI models [20].

Classical approaches also comprise the overwhelming
majority of NSDI studies in tailored fields [21–36], with
good qualitative agreement with experiments. Furthermore,
whenever quantum methods such as the strong-field approx-
imation (SFA) [18,19,37–40] the quantitative rescattering
theory (QRS) [41–44], or the full numerical solution of the
time-dependent Schrödinger equation (TDSE) [45–50] have
been used, the emphasis was on the shapes of the electron
momentum distributions due to the type of electron-electron
interaction [45,46] or the field shape [47,48], and the physical
mechanisms behind them. These features can be explained
classically and have been reproduced using classical models
[21,51]. For examples associated with the type of electron-
electron interaction and features specific to a few-cycle
pulse, such as asymmetric distributions, see Refs. [46–48]
and [49,50], respectively. Another likely reason why quan-
tum interference has not been paid attention to in TDSE
computations for NSDI is possibly the widespread use of
reduced-dimensionality models [45,49,50]. In these models,
the degrees of freedom perpendicular to the laser-field polar-
ization are absent, which will cause quantum interference to
be overestimated. A reasonable extrapolation to a real-life sce-
nario is to neglect this interference since transverse momenta
would be integrated over in an experiment. However, quantum
interference and its connection to symmetry [52–55] have
been extensively studied for high-order harmonic generation
[56–58], strong-field ionization [52,59,60], and photoelectron
holography [61,62].

The apparent contradiction regarding the quantum or clas-
sical nature of NSDI lies in the different parameter ranges
employed in each of the two sets of studies. Classical behavior

2469-9926/2024/109(6)/063110(31) 063110-1 Published by the American Physical Society

https://orcid.org/0009-0002-3448-5424
https://orcid.org/0000-0001-8397-4529
https://ror.org/02jx3x895
https://ror.org/04489at23
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.063110&domain=pdf&date_stamp=2024-06-10
https://doi.org/10.1103/PhysRevA.109.063110
https://creativecommons.org/licenses/by/4.0/


S. HASHIM et al. PHYSICAL REVIEW A 109, 063110 (2024)

has been identified for driving-field intensities in which the
first electron, upon return, gives enough energy to the core
so that a second electron can be immediately released in the
continuum by overcoming the ionization potential of its parent
ion. This physical mechanism is known as electron-impact
ionization (EI). On the other hand, if the kinetic energy of
the first electron is not sufficient to trigger EI, the second
electron is promoted to an excited state, and it is freed to
the continuum after a time delay. This mechanism is known
as recollision-excitation with subsequent ionization (RESI)
and occurs for driving-field intensities in the below-threshold
regime. Although classical studies have recovered some fea-
tures specific to RESI, in this regime there is more room for
quantum interference.

In a quantum-mechanical framework, transition amplitudes
associated with different excitation channels leading to the
same final electron momenta will interfere. Furthermore, even
if a single channel is involved, quantum interference may oc-
cur for events separated by specific time intervals, or transition
amplitudes stemming from the two electrons being indis-
tinguishable. The first paper in which quantum interference
was studied in RESI focused on interchannel interference [4].
Using the strong-field approximation (SFA), it established
that a fourfold symmetry that exists for correlated electron
momentum distributions in the p1‖ p2‖ plane spanned by the
electron momentum components parallel to the laser-field po-
larization, could be broken by choosing appropriate coherent
superpositions of excitation pathways. These superpositions
were employed to reproduce distributions occupying the sec-
ond and fourth quadrants of the parallel momentum plane.

These findings were substantially extended in our previous
publications, in which we have identified and classified intra-
and interchannel two-electron quantum interference in RESI
with a linearly polarized monochromatic field [5]. We have
shown that, for a single excitation channel, quantum interfer-
ence manifests itself as hyperbolic fringes and bright fringes at
both diagonals p1‖ = ±p2‖ of the p1‖ p2‖ plane. For interchan-
nel interference, we have also identified hyperbolic structures,
although obtaining analytic expressions proved challenging.
Besides the excellent agreement of these expressions with
our numerical calculations, in Ref. [6], we specifically linked
features observed in experiments with the quantum interfer-
ence in RESI predicted by our model. Our results have also
shown that additional phase shifts arise from the bound-state
wave function from which the excited electron tunnels. This
builds upon previous work, in which we have found that RESI
has potential for imaging, as the excited-state wave function
strongly influences the shape of the resulting RESI electron
momentum distributions [18,19].

Nonetheless, several simplifications have been made in
the above-mentioned computations. One of them is to as-
sume that the driving field is monochromatic [5,6]. This is
a good approximation for long enough pulses, and a rea-
sonable assumption for short pulses if the carrier-envelope
phase (CEP) is averaged over. However, in the latter case, one
must compensate for the different frequency widths. To that
end, in Ref. [6] we have added extra amplitudes and phases,
whose existence has been justified using qualitative arguments
and averages in specific momentum ranges. These arguments
backed the findings that, for longer pulses, d intermediate

states are the most important, while for few-cycle pulses s
states prevail.

Still, one must bear in mind that, for ultrashort pulses,
the physics is markedly different. First, the frequency and
intensity widths introduced by a pulse are expected to affect
the dominant excitation channels. Second, the field cycles
will no longer be equivalent, which may hinder the fringe
contrast if different events within the pulse interfere or add to
the problem’s complexity. Third, the carrier-envelope phase
(CEP) will play a major role in determining the shapes of the
distributions, which will be linked to dominant events within a
pulse. Fourth, there will be broken symmetries for fixed CEPs,
which will influence the electron-momentum distributions
and the quantum phase differences leading to interference
patterns. Evidence that the fourfold symmetry is broken is
provided in previous work [37,38], where we have studied the
influence of the CEP on single-channel RESI distributions,
and in experiments [23,63]. Therein, quantum interference
was not included.

In the present work, we discuss quantum interference in
RESI with few-cycle pulses. We focus on single-channel
interference effects, as they depend more critically on the
driving field, while the target plays a more significant role
when more than one excitation channel is present. When
dealing with a pulse, a central question is what events
dominate the underlying RESI and which ones can be
neglected. In Refs. [37,38], we have assessed the dominance
of specific events in an intuitive, ad hoc way, but it is of
interest to seek a more systematic strategy. Furthermore, we
generalize the intrachannel interference conditions derived in
Ref. [5] to a field of arbitrary shape. We show that relaxing
the assumptions stemming from the symmetries specific to
the monochromatic field adds complexity to the problem
and gives rise to a rich tapestry of phase shifts and quantum
interference conditions. Throughout, we employ the modified
version of the strong-field approximation (SFA) developed
in Refs. [18,64], in which excitation and electron-electron
correlation have been incorporated. Although the SFA makes
significant approximations, such as neglecting the residual
binding potential in the electron’s continuum propagation,
it is useful for disentangling different types of quantum
interference. First, it can be constructed focusing on the
specific RESI process, without the presence of electron-
impact ionization. Second, if constructed in conjunction with
saddle-point methods, the SFA is an orbit-based approach
that incorporates tunneling and quantum interference. Thus,
specific quantum pathways can be switched on and off
at will. In contrast, TDSE computations can be used as
a benchmark for semi-analytic methods, but the different
physical mechanisms are difficult to disentangle. For detailed
discussions on the strengths and weaknesses of ab initio and
analytical methods see the perspective article [65]. Detailed
reviews of theoretical methods in NSDI and of the strong-field
approximation are provided in Refs. [1] and [66], respectively.

The paper is organized as follows: In Sec. II, we revisit
the theoretical background necessary to understand the sub-
sequent discussions. Thereafter, in Sec. III, we bring the
interference conditions generalized to an arbitrary field. In
Sec. IV, we investigate the pulse in detail, by systemati-
cally finding dominant events (Sec. IV A) and their influence
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on target-related features (Sec. IV B). Section V is devoted
to calculating electron-momentum distributions, bringing the
studies of the previous sections together with particular em-
phasis on quantum interference. Finally, in Sec. VI we state
our main conclusions. We use atomic units throughout.

II. BACKGROUND

A. General expressions

In the SFA, the RESI transition amplitude related to the Cth
excitation channel is given by

M (C)(p1, p2) =
∫ ∞

−∞
dt

∫ t

−∞
dt ′

∫ t ′

−∞
dt ′′

∫
d3k

× V (C)
p2e V (C)

p1e,kgV
(C)

kg

× exp[iS(C)(p1, p2, k, t, t ′, t ′′)], (1)

where the action

S(C)(p1, p2, k, t, t ′, t ′′)

= E (C)
1g t ′′ + E (C)

2g t ′ + E (C)
2e (t − t ′) −

∫ t ′

t ′′

[k + A(τ )]2

2
dτ

−
∫ ∞

t ′

[p1 + A(τ )]2

2
dτ −

∫ ∞

t

[p2 + A(τ )]2

2
dτ (2)

describes the process in which an electron, initially at a bound
state of energy −E (C)

1g , is released at t ′′, returns to its parent
ion at t ′ with intermediate momentum k and excites a sec-
ond electron from a state with energy −E (C)

2g to a state with

energy −E (C)
2e . Upon rescattering, the first electron acquires

the final momentum p1, while the second electron is freed at
a later time t with final momentum p2. The prefactors V (C)

kg ,

V (C)
p1e,kg, and V (C)

p2e are associated with the ionization of the first
electron, the recollision-excitation process and the tunnel ion-
ization of the second electron, respectively. Within the SFA,
they contain all information about the electronic bound states,
and about all the interactions [18,64]. The expressions stated
above are general and the superscript (C) make them easily
adaptable to coherent superpositions of channels and bound
states. Nonetheless, in the present paper, we assume that the
initial state of the system will be the same, so that it will be
dropped subsequently (see Sec. II C).

The ionization prefactor for the first electron is explicitly
given by

V (C)
kg = 〈k|V ∣∣ψ (C)

1g

〉 = 1

(2π )3/2

∫
d3r1e−ik·r1V (r1)ψ (C)

1g (r1),

(3)

where V (r1) is the neutral atom’s binding potential, typically
assumed to be of Coulomb-type, and ψ

(C)
1g is the ground-state

wave function for the first electron. The excitation prefactor
for the second electron reads

V (C)
p1e,kg = 〈

p1, ψ
(C)
2e

∣∣V12

∣∣k, ψ
(C)
2g

〉
= V12(p1 − k)

(2π )3/2

∫
d3r2e−i(p1−k)·r2ψ

∗(C)
2e (r2)ψ (C)

2g (r2),

(4)

where ψ
(C)
2e (r2) and ψ

(C)
2g (r2) are the excited and ground states

wave functions for the second electron. The electron-electron
interaction reads

V12(p1 − k) = 1

(2π )3/2

∫
d3rV12(r) exp [−i(p1 − k) · r],

(5)

where r = r1 − r2, and it is taken to be of contact-type, as in
Refs. [6,38].

Finally, the ionization prefactor associated with the second
electron is given by

V (C)
p2e = 〈p|Vion

∣∣ψ (C)
2e

〉
= 1

(2π )3/2

∫
d3r2Vion(r2)e−ip2·r2ψ

(C)
2e (r2), (6)

where Vion is the potential of the singly ionized target.
In the SFA, the target structure is incorporated via the pref-

actors V (C)
kg , V (C)

p1e,kg, and V (C)
p2e . In our calculations, we employ

hydrogenic wave functions ψnlm(r) = Rnl (r)Y m
l (θ, φ) for the

electronic bound states. The explicit expressions for these
prefactors are given in the Appendix, and detailed derivations
are given in our previous publications [5,18]. In all examples
studied in this paper, we have taken the magnetic quantum
number m = 0 to facilitate a comparison with our previous
work [5,6] and with the existing results in the literature [4].
Furthermore, we consider the ionization prefactors in the ve-
locity gauge to avoid bound-state singularities. Length-gauge
prefactors contain additional momentum shifts, which will not
play an important role for the ionization prefactors and will
cancel out for the excitation prefactor. A detailed discussion
has been provided in Ref. [18].

We calculate the multiple integrals in Eq. (1) using the
steepest descent method. This leads to the saddle-point equa-
tions

[k + A(t ′′)]2 = −2E (C)
1g , (7)

k = − 1

t ′ − t ′′

∫ t ′

t ′′
dτA(τ ), (8)

[p1‖ + A(t ′)]2 + [p1⊥]2 = [k + A(t ′)]2 − 2
(
E (C)

2g − E (C)
2e

)
,

(9)

and

[p2‖ + A(t )]2 + [p2⊥]2 = −2E (C)
2e . (10)

Equations (7) and (10) give the conservation of energy upon
tunnel ionization for the first and second electrons, respec-
tively. Equation (8) constrains the intermediate momentum
so that the first electron returns to the site of its release, and
Eq. (9) gives the rescattering event in which the first electron
gives part of the kinetic energy Ek (t ′, t ′′) = [k + A(t ′)]2/2 to
excite the second electron. We denote pn‖ and pn⊥, (n = 1, 2),
the momentum components parallel and perpendicular to the
laser-field polarization, respectively. One should note that pn⊥
are two-dimensional vectors spanning the plane perpendicular
to the driving-field polarization. The real parts of the solutions
of the saddle-point equations are directly related to the clas-
sical recollision and ionization times. The integrals are then
approximated by sums over these stationary variables. For the
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second electron, the saddles are well separated in all momen-
tum regions, while, for the first electron, pairs of saddles must
be considered collectively using the uniform approximation
in Ref. [67].

Equation (9) relates the kinetic energy Ek (t ′, t ′′) of the
returning electron to the energy difference �E (C) = E (C)

2g −
E (C)

2e between the ground and excited states of the second
electron. With regard to the space spanned by the momenta
p1‖, p1⊥ of the first electron, this saddle-point equation repre-
sents a sphere, whose radius is {2[Ek (t ′, t ′′) − �E (C)]}1/2. If
Ek (t ′, t ′′) > �E (C), this radius is real and Eq. (9) may have
a classical counterpart. If we are interested in p1‖ only, we
can assume that p2

1⊥/2 is an additional energy shift which will
effectively alter the ionization threshold. Therefore, assuming
p1⊥ = 0 helps to define an upper bound for Eq. (9) in terms
of the momentum range p1‖ which may be occupied, should
rescattering have a classical counterpart. We call this momen-
tum range the classically allowed region (CAR). This concept
has been introduced in our previous publications [18,64].

Furthermore, the saddle-point equations state that RESI
may be viewed as two time-ordered processes similar to
above-threshold ionization (ATI) [18,64]. The first electron
behaves as if it were undergoing rescattered ATI, with the
difference that, for RESI, the process is inelastic. This means
that the maximal final kinetic energy of the first electron can
approach the rescattered ATI cutoff of 10Up, where Up is
the ponderomotive energy. Moreover, Eq. (10) resembles the
saddle-point equation obtained by direct ATI, for which the
maximum classical kinetic energy, known as the direct ATI
cutoff, is 2Up. This leads to the equation of a sphere in terms
of p2‖, p2⊥, whose radius is 2

√
Up [68]. The ponderomotive

energy is the time-averaged kinetic energy acquired by an
electron from the field. For a linearly polarized monochro-
matic wave, it is related to the amplitude of the vector
potential by A0 = 2

√
Up.

B. Two-electron probability density

The quantity of interest is the correlated two-electron prob-
ability density as a function of the momentum components
pn‖, n = 1, 2, parallel to the driving-field polarization. This is
given by

P (p1‖, p2‖) =
∫∫

d2 p1⊥d2 p2⊥P (p1, p2), (11)

where P (p1, p2) is the fully resolved two-electron mo-
mentum probability density, and the transverse momentum
components have been integrated over. When calculating this
probability density, several issues must be taken into con-
sideration. First, both electrons are indistinguishable, which
means that Eq. (1) must be symmetrized upon p1 ↔ p2, that
is, electron exchange. Second, in a real target, there will be
several excitation channels, each of which will be associated
with the transition amplitude Eq. (1). Third, there will be sev-
eral events within the pulse for the first and second electrons.
Thus, within the saddle-point approximation, the overall RESI
amplitude must contain sums over (i) transitions involving
different excitation channels; (ii) the symmetrization related
to electron indistinguishability, which will occur for each pair
of excitation and ionization times; (iii) the events within a

pulse. Quantum mechanically, all these contributions add up
coherently.

The fully coherent sum over events, channels, and sym-
metrization reads

P(ccc)(p1, p2) =
∣∣∣∣∣
∑

ε

∑
C

[
M (C)

ε (p1, p2) + M (C)
ε (p2, p1)

]∣∣∣∣∣
2

,

(12)

where the symbols ε and C denote event and channel, re-
spectively. In the present work, we focus on single-channel
interference, so that sums over channels will not be taken into
consideration.

For a single channel, a coherent sum over the events ε in
the pulse and symmetrization leads to

P (C)
(cc)(p1, p2) =

∣∣∣∣∣
∑

ε

[
M (C)

ε (p1, p2) + M (C)
ε (p2, p1)

]∣∣∣∣∣
2

, (13)

while the incoherent counterpart of Eq. (13) is given by

P (C)
(ii) (p1, p2) =

∑
ε

[∣∣M (C)
ε (p1, p2)

∣∣2 + ∣∣M (C)
ε (p2, p1)

∣∣2]
.

(14)

In the present work, we are interested in disentangling sev-
eral types of quantum interference. Therefore, we construct
the two-electron probability density in several ways, depend-
ing on the question we wish to address.

Throughout, we use the notation P (C)
(Sε) where the indices

S, ε, and C relate to the electron symmetrization, the event,
and the channel, respectively. The indices c and i on the
left-hand side stand for coherent and incoherent, respectively.
Thus, P (C)

(cc)(P
(C)
(ii) ) states that the sum considered in the single-

channel probability density is coherent (incoherent) over the
pulse events and symmetrization, and has been calculated for
the Cth channel. If the symmetrization is done coherently, but
the events are summed over incoherently, this gives

P (C)
(ci) (p1, p2) =

∑
ε

∣∣M (C)
ε (p1, p2) + M (C)

ε (p2, p1)
∣∣2

. (15)

Alternatively, one could sum the events within a pulse co-
herently and perform the symmetrization incoherently. This
yields

P (C)
(ic) (p1, p2) =

∣∣∣∣∣
∑

ε

M (C)
ε (p1, p2)

∣∣∣∣∣
2

+
∣∣∣∣∣
∑

ε

M (C)
ε (p2, p1)

∣∣∣∣∣
2

.

(16)

This notation differs from that employed in our previous
work [5,6], for which the interference due to electron sym-
metrization was called “event interference.” Apart from the
combinations given above, given the wealth of interference
patterns, it may also be useful to sum transition amplitudes
pairwise. A discussion of the phase shifts that occur in these
pairwise sums is given in Sec. III.

Finally, under some circumstances, it is useful to compute
partial momentum distributions for each electron, given by

M (n)(pn‖) =
∫

d2 pn⊥|M (n)(pn)|2, (17)

with n = 1, 2.
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TABLE I. Relevant excitation channels for Ar+, in order of in-
creasing principal and orbital quantum numbers. From left to right,
the first column gives the number associated with the channel, the
second column states the electronic configuration and the excitation
pathway, and the third column provides the excited-state energy in
atomic units.

Channel Excited-state configuration E (C)
2e (a.u.)

1 3s3p6(3s → 3p) 0.52
2 3p53d (3p → 3d ) 0.41
3 3p54d (3p → 4d ) 0.18
4 3p54s(3p → 4s) 0.40
5 3p54p(3p → 4p) 0.31
6 3p55s(3p → 5s) 0.19

C. Target considerations

As a target, we consider argon, for which there are six
main excitation channels. The absolute values of ground-state
energies associated with 3s and 3p are taken to be E (1)

2g =
E (C)

2g = 1.016 a.u., C = 2 to 6, and the first ionization potential

is E (C)
1g = 0.58 a.u. for all channels. Thus, for simplicity, we

are dropping the superscript for E1g. One should note that
the bound-state geometry differs for 3s and 3p, which will
influence the excitation prefactor. For clarity, these channels
are provided in Table I. The influence of the target occurs
via the bound-state energies and the prefactors. According to
the saddle-point equations (7)–(10), the bound-state energies
will affect the ionization probability of the first and second
electron, and the classically allowed region in momentum
space for the rescattered electron. The more tightly bound
the electrons are, the lower their tunneling probability will
be. Furthermore, large (small) energy gaps �E (C) = (E (C)

2g −
E (C)

2e ) stemming from the second electron being excited will
potentially favor small (large) classically allowed regions for
the first electron upon rescattering.

The bound-state geometry will introduce an additional mo-
mentum bias in the problem via the prefactors. The shapes
of the electron-momentum distributions will mostly be influ-
enced by the prefactor Vp2e [5,18]. Before integration over
the transverse degrees of freedom, this prefactor will exhibit
radial and, for l 
= 0, angular nodes. The other prefactors will
have less influence in the shapes of the electron momentum
distribution, due to the time dependence of the intermediate
momentum k [see saddle-point equation (8)]. This time de-
pendence will cause a blurring in their nodes. The radial and
angular nodes of the prefactors may lead to additional phase
shifts, which will influence the overall interference patterns. A
detailed study of these features has been performed in Ref. [5]
for a monochromatic field, but some of these issues must be
revisited for a pulse.

D. Momentum constraints for a pulse

The saddle-point Eqs. (9) and (10) can be used to deter-
mine constraints in momentum space for each rescattering
event within the pulse. The first electron is released such that,
for Re[t ′′], the electric field is close to an extremum. For a

specific event, the first electron’s most prominent return, at
Re[t ′], is near a field zero crossing displaced by approximately
three-quarters of a field cycle. The second electron may then
tunnel in any of the subsequent times t , for which its real
part is near a field extremum. However, due to bound-state
depletion, the prevailing ionization time occurs around the
extremum immediately after the zero crossing. Similarly, the
first electron may return following longer orbits, but such
returns are expected to be suppressed due to wave-packet
spreading.

Using this information, we estimate that the final momen-
tum of both electrons will be located around (p1‖, p2‖) =
(−A(t ′),−A(t )). For times Re[t ′] sufficiently close to the
zero crossings of the field, and Re[t] sufficiently close to
the peaks of the field, −A(t ′) � ±2

√
Up and −A(t ) � 0. The

extension of the momentum region occupied will depend on
the electron’s kinetic energy upon return at each rescattering
event. This region may be large, small, or even have no clas-
sical counterpart. Electron indistinguishability dictates that
there will also be events whose amplitudes are centered at
(p1‖, p2‖) = (−A(t ),−A(t ′)). The final kinetic energy for the
first electron may extend to almost 10Up, while that of the sec-
ond electron may reach up to 2Up. Taking the perpendicular
momentum components to vanish provides an upper bound
for the regions occupied in the p1‖ p2‖ plane [18,64].

Similar to the procedure in Ref. [5] for a monochromatic
wave, we consider a single channel, neighboring events within
the pulse, displaced by approximately half a cycle, and those
present due to the electron exchange symmetry of the system.
However, there are key differences for a few-cycle pulse: (i)
the half-cycle symmetry A(t ) = ±A(t ± T/2), where T is a
field cycle, is broken; (ii) the cycles are not equivalent due to
the presence of the pulse envelope; (iii) the assumptions made
upon A(t ′) and A(t ) are approximate, and work better close to
the center of the pulse.

This will lead to the transition amplitudes Ml , Mu, Mr ,
and Md , with Ml (p1, p2) = Md (p2, p1) and Mr (p1, p2) =
Mu(p2, p1), where we have dropped the superscript (C) for
simplicity. In Fig. 1, we provide a schematic represen-
tation of the momentum constraints associated with each
of these transition amplitudes as the shaded regions. Out-
side these constraints, the probability density is strongly
suppressed, as it has no classical counterpart. Addition-
ally, for a monochromatic wave, the half-cycle symmetry
implies that Ml (p1, p2) = Mr (−p1,−p2) and Mu(p1, p2) =
Md (−p1,−p2). This leads to a fourfold symmetry in the
momentum-region constraints, as outlined by the dashed
rectangles in the figure, which, in the absence of further mo-
mentum bias, causes the correlated two-electron distribution
to be cross-shaped [18,64]. For a few-cycle pulse, the half-
cycle symmetry is broken, but the reflection symmetry about
the diagonal p1‖ = p2‖ is retained.

In addition to that, Fig. 1 indicates a substantial overlap for
(i) Ml and Md , (ii) Mr and Mu, (iii) Mu and Ml , and (iv) Mr and
Md . Therefore, their interference is expected to be substantial
and will be calculated in pairwise coherent sums. The sums
Mrl = Ml + Mr and Mud = Mu + Md of events separated by
half a cycle will also overlap and interfere, but this interfer-
ence is expected to be less relevant as the probability density
is small outside the shaded regions [5,18].
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FIG. 1. Schematic representation of the momentum-space re-
gions occupied by the RESI transition amplitudes Ml , Mu, Mr , and
Md . The dashed rectangles indicate the momentum constraints that
would hold for a monochromatic driving field, while the shaded areas
show their counterparts for few-cycle pulses. The overlapping areas
indicate momentum regions for which quantum interference will be
significant. We have used the same color for Ml and Md (blue),
and Mu and Mr (purple), to highlight the property Ml (p1, p2) =
Md (p2, p1) and Mr (p1, p2) = Mu(p2, p1), which gives a reflection
symmetry about the diagonal p1‖ = p2‖. This diagonal is indicated
by the dotted black line. The negative (positive) signs in the cen-
ter of the blue (purple) shaded regions indicate the most probable
momenta.

Furthermore, the cycles within a pulse will not be identical
and there may be several comparable rescattering and ioniza-
tion events, which will potentially interfere. Thus, in principle,
one must take their contributions to the electron-momentum
distributions into consideration. A schematic representation is
provided in Fig. 2, which shows the momentum constraints
determined by four events within a hypothetical pulse. Fig-
ure 2(a) illustrates the events whose contributions must be
added up, and whose momentum constraints are shown as the
red- and yellow-shaded areas. We assume that the two events
of each Figs. 2(a)(i) and 2(a)(ii) took place over a single cycle.
The events in separate subpanels are displaced by at least a
cycle. The shaded regions around the same pn‖, n = 1, 2 half
axis (positive or negative) correspond to events displaced by
an integer number of cycles (different colors), or none (same
color), while those around the opposite pn‖, n = 1, 2 half axis
and highlighted by the same color are displaced by half a
cycle.

The momentum ranges occupied by the resulting events,
shown in Fig. 2(b), illustrate several overlapping regions, for
which quantum interference will occur. This interference may
be pronounced, subtle, or negligible, depending on whether
the events are comparable or whether some of them prevail.
Outside the shaded regions, there will also be quantum inter-
ference, but due to the transition amplitudes being suppressed,
it is expected to be negligible. One may control the dominant
events by changing the pulse parameters.

III. GENERALIZED INTRACHANNEL
INTERFERENCE CONDITIONS

Below we generalize the interference conditions derived in
Ref. [5] to an arbitrary driving field, with vector potential A(τ )

FIG. 2. Schematic representation of the momentum-space re-
gions associated with different events within the pulse [panel (a)],
and those resulting from their coherent superposition [panel (b)].
The dashed rectangles indicate the momentum constraints that would
hold for a monochromatic driving field, while the shaded areas show
their counterparts for few-cycle pulses. We assumed that each sub-
panel in panel (a) gives the momentum regions occupied by events
within a single cycle, and the events in panels (a)(i) and (a)(ii) are
summed coherently. Overlapping shaded regions indicate that quan-
tum interference is potentially significant. We consider two events
separated by a half cycle in each graph in panel (a), which eventually
interfere.

with τ = t, t ′. We make no assumption about its component
frequencies, shape, or polarization, so the expressions below
are entirely general. Due to their level of complexity, we first
provide the key assumptions behind the derivations, together
with a road map and a graphic representation to facilitate their
understanding.

A. Diagrammatic representation

Within a single cycle, pairwise quantum interference will
stem from |Mld |2, |Mru|2, |Mul |2, |Mrd |2, |Mrl |2 and |Mud |2
where Mμν = Mμ + Mν . If there is a shift of an integer
number n of cycles T = 2π/ω in a specific transition am-
plitude, we use the notation Mμ,nT = Mμ(t + nT ). Each term
in these coherent sums will be approximated by eiSμ , where
μ = l, d, u, r, and the phase differences are given by αμν =
Sμ − Sν . This is justified by the underlying assumption that
the prefactors vary much more slowly than the action, which
is a key element of the approaches employed in this work.

In Fig. 3, we present a graphic representation of the three
qualitatively different types of intrachannel phase shifts that
may occur, with the interfering transition amplitudes being
indicated by thick solid lines. One should bear in mind that
the phase differences αμν illustrated in the figure are a sample
of what may occur and the maximal temporal difference �τ

considered is a full cycle of the field. However, this notation
can be extrapolated to encompass larger time differences. The
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FIG. 3. Diagrammatic representation of different types of pair-
wise single-channel interference that may occur for NSDI RESI. The
momentum ranges occupied by a specific process are indicated by
the thick solid lines, while the thin dashed lines are a simplified
representation of the parallel momentum axes pn‖, n = 1, 2. Panel
(a) shows the processes associated with the electron momenta being
swapped, but taking the same event. Panels (b) consider the interfer-
ence of events shifted by an (b)(i) odd and (b)(ii) even number of
half cycles, but without momentum exchange. Panels (c) represent
interfering processes for which there are temporal shifts and momen-
tum exchange, considering (c)(i) odd and (c)(ii) even numbers of half
cycles. In the diagrams, different colors indicate that the events are
shifted in time, and the same color indicates the same event. The
phase shifts αμν are written in the figure. For simplicity, for events
displaced by more than a cycle, we have only stated phase shifts
associated with a single period, and, in panel (b)(ii), we omitted the
events giving αμ,νT for which the second argument is delayed by a
cycle. However, these events and those separated by longer times can
be inferred using this diagram.

diagrams are a simplification of the main momentum regions
occupied by specific transition amplitudes. They allow a quick
assessment of what is going on. Different colors indicate
temporal shifts, while the same color indicates simultaneous
occurrence.

Figure 3(a) shows the phase differences purely associated
with the electrons being exchanged. The phase shift αld (αru)
is associated with the pairwise interference of Ml and Md

(Mr and Mu). These coherent sums are expected to populate
mainly the first and third quadrants of the p1‖ p2‖ plane, and
each pair represents the same event, but in one of the contri-
butions p1 and p2 are interchanged. This is indicated by using
the same colors for a pair.

Figure 3(b) shows the phase differences uniquely given by
temporal shifts, without exchanging the electron momenta.
In Fig. 3(b)(i), we plot a diagrammatic representation of the
pairwise interference of events displaced by a half cycle.
These events are located in opposite momentum half axes.
The phase difference αlr is associated with the amplitudes
Ml and Mr , located along the p1‖ axis, and the phase shift
αdu stems from the difference of Md and Mu. This diagram
can be generalized to an odd number of half cycles. The
diagram in Fig. 3(b)(ii) represents the interference of events
displayed by a full cycle, which we indicate by including the
subscript T in α. For example, αlT,l means that the inter-
fering actions are SlT = Sl (p1, p2, t + T, t ′ + T, t ′′ + T ) and
Sl (p1, p2, t, t ′, t ′′), and the same holds for the other scenarios

illustrated in that figure. In this case, the different events
occupy the same parallel momentum half axis, and therefore
their overlap is significant. A similar pattern is encountered if
the temporal shift is an arbitrary integer number of cycles.

Finally, the diagrams in Fig. 3(c) illustrate interfering
processes for which there are temporal shifts and electron
exchange. Figure 3(c)(i) shows the interference of the ampli-
tudes Ml and Mu (Mr and Md ), which correspond to processes
displaced by half a cycle in which the two electron mo-
menta have been swapped. The schematic representations in
Fig. 3(c)(ii) depict interfering processes displaced by a full
cycle, and whose momenta were exchanged. In summary,
there are a few common patterns in Fig. 3: L-shaped struc-
tures indicate that the electron momenta were exchanged in
one of the interfering terms; straight lines indicate processes
displaced by either a full number of cycles (short lines), or
an odd number of half cycles (long lines); the same (differ-
ent) colors indicate the absence (presence) of temporal shifts.
We apply this notation to concrete examples in subsequent
sections, once we have outlined a way to select the relevant
events within a pulse. They are also useful to understand the
equations provided next.

B. Analytic expressions

In the following, we derive analytic expressions for a wide
range of phase differences that occur in the RESI amplitudes,
and, as much as possible, we discuss what patterns are ex-
pected from their interference.

1. Intracycle phase differences

Let us commence by exploring the phase differences that
occur within a single field cycle, and are illustrated by the di-
agram in Fig. 3. The phase difference αld is purely associated
with exchanging p1 and p2 and reads

αld = Sl − Sd = α(exch)
p1,p2

+ αp1,p2 (t, t ′), (18)

where

α(exch)
p1,p2

= 1
2

(
p2

2 − p2
1

)
(t − t ′), (19)

αp1,p2 (t, t ′) = (p2 − p1) · [FA(t ′) − FA(t )], (20)

and

FA(t ) =
∫ t

A(τ )dτ (21)

is the temporal integral of the vector potential.
Constructive interference between Ml and Md will happen

for αld = 2nπ , where n is an integer, and, for simplicity, we
investigate n = 0. The phase shift α(exch)

p1,p2
is field-independent,

and requiring it to vanish gives equations of hyperbolae in the
p1‖ p2‖ plane, whose asymptotes are p1‖ = ±p2‖ and whose
eccentricity is

√
2. The shift αp1,p2 (t, t ′) is field dependent

and states that p2 − p1 must be orthogonal to FA(t ′) − FA(t ).
For linearly polarized light, it reduces to p1‖ = p2‖. The con-
ditions upon the momenta are identical to those obtained in
Ref. [5] for a monochromatic field, and determine that bright
fringes must be present in the diagonal of the parallel mo-
mentum plane. Their independence of the field profile makes
these central fringes robust against focal averaging, as found
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in our previous publication [6]. Nonetheless, the asymptotes
and axes of the hyperbolae may shift as they depend on the
transverse momentum integration.

The other phase difference solely related to electron mo-
mentum exchange is

αru = Sr − Su = −α(exch)
p1,p2

+ αp1,p2

(
t + π

ω
, t ′ + π

ω

)
, (22)

which, if made to vanish, also leads to hyperbolae and a
bright fringe at the main diagonal for linearly polarized fields.
One should note, however, that the temporal shifts in the sec-
ond term of Eq. (22) imply that |αru| 
= |αld | unless FA(t ) =
−FA(t + π/ω). This condition, known as the half-cycle sym-
metry, renders αru = −αld . If this condition is broken, for
instance for a driving field consisting of a wave and its second
harmonic, or for the few-cycle pulses discussed in Secs. IV
and V, the hyperbolae symmetric about the main diagonal will
be asymmetric about (p1‖, p2‖) ↔ (−p1‖,−p2‖), that is, in
the first and third quadrants of the p1‖ p2‖ plane.

Next, let us calculate the phase difference αlr (αdu)
between the right and the left (upward and downward)
peaks [see diagrams in Fig. 3(b)(i)]. The action Sr (Su)
gives events shifted from those corresponding to Sl (Sd )
by half a cycle, but no momentum exchange between
the first and second electron takes place. This means
that Su(p1, p2, t, t ′, t ′′) = Sd (p1, p2, t + π/ω, t ′ + π/ω, t ′′ +
π/ω) and that Sr (p1, p2, t, t ′, t ′′) = Sl (p1, p2, t + π/ω, t ′ +
π/ω, t ′′ + π/ω). For αlr , this gives

αlr = Sl − Sr = − 1

2(t ′ − t ′′)
α

(A2 )
π/ω (t ′, t ′′) − 1

2
α

(pond)
π/ω (t, t ′′)

− α
(ene)
π/ω − α

(p1,p2 )
π/ω (t, t ′), (23)

where the purely temporal phase shifts are defined as

α
(A2 )
�τ (t ′, t ′′) = [FA(t ′ + �τ ) − FA(t ′′ + �τ )]2

− [FA(t ′) − FA(t ′′)]2, (24)

α
(pond)
�τ (t, t ′′) = FA2 (t + �τ ) + FA2 (t ′′ + �τ )

− FA2 (t ) − FA2 (t ′′), (25)

and

α
(ene)
�τ = �τ

2

(
2E2g + 2E1g + p2

1 + p2
2

)
, (26)

with

FA2 (t ) =
∫ t

A2(τ )dτ. (27)

One should note that Eqs. (24) and (25) have temporal argu-
ments, which indicate that the values of FA2 and FA may vary
within a pulse and this must be taken into consideration, while
(26) depends only on the time difference �τ . The phase dif-
ference in Eq. (25) is expected to give ponderomotive terms,
which will add to that in Eq. (26). The latter is linear in time
and contains the bound-state and kinetic energies.

The phase difference α
(p1,p2 )
π/ω (t, t ′) is a particular case of

α
(p1,p2 )
�τ (t, t ′) = p1 · [FA(t ′ + �τ ) − FA(t ′)]

+ p2 · [FA(t + �τ ) − FA(t )], (28)

which also incorporates the electron momenta. Similarly,

αdu = Sd − Su = − 1

2(t ′ − t ′′)
α

(A2 )
π/ω(t ′, t ′′) − 1

2
α

(pond)
π/ω (t, t ′′)

− α
(ene)
π/ω − α

(p2,p1 )
π/ω (t, t ′), (29)

where α
(p2,p1 )
π/ω indicates that the electron momenta have been

swapped in Eq. (28), with �τ = π/ω. For a monochro-
matic wave, we have found that the effect of these terms is
minimal [5,18].

Computing the phase shifts αlu and αrd means that,
in addition to exchanging p1 and p2, we must consider
that one of the interfering events will be displaced by
half a cycle [see Fig. 3(c)]. Specifically, we must note
that Su(p1, p2, t, t ′, t ′′) = Sl (p2, p1, t + π/ω, t ′ + π/ω, t ′′ +
π/ω) and that Sr (p1, p2, t, t ′, t ′′) = Sd (p2, p1, t + π/ω, t ′ +
π/ω, t ′′ + π/ω). These phase differences will mainly lead to
fringes in the second and fourth quadrant of the p1‖ p2‖ plane.

Explicitly, this gives

αlu = Sl − Su = − α(exch)
p1,p2

− 1

2(t ′ − t ′′)
α

(A2 )
π/ω (t ′, t ′′)

− 1

2
α

(pond)
π/ω (t, t ′′) − α

(ene)
π/ω − α

(p1↔p2 )
π/ω (t, t ′),

(30)

where the first four phase differences are given by Eqs. (19),
(24), (25), and (26). The term

α
(p1↔p2 )
�τ (t, t ′) = p2 · FA(t ′ + �τ ) + p1 · FA(t + �τ )

− p2 · FA(t ) − p1 · FA(t ′), (31)

contains a momentum dependence and the double arrow in
the superscript indicates that the momentum in the second
row of Eq. (31) are exchanged with regard to the temporal
arguments t and t ′ of FA. We have verified that αlu = −αrd

regardless of the field shape. This guarantees symmetry of
these contributions in the second and fourth quadrant of the
p1‖ p2‖ plane.

Equation (30) shows that, in addition to α(exch)
p1,p2

, which
is also present for αld and leads to hyperbolic interference
fringes, the phase shift αlu contains several terms which
come from the temporal shifts. The effects of these equa-
tions are more difficult to visualize. For linearly polarized
fields, the scalar products in Eq. (31) will reduce to the
products of p2‖ and p1‖ with field-dependent terms. Imposing
that α

(p1↔p2 )
�τ (t, t ′) = 0 will lead to conditions that depend on

the field symmetry, although a first inspection may give the
impression that there should be fringes located at the axes
pn‖ = 0.

For instance, one may verify that, for fields satisfying the
half-cycle symmetry, the condition FA(t ) = −FA(t + π/ω)
leads to α

(A2 )
π/ω(t ′, t ′′) = 0 and

α
(p1↔p2 )
π/ω (t, t ′) = −(p2 + p1) · [FA(t ′) + FA(t )]. (32)

For linearly polarized fields satisfying the half-cycle sym-
metry, the scalar product stated above becomes (p2‖ +
p1‖)[FA(t ′) + FA(t )], and the requirement that α

(p1↔p2 )
π/ω van-

ishes for all times would imply that p2‖ = −p1‖.
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If, further to that, the field is taken to be monochromatic
and linearly polarized, that is A(t ) = 2

√
Up cos ωt , one can

show that

α
(mono)
lu = − π

2ω

[
4Up + 2E1g + 2E2g + p2

1 + p2
2

]
− 1

2

(
p2

2 − p2
1

)
(t − t ′)

+
√

Up

ω
(p2‖ + p1‖)[sin ωt ′ + sin ωt], (33)

where the extra term in Up comes from α
(pond)
π/ω (t, t ′′) =

4Upπ/ω in this case.
Due to several field- and energy-dependent terms in αlu,

it is not straightforward to derive simple analytic expressions
for constructive interference between Mu and Ml . There is,
however, a term in p2

2 − p2
1, which, if required to vanish, leads

to hyperbolic fringes. Interestingly, because, for a few-cycle
pulse, the half-cycle symmetry is broken, we cannot use the
argument in Ref. [5], in which imposing that the last term
in (33) vanishes leads to a fringe along the antidiagonal
p1‖ = −p2‖.

2. Intercycle phase differences

Furthermore, in case we are considering more than one
cycle of the field, we must also assess what happens for
contributions displaced by at least a full cycle (�τ � 2π/ω),
without and with momentum exchange [see Figs. 3(b)(ii) and
3(c)(ii), respectively]. The contributions from events sepa-
rated by a full number of cycles overlap considerably in
momentum space, which potentially makes their interfer-
ence substantial. This is particularly important in the present
scenario because the pulse envelope renders the cycles not
equivalent.

Shifting the action associated with the left peak in
a full cycle gives Sl,T (p1, p2, t, t ′, t ′′) = Sl (p1, p2, t +
2π/ω, t ′ + 2π/ω, t ′′ + 2π/ω), where we have defined
T = 2π/ω. Similarly, for the downward peak one obtains
Sd,T (p1, p2, t, t ′, t ′′) = Sd (p1, p2, t + 2π/ω, t ′ + 2π/ω, t ′′ +
2π/ω). The phase difference αlT,l then reads

αlT,l = Sl,T − Sl = 1

2(t ′ − t ′′)
α

(A2 )
2π/ω(t ′, t ′′)

+ 1

2
α

(pond)
2π/ω (t, t ′′)

+ α
(ene)
2π/ω + α

(p1,p2 )
2π/ω (t, t ′), (34)

where the phase differences have been defined in Eqs. (24),
(25), (26), and (28). The phase difference αdT,d = Sd,T − Sd

resembles Eq. (34), but with the momenta swapped in the
last building block, i.e., α

(p2,p1 )
2π/ω (t, t ′). The phase differences

αrT,r = Sr,T − Sr and αuT,u = Su,T − Su are calculated simi-
larly, but the arguments of the functions FA and FA2 must be
shifted in half a cycle with regard to those used in Eq. (34).
This implies that one must take α

(A2 )
2π/ω(t ′ + π/ω, t ′′ + π/ω),

α
(pond)
2π/ω (t + π/ω, t ′′ + π/ω), and α

(pi,p j )
2π/ω (t + π/ω, t ′ + π/ω)

in the above equation.
For fields of period T = 2π/ω, α

(A2 )
2π/ω, and α

(pi,p j )
2π/ω , with

i 
= j, will vanish, while α
(pond)
2π/ω will give ponderomotive shifts

which will add to α
(ene)
2π/ω. This will happen regardless of

whether the half-cycle symmetry is broken but will not apply
to the pulse studied in this work. An example of this specific
scenario is a monochromatic field, for which

αmono
lT,l = αmono

dT,d = π

ω

[
4Up + 2E1g + 2E2g + p2

1 + p2
2

]
(35)

is the equation of a six-dimensional hypersphere in momen-
tum space. Rewriting the condition for interference maxima
αmono

lT,l = 2nπ in terms of the momentum components parallel
to the driving-field polarization yields

p2
1‖ + p2

2‖ = 2nω − (
4Up + 2E1g + 2E2g + p2

1⊥ + p2
2⊥

)
,

(36)

whose projection in the p1‖ p2‖ plane gives circular fringes if
the integer n is sufficiently large so that the right-hand side
is positive. Interference fringes taking into account electron
exchange and events displaced by a full cycle can be obtained
by considering, for instance, αlT,d = Sl,T − Sd = αlT,l + αld ,
or αuT,l = Su,T − Sl = αuT,u + αul . The diagrams in Fig. 3 are
useful as a guidance to construct phase shifts associated with
events displaced by an even or odd number of half cycles.
Alternatively, if all ionization and rescattering times are com-
puted directly, they may be used to construct these shifts.

One should note that the time shifts employed in this sec-
tion are an approximation for the times calculated for different
events in few-cycle laser pulses. However, we verified that this
works reasonably well for the dominant events (not shown).
Understanding these events and their dominance will be the
main topic of the next section.

IV. INVESTIGATING THE PULSE

In the results that follow, we employ a linearly polarized
few-cycle pulse E(t ) = −dA(t )/dt , whose vector potential is
determined by

A(t ) = A0 sin2

(
ωt

2N

)
sin (ωt + φ)êz, (37)

where A0 is the vector-potential amplitude, N is the number of
cycles, ω is the field frequency, and φ is the carrier-envelope
phase. Throughout this work, we have made the approxima-
tion A0 = 2

√
Up. This is exact for a monochromatic linearly

polarized field, but not for a few cycle pulse. By varying the
parameters in Eq. (37), we can influence the main rescattering
and ionization events.

In Fig. 4, we plot the specific sin2 pulse employed in
this work. Its length (N = 4.3) and carrier-envelope phases
(CEPs) have been chosen in order to facilitate a comparison
with our previous publication [38], although we have taken
a lower peak intensity to ensure that RESI is the dominant
mechanism. This means that the maximal kinetic energy of the
returning first electron is lower than the second ionization po-
tential. Overall we observe that E (t, φ) = −E (t, φ + π ). This
symmetry will influence the electron momentum distributions
so that P (p1‖, p2‖, φ) = P (−p1‖,−p2‖, φ + π ). Thus, with-
out loss of generality, we may consider only two of the CEPs
employed in Ref. [38]. Here, we follow the same convention
as in our previous publication [38] and define the carrier-
envelope phases as φ = φ1 − φ0, where φ0 = 60◦ is an offset
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FIG. 4. Few-cycle pulse given by (37), with peak intensity I =
1.5 × 1014 W/cm2, wavelength λ = 800 nm (ω = 0.057 a.u.), N =
4.3 and carrier-envelope phases φ1 = 65◦, 155◦, 245◦, 335◦ [panels
(a)–(d), respectively]. The ionization and rescattering times at the
peak and zero crossings of the field are indicated by the red and
green dots. The three main events pio j towards the center of the
pulse are labeled with their corresponding pair and orbit numbers.
The ionization and return times associated with the pairs of orbits
p3, p4, p5 of the first electron are indicated by arrows, and the most
relevant ionization times for the orbits oj of the second electron,
with ( j = 4, 5, 6), are signposted by rectangles. The initial numbers
chosen for the indices i, j refer to the extremum of the field for which
the counting starts. Matching styles and colors have been used for
different events εk = pio j .

value. When discussing the CEP in the following figures, we
refer to φ1 without the offset phase.

The classical counterparts Re[t ′′], Re[t ′], and Re[t] of the
ionization and rescattering times computed with Eqs. (7)–(10)
are indicated in the figure for both electrons, where the orbits
are classified in increasing numerical order starting from the
beginning of the pulse. This classification has been used in
Ref. [38]. The orbits associated with the first electron occur
in pairs [37,38] and, for that reason, are indicated by pi.
They start after a maximum of the field and end near a zero
crossing roughly three quarters of a cycle later (see arrows in
the figure). Each pair is composed of a short and a long or-
bit, whose classical ionization and times read (Re[t ′

s], Re[t ′′
s ])

and (Re[t ′
l ], Re[t ′′

l ]), respectively. The classical times shown
in the figure have been estimated using the tangent
construction [69].

The most relevant orbits associated with the second elec-
tron start around the field peak closest to the rescattering
times, and are denoted as o j . An event encompassing the two
electrons is classified as εk = pio j , where i, j, k are integers.
For example, ε1 = p3o4 designates the first event in the pulse
we incorporate, in which the first electron returns following
the pair or orbits p3 and the second electron is released along
the orbit o4 (see Fig. 4 for clarity). Note that, in this work, we
only consider the ionization event oj for the second electron
immediately following the rescattering of the first electron, as,
due to bound-state depletion, the probability of later events is
smaller and therefore less important.

A. Finding dominant orbits

A central question when dealing with pulses is how
to find the events whose contributions to the single-channel

probability density P (C)(p1‖, p2‖) are dominant. This provides
a road map of what can be neglected or incorporated without
compromising the physics. In previous publications [37,38],
we have performed qualitative studies of this issue. Here, we
aim to quantify the dominance of an event within a single
excitation channel by proposing a dominance parameter. An
orbit’s contribution will prevail in P (C)(p1‖, p2‖) if three
conditions are satisfied:

First, the ionization probability for the first electron must
be high [15,38]. For a specific orbit, the ionization probabil-
ity is proportional to exp[−2 ImS(C)(p1, p2, k, t, t ′, t ′′)]. To
consider the first electron individually, one must note that
the action will be proportional to the ionization times. Thus,
exp(−2 Im[t ′′]) is a good indicator of whether ionization is
significant for the first electron along a specific orbit [see also
the saddle-point equation (7)]. A small imaginary part for t ′′
means a high ionization probability. For simplicity, one may
consider |1/Im[t ′′]|.

Second, the classically allowed region (CAR) for the (re-
turning) first electron must be large.1 This means that the
first electron has returned with enough kinetic energy for the
process to have a classical counterpart over a large momentum
range. Therefore, according to Eq. (9), there is a substantial
energy transfer to the core and the excitation of the second
electron is very likely. We take a rough estimate of the width
of the region in momentum space, where the difference be-
tween imaginary parts of the rescattering times t ′ for the long
and short orbits is minimal. The width is found by taking the
difference between the lowest and highest classically allowed
momenta p(min)

1‖ and p(max)
1‖ for p1⊥ = 0. A more precise value

of these momenta can be found by solving the saddle-point
equation (9) for p1⊥ = 0. However, we found that this added
precision did not affect the dominance parameter value signif-
icantly so it is sufficient to take an estimate. On the other hand,
it may happen that the complex times obtained from solving
the saddle-point equations have no classical counterpart and
this region collapses. In that case, we take the most probable
momentum. This momentum is chosen so that |Im[t ′]| has a
minimum. Physically, this implies that rescattering is most
probable at that time, although it has no classical equivalent
[15,38]. Because we are taking the momentum for which
rescattering is most probable, this is likely an overestimation
of the actual probability for this process.

Third, there must be a high ionization probability for the
second electron. This is inferred similarly to the first condi-
tion, with the difference that, instead, we take |1/Im[t]| and
the saddle-point equation (10). One should also prioritize the
first ionization event after recollision, as those in subsequent
half-cycles will be suppressed by bound-state depletion.

Putting all these criteria together, we can define the dom-
inance parameter as a product of the partial dominance
parameters for the rescattered and direct electrons

D(pi, o j ) = D(1)(pi )D(2)(o j ), (38)

1The classically allowed region can be identified by nearly vanish-
ing Im[t ′]. At the boundary of this region, there is a sudden increase
in |Im[t ′]| and Re[t ′] nearly coalesce. For details see Ref. [38].
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FIG. 5. Estimates of the partial dominance parameter D(1)(pj ) (top row), the real part of the rescattering time calculated for p1⊥ = 0(middle
row) and the partial momentum distribution [Eq. (17)] calculated for the first electron as a function of the parallel momentum without prefactors
(bottom row) for three events in the center of a pulse with CEP φ1 = 65◦, for the (a)–(c) 3p → 4p, (d)–(f) 3p → 4d , (g)–(i) 3p → 4s, and
(j)–(l) 3s → 3p transitions. The values of the dominance parameter and the momentum map have been normalized with respect to the most
dominant event for each channel. The remaining pulse parameters are the same as in Fig. 4.

where the indices pi, o j refer to specific events (classified as
pairs and orbits, respectively—see Fig. 4) and

D(1)(pi ) = |Im[t̄ ′′
pi

]|−1||p(max)
1‖ − p(min)

1‖ |
D(e1 )

max

, (39)

D(2)(o j ) = |Im[to j ]
(min)|−1

D(e2 )
max

. (40)

The denominator D(en )
(max), n = 1, 2, is the maximum dom-

inance parameter for the corresponding electron, for the
channel in question, which we have used as a normaliza-
tion. In the partial dominance parameter D(1)(pi ) for the first
electron, as the orbits occur in pairs, we have considered
the average of Im[t ′′] within a pair pi of orbits at vanishing
parallel and perpendicular momenta. Vanishing perpendicular
momenta are used to obtain the largest possible classically
allowed region as nonzero values simply shift the ionization
potential [18]. For the second electron, we have taken the
minimum of the imaginary part of the tunneling time because
this will lead to the greatest probability.

We now discuss the dominance parameter for each electron
separately. Figure 5 shows the dominance parameter for the
first electron and four of the six excitation channels, together
with the real parts of the ionization times and the partial
momentum distributions for the first electron (first, second,
and third rows, respectively). The 3p → 5s and 3p → 3d
transitions have been omitted in Fig. 5 because they strongly
resemble (are almost identical to) the 3p → 4d and 3p → 4s
transitions, given their very similar energy gaps. This ren-
ders the analysis redundant unless prefactors are incorporated.

Indeed, we have verified that the partial distributions and
dominance of pairs are almost identical.

For all channels, the least dominant contribution comes
from p5 arising from the rescattering of the first electron
towards the edge of the pulse. This can be seen from the real
parts of the rescattering times, displayed in the middle row of
Fig. 5. The behavior of these times provides a good illustration
of whether there is or not a classically allowed region. If a
classically allowed region is present, Re[t ′] will surround the
momentum value for which rescattering is most probable, and
nearly coalesce at two values of p1‖ which mark the minimal
and maximal momentum for which rescattering has a classical
counterpart. If there is no classical counterpart, Re[t ′] associ-
ated with a particular pair of orbits will be practically the same
[70]. For 3s → 3p, we see a classically allowed region for p5

owing to the relatively small energy gap �E (C) [Fig. 5(b)].
For the 3p → 4d , 3p → 4s, and 3p → 4p transitions the

energy gap between the ground and excited state of the second
electron is larger, and the classically allowed region collapses.
This is reflected in the value of the dominance parameter
[Figs. 5(d), 5(g), and 5(j)], which is lower than when a classi-
cally allowed region exists. For Fig. 5(g), pair 5 has the lowest
dominance parameter. This happens because the classically
allowed region is substantial for the other pairs [see Fig. 5(h)],
which brings it down due to the normalization employed.
Still, one should note that Fig. 5(i) exhibits a faint blue peak
associated with p5, while the probability density associated
with this event is vanishingly small in Fig. 5(f). As the energy
gap between the ground and excited states in Table I increases,
the residual kinetic energy for the first electron, and, conse-
quently, the CAR will decrease. This will bring the dominance
parameter associated with pair 3 slightly up. We do not take
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pair 5 into account in the final momentum maps if the CAR
collapses.

The contributions from p3 and p4 appear to be strongly
competing for all channels studied—this is also indicated by
comparable widths of the classically allowed regions for all
channels. This can be intuitively understood by looking at
Fig. 4(a), as these are the two events closest to the peak of
the pulse. The ratio of the dominance parameter values for p3

and p4 is directly proportional to the difference in width of the
classically allowed regions for these events.

However, the partial momentum distributions M (1)(p1‖)
for the three events, displayed in the bottom row of Fig. 5,
show that, in reality, the contributions from p4 prevail in all
channels. This agrees with Fig. 4(a), which shows that the
local extremum associated with p4 leads to the largest absolute
value of the electric field E (t ) and intuitively translates into
a large ionization probability for the first electron. However,
Im[t ′′] is very similar for both p3 and p4, and this leads
to competing dominance parameters. On the other hand, the
partial distributions illustrate the collapse of the classically
allowed region for p5 accurately. This region is present in
Fig. 5(b), which leads to a small but visible peak in Fig. 5(c)
associated with p5. In Fig. 5(i) the peak is suppressed as
the CAR collapses [see Fig. 5(h)]. Furthermore, the peaks
of the distributions are roughly centered at the most probable
momenta, in agreement with Ref. [38].

The results discussed above indicate that the dominance
parameter is an oversimplification of the actual contribu-
tions. However, it provides a good indication of which events
to exclude in the final momentum distributions. When the
dominance parameter is less than 0.4, we can neglect the con-
tribution of that event. However, when the value is greater than
0.9, it is difficult to ascertain which pair is most dominant.

Next, we consider the dominance parameter for the second
electron. Estimates of this parameter are shown in Figs. 6(a)
and 6(e) for the 3s → 3p and 3p → 4d transitions, respec-
tively. In both cases, we see that o6 is the least dominant orbit,
followed by o5 then o4. Physically, this agrees with Fig. 4(a)
which shows that o6 lies towards the edge of the pulse while
o4 is at the center. It is noteworthy that the ratio between o4

and o5 values is larger than for the corresponding events for
the first electron, with values for o5 around 0.8. This implies
that these events are not competing, and we can state that
o4 has a higher tunneling probability than o5. This was not
the case for p3 and p4. Because we are taking the minimum
imaginary time t to calculate the dominance parameter, we
find that the plots look almost identical for both excitation
pathways, despite the difference in their binding energies.

Nonetheless, upon closer inspection of how 1/Im[t] nor-
malized concerning the maximum value varies with p2‖ for
each of these orbits [Fig. 6(b)], we can see that, for o4, it is
centered and almost completely symmetric about the origin
p2‖ = 0. This is expected as o4 is located near the center of
the pulse. However, for o5 and o6, the maxima deviate from
the origin, explained by the asymmetry of the pulse. More
importantly, we note that the gradient is not the same on either
side of the maxima. In the negative (positive) momentum
region, the normalized values of 1/Im[t] approach each other
for o5 and o6 (o4 and o5), with a large deviation in the positive
(negative) region. This implies that the dominance of orbits is

FIG. 6. Estimates of the dominance parameter D(2)(oj ) for the
second electron using the minimum imaginary ionization time t
(top row), the dominance parameter as a function of the parallel
momentum of the second electron (second row), the imaginary part
of the ionization time calculated for p2⊥ = 0 (third row) and the
partial momentum distribution as a function of the parallel momen-
tum without prefactors (bottom row) for three events in the center
of a pulse with CEP φ1 = 65◦, for the (a)–(d) 3p → 3p and (e)–(h)
3p → 4p transitions. The values of the dominance parameters and
the momentum map have been normalized to the most dominant
event for each channel. The remaining pulse parameters are the same
as in Fig. 4.

momentum dependent and a single value, as in Figs. 6(a) and
6(e), is not enough to capture the entire physics. Therefore the
dominance parameter must be used as an indicator of which
events to exclude from the momentum map rather than a way
to find the location of the brightest primary maxima.

The asymmetry effect is much stronger for the 3p → 4d
pathway [Fig. 6(f)] than for 3s → 3p [Fig. 6(b)], because
the second electron tunnels from a much more loosely bound
state, leading to a steeper gradient. Thus, the imaginary parts
of the tunneling times will follow each other more closely
once they move away from the origin [see Fig. 6(g) in com-
parison with Fig. 6(c)]. This broadens the dominant partial
momentum distribution M (2)(p2‖) from o4, and enhances the
remaining contributions, as expected from a narrower po-
tential barrier. Interestingly, practically identical dominance
parameters lead to different distributions. Regardless, the es-
timates arising from the dominance parameter give a clear
hierarchy of which events contribute the most.

In Fig. 7, we inspect the combined estimates for both
electrons (note that we consider degenerate energies E2g for
3s, 3p here). Figures 7(a) and 7(b) show the total dominance
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FIG. 7. Estimates of the total dominance parameter D(pj, ok ) for three events in the center of a pulse with (a) CEP φ1 = 65◦ and (b) φ1 =
155◦ for the 3p → 4p, 3p → 4d , 3p → 4s, and 3s → 3p transitions. For each pair p3, p4, and p5, only the ionization event immediately after
has been taken. The incoherent-incoherent momentum maps without prefactors have been calculated for each channel and are displayed in
panels (c)–(f) for φ1 = 65◦ and panels (g)–(j) for φ1 = 155◦. The axes are indicated with white dashed lines. The values of the dominance
parameters and the momentum map have been normalized with respect to the most dominant event for each channel. The + and - signs in
panels (a) and (b) specify the momentum regions occupied by a particular event. The remaining pulse parameters are the same as in Fig. 4.

parameter for the channels discussed previously, for CEP
φ1 = 65◦ and φ1 = 155◦, respectively. For φ1 = 65◦, accord-
ing to Fig. 7(a) the p3o4 event is prevalent, followed by p4o5

and p5o6 for all channels. This happens because, for p3o4, the
second electron is freed near a very prominent field maximum
[see red rectangle in Fig. 4(a)] bringing up the dominance
of this event significantly. For p5o6, the ionization time for
the second electron is too close to the end of the pulse for
it to be as dominant as the other two events, decreasing this
value. The dominance of this event is larger for 3s → 3p, as
the collapse of the CAR suppresses this event for the other
excitation pathways. The second electron brings down the
value for the p4o5 event for all channels too. However, there
are also differences due to the excited states’ binding energies.
The dominance of p4o5 for the 3p → 4d pathway is smaller
than that of the other channels, due to a smaller CAR for this
event.

When the CEP is increased to φ1 = 155◦ [Fig. 7(b)], the
dominance parameter indicates that, for most excitation chan-
nels, p4o5 prevails, followed by p3o4. Furthermore, the values
obtained for the least dominant event p5o6 are higher than for
φ1 = 65◦. Physically, this may be understood by inspecting
Fig. 4(b), which shows that p4o5 has moved towards the center
of the pulse, with an increase in the field amplitude for the
second electron’s ionization time (see black rectangle therein).
Although p3 has moved further to the left edge of the pulse, o4

is still towards the center, bringing up D(p3, o4). Meanwhile,
p5o6 has a larger field amplitude for both electrons’ ionization
times. For this phase, we also have a classically allowed region
for the p5o6 event for all channels except 3p → 4d (which is
the most loosely bound), explaining the increase in the relative
size of the p5o6 dominance parameter.

To assess the validity of the dominance parameter
estimates, we look at the correlated two-electron momentum
distributions without any prefactors [Figs. 7(c)–7(f) and
7(g)–7(j)]. This will give a good idea of the key variables
used to construct this parameter without introducing further

biases, leading to distributions whose shapes are roughly
described by the constraints in Fig. 1. For φ1 = 65◦, an overall
feature is that the agreement is better for more deeply bound
excited states. Concretely, the distribution for the 3s → 3p
pathway, shown in Fig. 7(c), agrees with the prediction of
the dominance parameter. The distribution is brightest in the
lower-left quadrant, associated with contributions from p3o4

and p5o6. The strong tail in the positive momentum region
comes from the p4o5 event. Similarly, the 3p → 4s transition
populates both negative and positive momentum regions [see
the probability density displayed in Fig. 7(e)]. Since the CAR
collapses for this region, the loss of relevance of p5 and o5 be-
coming more prominent leads to distributions almost equally
occupying the four quadrants of p1‖, p2‖ plane, although they
are still slightly brighter in the lower left quadrant.

For the 3p → 4p transition [Fig. 7(f)], we see a similar
distribution. However, now the brightest intensity has shifted
to the positive momentum region despite p3o4 predicted to
be the most dominant. This shift is even more pronounced
for 3p → 3d distribution, depicted in Fig. 7(d), for which
the intensity is more strongly located in the top right quad-
rant, despite the strong tail in the negative momentum region.
These shifts can be accounted for by the gradient arising from
the o5 event not being taken into account by the dominance
parameter. As discussed previously this effect is most strongly
observed for smaller binding energies. Further evidence of a
strongly asymmetric gradient is the fact that the maxima of
the distributions move further and further away from the axes
pn‖ = 0 as the binding energy decreases. From these distribu-
tions, a main limitation of the dominance parameter becomes
evident: a single value is not sufficient to explain the domi-
nance of events in a few-cycle pulse, given that the variables
used to construct it are strongly dependent on the momentum
region. For instance, the dominance parameter D(2)(on) for the
second electron considers only the minimum Im[t], which, for
the SFA, is around p2‖ = 0, but this quantity varies drastically
away from this value. Furthermore, the threshold for when
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FIG. 8. The imaginary part of the ionization prefactor Vp2e for the second electron, as a function of the momentum components p2‖, p2⊥
(upper panels), and corresponding mapping into the p1‖, p2‖ plane. From left to right, the panels refer to (a), (g) channel 1, (b), (h) channel 2,
(c), (i) channel 3, (d), (j) channel 4, (e), (k) channel 5, and (f), (l) channel 6. The white circle shows the direct ATI cutoff.

orbits become “competing” or large enough to contribute is
fairly arbitrary for the combined dominance parameter. When
the value is less than 0.2 we can safely omit the pair from
the distribution. If the value is greater than 0.6 the events
are competing but due to how sensitive the parameter is with
respect to the estimates of the width of the CAR, the parameter
is prone to over- or underestimation.

For φ1 = 155◦ [bottom panels in Fig. 7], the top-right
quadrant of the momentum plane is occupied for all channels
arising from the dominance of the p4o5 event. In all cases, we
see a tail in the negative momentum region arising from the
p3o4 event. As the binding energy increases, this tail becomes
longer and more localized along the axes, so that the entire
distribution becomes more cross shaped. However, because,
for a few-cycle pulse, the gradient of Im[t] is not symmetric
around its minima, as it would be for a monochromatic field,
there will never be a perfect symmetry around the axes. With
decreasing binding energy, the gradients of Im[t] as functions
of p2‖ become steeper and we see the maxima of the distribu-
tion deviate away from the axes. It should be noted, however,
that the parameter does not consider, at least explicitly, the
brightness of the distributions.

B. Prefactor effects and mapping

The shape of the momentum distributions in Fig. 7(c)–7(j)
is altered by the ionization (Vp2e) and excitation (Vp1e,kg) pref-
actors, whose expressions are given in the Appendix. For full
derivations see Refs. [5,18]. The prefactors introduce addi-
tional momentum biases which will modify the length, width,
and maxima of the correlated distributions. They also bring
additional phase shifts to those discussed in Sec. III.

The six channels investigated in this study (Table I) involve
the excitation of the second electron to states of very different
spatial geometry. This geometry is reflected in the prefactor
shapes via the radial and angular nodes. However, these nodes
do not directly map onto the two-electron momentum distri-
butions. In this section we perform a more detailed analysis on
the mapping of the Vp2e and Vp1e,kg prefactors into the p1‖ p2‖
plane to understand how the maxima and nodes translate to
the momentum distributions explicitly.

First, we consider the ionization prefactor Vp2e, displayed
in Figs. 8(a)–8(f) for the six channels. This prefactor is the
most important in determining the shapes of the electron
momentum distributions, and has specific nodes. There are le
angular nodes associated with the spherical harmonics in the
wave function ψneleme (r2) = Rnele (r2)Y me

le
(θ2, φ2) of the second

electron, where the subscripts e indicate that it belongs to
an excited state. The figure shows that, for s excited states
[Figs. 8(d) and 8(f)], there are no angular nodes for the pref-
actor, as expected. For p states [Figs. 8(a) and 8(e)], there is
a single angular node and a strong suppression along the p2⊥
axis, which leads to a phase shift with regard to p2‖ → −p2‖.
Finally, for d states [Figs. 8(b) and 8(c)], there are two nodes
that cross each other at the origin approximately at angles
±55◦. Clear positive and negative regions can be seen from
the imaginary part of the prefactor, corresponding to phase
shifts of π .

Further to angular nodes, there is an ne − le − 1 number
of radial nodes which manifest as circles in the p2‖ p2⊥ plane
and a phase jump of π if a radial node is crossed. The relevant
radial nodes for our problem must be located at energies lower
than that of the direct ATI cutoff, indicated by the white circle
at p2

2‖ + p2
2⊥ = 4Up. Changes in the shapes of the momentum

distributions will be caused by nodes within the direct ATI
cutoff. The greater the number of nodes, the more phase shifts
are present.

The mapping to the p1‖ p2‖ plane is performed by in-
tegrating |Vp2e |2 over the plane spanned by the momenta
perpendicular to the laser-field polarization. We account for
particle exchange leading to fourfold symmetry in the plots.
Explicitly, we consider

|Vp2‖e |2 =
∫∫

d p1⊥d p2⊥|p1⊥||p2⊥|(|Vp2e (p1)|2+|Vp2e (p2)|2).

(41)

A similar mapping can be done for the excitation prefactor,
resulting in |Vp1‖e,kg|2 with the difference that the integrand in
(41) is replaced by Vp1e,kg(p1) and its symmetrized version
taking p1 ↔ p2.
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FIG. 9. Absolute values of the excitation contribution (Vec) accounting for the excitation prefactors Vp1ekg for the first electron [panels
(a)–(c)] and its corresponding mapping into the p1‖ p2‖ plane [panels (d)–(h)] for three different pairs p3, p4, p5, respectively using the pulse
parameters in Fig. 4 and CEP φ1 = 65◦. The ionization and rescattering times associated with the short orbit were used to compute these
plots. Panels (a)–(f) are associated with channel 3, while panels (g) and (h) show mappings for channels 4 and 5 with p4 because this is most
dominant for φ1 = 65◦. The mapping axes have been transposed relative to the other figures to make a clearer connection with the location of
the events in the pulse (upper or lower half). The orbital angular momenta L indicated in panels (e), (g), and (h) are obtained from the sums
over lg and le given in Eq. (A1) in the first Appendix.

The outcomes of these integrals are displayed in the bottom
row of Fig. 8. From the mappings of Figs. 8(g)–8(i), we
see that, in agreement with Ref. [5], s states lead to cross-
shaped distributions in momentum space, with maxima at
the origin and along the axes [Figs. 8(j) and 8(l)]. However,
their widths will depend on the number and energy positions
of the radial nodes. Figures 8(g) and 8(k) show that, for
p states, the strong suppression along p2‖ = 0 survives the
transverse momentum integration. For these states there are
pronounced maxima along all diagonals p1‖ = ±p2‖, between
±2

√
Up and 4

√
Up. In the region of interest (i.e., within the

ATI cutoff), there are maxima at around
√

Up and
√

Up/2
for these states, respectively. For d states, the x-shaped nodes
intersecting at the origin are mapped to maxima along the axes
with the brightest point at the origin similar to the s states.
However, unlike the s states, there are additional secondary
maxima parallel to the axes as well. For every orbital angular
momentum, any additional radial node within the ATI cut-
off leads to narrower distributions. This effect is particularly
prominent for highly excited states with small binding ener-
gies. For example, Fig. 8(l) corresponding to a 5s transition,
shows a narrower cross compared with Fig. 8(j) with a 4s
transition.

Next, we consider the excitation prefactor. From the ex-
plicit expression of Vp1ekg given in the Appendix, we can
see that the shape of this prefactor is not trivial given that
q = p1 − k where k has an implicit dependence on the times
t ′ and t ′′ [see Eq. (8)]. This makes this prefactor orbit depen-
dent, giving very different shapes for the long and short orbits.

These pairs of orbits are incorporated collectively in a uniform
saddle-point approximation because they nearly coalesce at
the boundaries of the classically allowed region [67]. The
nodes of this prefactor are mostly washed out, even before
integration over transverse momentum is performed [5,18].
However, Vp1ekg moves the centers of the electron momentum
distributions and care must be taken if the driving field is a
pulse. The contribution of this prefactor to the overall mo-
mentum distribution can be better understood by looking at
how it changes the transition amplitude, when incorporated in
the uniform approximation. This contribution [referred to as
“excitation contribution” (Vec) henceforth] is obtained by sub-
tracting the amplitude calculated using the coefficient with the
prefactor from the amplitude calculated using the coefficient
without the prefactor. The mapping is done as in Eq. (41).

In Vce, any radial or angular nodes from the excitation
prefactor are washed out with insignificant differences be-
tween different excitation pathways. Instead, the prefactor
serves to cause a slight shift of the transition amplitude up
or down, depending on the location of the event in the pulse.
Figures 9(a)–9(c) show Vec for three different pairs, for the
3p → 4d pathway. The locations of these rings are pulse de-
pendent, with p3 and p5 located in the region with negative p2‖
and p4 in the positive p2‖ region. This is implied by Fig. 4(a)
for this phase. The size of the rings is also dependent on the
width of the CAR for each pair and agrees with Fig. 5(e). The
mappings for each pair in Figs. 9(d)–9(f) are therefore also
pulse dependent, with sizes proportional to the width of the
CAR. This can be explicitly seen in Figs. 9(g) and 9(h), which
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FIG. 10. Correlated two-electron momentum distributions as functions of the momentum components p1‖, p2‖ parallel to the driving-field
polarization, calculated for a single excitation channel using a sin2 pulse of 4.3 cycles, intensity I = 1.5 × 1014 W/cm2, angular frequency
ω = 0.057 a.u. and CEP φ1 = 65◦. The first and second rows correspond to fully incoherent and coherent sums of amplitudes as given in
Eqs. (14) and (13), respectively. The third row shows the difference between the maps in the first two rows, showing the interference arising
from summing events and particle exchange terms coherently. All six RESI channels described in Table I are shown from panels (a)–(f), (g)–(l),
and (m)–(r). The signal in each panel has been normalized with regard to its maximum. The diagonals p1‖ = p2‖ and the p1‖ axes are indicated
with red dashed lines in each panel of the upper and middle rows.

show the mapping of the excitation contribution with p4, the
most dominant pair, for two more excitation channels, whose
energy gaps are smaller than that considered in Fig. 9(e). The
shapes are almost identical, but occupy broader regions in mo-
mentum space. This indicates the excitation prefactor has little
impact on the shapes of the final momentum distributions,
other than through narrowing them—the amount it narrows
is proportional to the binding energy.

V. PHOTOELECTRON MOMENTUM DISTRIBUTIONS

In this section, we focus on the correlated electron mo-
mentum distributions for each of the channels in Table I and
the few-cycle pulse given by Eq. (37), bringing together the
dominant events, the different types of intrachannel interfer-
ence and the phase shifts and momentum biases associated
with prefactors. We start by discussing the main features
(Sec. V A), and then delve deeper into quantum interfer-
ence (Secs. V B, V C, and V D). Guided by the results from
Sec. IV A, we take the three most dominant (combined) events
for both CEP 65◦ and CEP 155◦. Although the event p5o6 does
not have a CAR for most channels computed with CEP 65◦,
it has been included in this investigation for completeness and
contributes very little to the total momentum distribution.

A. Prefactors, dominance, and quantum interference

Figures 10 and 11 exhibit the fully incoherent [Eq. (14)]
and coherent [Eq. (13)] single-channel sums for CEPs 65◦

and 155◦, respectively. The incoherent sums, plotted in
Figs. 10(a)–10(f) and 11(a)–11(f), exhibit the symmetry about
the diagonal p1‖ = p2‖, although the fourfold symmetry as-
sociated with monochromatic fields is absent. Furthermore,
they display the expected shapes, depending on the second
electron’s excited states. Distributions computed for s excited
states are localized at the axes pn‖ = 0 [see Figs. 10 and 11,
panels (d) and (f)], distributions involving p excited states
exhibit a strong suppression at the axes and maxima around
the diagonals p1‖ = ±p2‖ [see Figs. 10 and 11, panels (a) and
(e)], and distributions for which the second electron leaves
from a d state, shown in Figs. 10 and 11, panels (b) and (c),
exhibit maxima around the axes and the diagonals.

Moreover, the distributions including the excitation and
ionization prefactors are much narrower than those in
Sec. IV A, where only the momentum space constraints were
taken. This is due to the ne − le − 1 radial nodes and le angular
nodes in Vp2,e, which will be mapped to vertical or horizontal
nodes in |Vp2‖,e|2 (see Fig. 8). Many nodes in the momen-
tum regions of interest will split the momentum distributions,
or translate into narrower electron momentum distributions.
For instance, according to Fig. 8, narrow distributions are
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FIG. 11. Correlated two-electron momentum distributions as functions of the momentum components p1‖, p2‖ parallel to the driving-field
polarization, calculated for a single excitation channel for the same pulse parameters employed in Fig. 10 and φ1 = 155◦. The first and second
rows correspond to fully incoherent and coherent sums of amplitudes as given in Eqs. (14) and (13), respectively. The third row shows the
difference between the first two rows, showing the interference arising from summing events and particle exchange terms coherently. All six
RESI channels described in Table I are shown from panels (a)–(f) and (g)–(l). The signal in each panel has been normalized with regard to its
maximum. The diagonals p1‖ = p2‖ and the p1‖ axes are indicated with red dashed lines in each panel of the upper and middle rows.

expected for channels 3, 4, 5, and 6. This is very visible in
Figs. 10(c) and 10(e), for which the distributions split into
several maxima, and in Figs. 10(d) and 10(f), for which the
distributions are very narrow. Due to a higher number of
nodes, the distribution in Fig. 10(f) has more substructure and
is narrower than that in Fig. 10(d).

The dominance of specific events within a pulse potentially
dictates the length of the distributions, which is associated
with the CAR, and the brightest peaks. For example, for the
3s → 3p transition and CEP 65◦ [Fig. 10(a)], the combination
of a classically allowed region for p5 [Fig. 5(b)] and a high
ionization probability for the o4 event of the second electron
[Fig. 6(d)] causes the primary maxima of the correlated two-
electron distribution to be stronger in negative momentum
regions. In contrast, the distribution resulting from the 3p →
4p transition [Fig. 10(e)] shows much stronger maxima in the
top right quadrant (the positive momentum region) because
the CAR for the pair p5 has collapsed and the p4o5 event
dominates. The p3o4 transition, by itself, is not strong enough
to cause the spread of the maxima in the lower half quadrant,
as understood by the PMD in Fig. 5(l) and 7(f). Competing
events, together with the prefactor, may give the impression
that a specific distribution is fourfold symmetric. This is the
case, for instance, in Fig. 10(d), for the 3p → 4s transition.

Varying the CEP changes the spread of the signal quite
drastically for all channels, and can change the quadrant in
which the maxima is localized. This is directly linked to the
change in dominance of events, as discussed previously. The

overall locations of the maxima and nodes in the distributions
remain the same as with φ1 = 65◦. However, the shapes for
almost all the distributions in Fig. 11, most notably panels (d)
and (f) (the s states) become much shorter; we no longer see
the long extended distributions along the axes. Instead, they
are concentrated mostly at the origin with some secondary
maxima along the positive axes. Similarly, in Figs. 11(c)
and 11(e), we have less of a tail in the lower-left quadrant,
and the majority of the distribution, although narrower, is in
the positive momentum region. This is reflective of the p4o5

event being much stronger for this phase, compared with their
φ1 = 65◦ counterparts where the p3o4 and p4o5 events are
competing.

Figures 10(g)–10(l) and 11(g)–11(l) show coherent sums
over symmetrization and events for φ1 = 65◦, 155◦, given
by Eq. (13). This means that, for the dominant events of
the pulse considered here, the interference types outlined in
Fig. 3 and the phase types specified in Sec. III are present.
Throughout, one can see superimposed interference fringes
near the diagonals and the origin. To visualize the fringes
more clearly, the difference between the fully coherent and
fully incoherent sums is plotted in the third row of these
figures.

Overall, there exists an intricate tapestry of patterns, which,
however, share some common features. In all panels, we
can see a bright fringe along the diagonal, surrounded by
hyperbolas, and are reflection-symmetric about the diagonal
p1‖ = p2‖. These features are particularly clear in the third
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TABLE II. All the 15 phase differences present for the few-cycle pulse, associated with just exchange (row 1), temporal shifts (row
2) and a combination of both exchange and shifts (row 3). From left to right, the first column provides the phases for the interfering
processes involving the three most relevant events in the pulse given by Eq. (37) (see also Fig. 4), p3o4, p4o5, and p5o6. The second
column shows a schematic representation of these phases. The colors used in the diagrams and the labeling of the events are the
same as in the section discussing the dominant orbits, i.e., p3o4 is represented in red, p4o5 in black and p5o6 in blue. When more
than one event is interfering, the two events are placed between the corresponding diagrams. The third column indicates the type of
interference i.e., whether it transpires due to particle exchange, temporal shifts of either π/ω or 2π/ω or a combination of both. The
specific shifts, τμ of t , t ′, t ′′ for each phase μ are stated—the shifts associated with p3o4 (τl , τd ) are taken to be zero. The final column
indicates when the corresponding type of interference can be observed i.e., with a fully coherent sum of symmetrization or events, or
combination of incoherent and coherent symmetrization and events. In the fourth column, the first and second indices are associated
with the symmetrization and event, respectively.

Phases Type S-ESchematic Representation

1. αl,d

2. αr,u

3. αlT,dT

Intracycle Exchange

No temporal shift Δτ = 0

1. τl = 0, τd = 0

2. τr = π/ω, τu = π/ω

3. τlT = 2π/ω, τdT = 2π/ω

ci, cc

4. αl,r

5. αd,u

6. αlT,r

7. αdT,u

8. αlT,l

9. αdT,d

No Exchange

a) Intracycle shift Δτ = π/ω

4. τl = 0, τr = π/ω

5. τd = 0, τu = π/ω

6. τlT = 2π/ω, τr = π/ω

7. τdT = 2π/ω, τu = π/ω

b) Intercycle shift Δτ = 2π/ω

8. τlT = 2π/ω, τl = 0

9. τdT = 2π/ω, τd = 0

ic, cc

10. αl,u

11. αr,d

12. αlT,u

13. αdT,r

14. αlT,d

15. αdT,l

a) Intracycle shift Δτ = π/ω

10. τl = 0, τu = π/ω

11. τd = 0, τr = π/ω

12. τlT = 2π/ω, τu = π/ω

13. τdT = 2π/ω, τr = π/ω

b) Intercycle shift Δτ = 2π/ω

14. τlT = 2π/ω, τd = 0

15. τdT = 2π/ω, τl = 0

cc

quadrant of Figs. 10(m), 10(n), and the first quadrants of
Figs. 11(m), 11(n), 11(o), and 11(q). Furthermore, because
the half-cycle symmetry is broken, these features are not
symmetric about (p1‖, p2‖) → (−p1‖,−p2‖) and there is no
bright interference fringe along the antidiagonal p1‖ = −p2‖.
These are key differences from the single-channel interference
observed for monochromatic fields [5,6]. Other features are
phase shifts associated with the prefactor, which can be seen
very clearly for excitations to p states [see panels (m) and (q)
of Figs. 10 and 11], and convoluted patterns in the second and
fourth quadrant.

Next, we have a closer look at the different types of inter-
ference present in Figs. 10 and 11. According to Sec. IV A,
there are at most three relevant events within the pulse, p3o4,
p4o5, and p5o6, each of which is roughly shifted by half a
cycle from the previous one. Pairwise, they may interfere in
fifteen main ways, which are listed in Table II. This table
can be used as a road map to understand the subsequent
discussions. The left column of Table II gives the phase dif-
ferences discussed in Sec. III. The second column illustrates
schematically how these phases can be applied to the specific
pulse studied in this work, following the convention used in
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Fig. 3. The colors and labeling of events are as in Sec. IV A.
The third column details the specific sources of pairwise
interference, including electron exchange, and the temporal
shift �τ , which quantifies the relative (approximate) position
of interfering events in a pulse. Another analytical device
employed to temporally order the events within the pulse is
the temporal locations τμ. They are not directly employed in
the numerical computations, but serve as a measure of where
the times t , t ′, t ′′ are located for a specific event. For instance,
for p3o4 we take τμ where μ = l, d to be zero given that this
is the first dominant event in the pulse to be considered. The
later event p4o5 is separated by half a cycle from p3o4, so
that one can approximately state that the relevant times are
t + π/ω, t ′ + π/ω, t ′′ + π/ω, where τμ = π/ω and μ = r, u.
Similarly for p5o6, τμ = 2π/ω where μ = lT, dT .

There exist three main types of interference. Phase differ-
ences numbered from 1 to 3 are associated with individual
events within the pulse, but for which the electron momenta
have been exchanged. Because we are only considering one
event, the temporal shift �τ = 0. Next, there are phase differ-
ences associated solely with temporal shifts, numbered 4 to
9. For pairs of events that are separated by half a cycle (i.e.,
p3o4 + p4o5 and p4o5 + p5o6), the relative temporal shift as-
sociated is, therefore, �τ = π/ω. For the intercycle events,
the relative temporal shift is �τ = 2π/ω. Finally, the last
five phase differences (10 to 15) account for a combination
of electron exchange and temporal shifts.

B. Exchange interference

Figure 12 shows similar coherent sums and difference
plots as in Figs. 10 and 11, but summing only the exchange
processes coherently. This isolates the interference effects
arising from the α(exch)

p1,p2
and αp1,p2 (t, t ′) phase differences in

Eqs. (19) and (20). In all plots, we observe superimposed
hyperbolas and a bright fringe along the diagonal. Upon in-
spection of Eq. (19), field-independent hyperbolae arise when
α(exch)

p1,p2
= 2nπ while the bright fringe (the “spine”), which

increases in width along the diagonal can be attributed to the
field-dependent αp1,p2 (t, t ′) phase. As expected for a pulse
with no half cycle symmetry, the structures are asymmetric
with regard to (p1‖, p2‖) ↔ (−p1‖,−p2‖) and there is no
bright fringe along the antidiagonal. Interestingly, the asymp-
totes and focal points of the hyperbolae do not lie at the
diagonals, but at the axes. This feature was also present for
monochromatic driving fields [5], and it is likely caused by
the transverse momentum integration. It is also noteworthy
that many of the intricate patterns in the second and fourth
quadrants of the p1‖ p2‖ plane are absent, which is evidence
that they stem from other types of quantum interference. We
note that for CEP 65◦ [Figs. 12(e)–12(h)] the fringes are well
distributed in the four quadrants and the patterns are more
intricate suggesting competing events within the pulse, while
the distributions and the interference structures for CEP 155◦
[Figs. 12(i)–12(l)] are primarily located in the first quadrant
of the parallel momentum plane, and their cleanness suggests
a dominant event.

To understand the effects in Figs. 12(e)–12(l) in greater
detail, the interferences associated with αl,d , αr,u, and αlT,dT

are separated. Therein, we choose the 3s → 3p channel as

FIG. 12. Correlated two-electron momentum distributions as
functions of the momentum components p1‖, p2‖ parallel to the
driving-field polarization, calculated for a single excitation channel
for the same pulse parameters employed in Fig. 10. The first row
corresponds to amplitudes where events are summed incoherently,
and symmetrization is done coherently as given in Eq. (15), calcu-
lated for φ1 = 65◦, and illustrates that the interference fringes are
different from those in Fig. 10. The second and third rows shows
the difference between the first row and its counterpart for CEP 155◦

and the corresponding fully incoherent sums [see panels (a), (c), (e)
and (f) in Figs. 10 and 11], with CEP 65◦ and 155◦. These rows
show the interference arising from summing particle exchange terms
coherently and events incoherently. The difference between the fully
coherent and incoherent distributions for the channels considered
here is shown in panels (m), (o), (q) and (r) of Figs. 10 and 11 for
CEPs 65◦ and 155◦, respectively. The signal in each panel has been
normalized with regard to its maximum.

Fig. 12(e) shows obvious hyperbolic structures and central
nodes at the axes, and the 3p → 4p excitation channel for
which there are also visible hyperbolas and extra nodes
stemming from the higher principal quantum number ne = 4
[Fig. 12(g)]. Figures 13(a)–13(c) and 13(d)–13(f) show αl,d ,
αr,u and αlT,dT for the two chosen excitation pathways incor-
porating both the Vp1,ekg and Vp2,e prefactors. Both prefactors
have been omitted in Figs. 13(g)–13(i) for the excitation
channel 3p → 4p to highlight the phase jumps and nodes
associated with the ionization prefactor, arising from locations
of the radial nodes and the mapping of the angular nodes of
Vp2,e [Fig. 8(g) and 8(k)], respectively. These are indicated by
the red dotted lines in Figs. 13(a), 13(b), 13(d), and 13(e). The
effects of the prefactor are present and the same for all three
interference types discussed in this work.

For 3s → 3p, one can see that the fringes stemming from
the p3o4 event are the brightest and occupy the largest mo-
mentum region, located primarily in the third quadrant of the
p1‖ p2‖ plane but also spilling in the other quadrants (see the
left column in Fig. 13). This is consistent with the findings in
Fig. 7, which indicate that this event is dominant. Figs. 13(b)
and 13(c) shed light on the other events. The fringes arising
from the second dominant event, i.e., p4o5 lead to well-defined
hyperbolas in the first quadrant of the parallel momentum
plane. These occupy a slightly smaller momentum region but
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FIG. 13. Interference patterns associated with the purely ex-
change phase differences for the three most dominant events within
a pulse for the 3s → 3p transition incorporating both the excitation
and ionization prefactors (top row) and the 3p → 4p transition, with
both prefactors (middle row) and with neither prefactor (bottom row).
The same pulse parameters are employed as in Fig. 10, and the
carrier-envelope phase is φ1 = 65◦. The signal in each panel has been
normalized with regard to its maximum. The diagonals p1‖ = p2‖ are
indicated with black dashed lines in the bottom row. The locations of
the nodes and phase shifts arising from the prefactors are marked by
red dotted lines in panels (a), (b), (d), (e). The box in panel (f) shows
the location of finely spaced hyperbole.

are also quite bright, in agreement with the findings that both
events are comparable. Lastly, p5o6 is much less dominant
than the other two events, which is reflected in the much
smaller momentum region in which the fringes caused by
αlT,dT are significant. For the excitation pathway 3p → 4p
[Figs. 13(d)–13(f)], the RESI distributions are more symmet-
ric. This is due to the events p3o4 and p4o5 competing and
the collapse of the CAR for p5o6 due to a higher energy gap
between the ground and excited states [see Figs. 7(a) and
7(f)], together with the influence of the prefactors, which have
additional radial nodes.

We retain the diagonal symmetry of the interference pat-
terns for all three phases, indicated by the black dashed lines
in Figs. 13(g)–13(i). Additionally, within the direct ATI cutoff,
the hyperbolae associated with α(exch)

p1,p2
can only be seen for

n = 0—these are most clear in quadrants opposite to where
the events are dominant—an example is indicated by the box
in Fig. 13(f). This is because αp1,p2 (t, t ′) plays the smallest
role in these regions, and thus the bright spine no longer masks
or skews the hyperbolae caused by α(exch)

p1,p2
.

Further information about the hyperbolae can be gleaned
from the interference patterns at larger momentum values. In
Fig. 14, we see additional hyperbolae with shifted centers,
presumably arising from greater values of n indicated by the
purple boxes in panel (b). These hyperbolae have asymptotes
at or parallel to the diagonal and antidiagonal [see Fig. 14(d)]
with decreasing fringe spacing. At the locations where two
hyperbolae meet, we see a convex shape [see arrows in
Fig. 14(b)]. The narrowest fringe spacings form a rough cross

FIG. 14. Interference patterns associated with the purely ex-
change phase differences for the three most dominant events within
a pulse for the 3s → 3p transition (top row) and the 3p → 4p tran-
sition (bottom row) for a larger momentum region than in Fig. 16.
The same pulse parameters are employed as in Fig. 10, and the
carrier-envelope phase is φ1 = 65◦. The signal in each panel has been
normalized with regard to its maximum. The locations of phase shifts
arising from the prefactors are marked by red dotted lines in panel
(a). Purple dashed boxes in panel (b) show the different hyperbole
arising from α(exch)

p1,p2
= 2nπ with n > 0. The arrows indicate where

these hyperbolae meet leading to convex shapes in the interference
pattern. The asymptotes of one such hyperbola are marked in panel
(d) with purple dashed lines along the diagonal and parallel to the an-
tidiagonal. Panel (e) marks a cross shape with purple lines, between
which we see the finest fringes.

[marked in Fig. 14(e)], the shape of which is not unlike the
mapping of the excitation prefactor in Fig. 9 with the center
of the cross located in the momentum quadrant where the
associated event is dominant. We also note that at locations
of phase shifts, the fringes become slightly jagged [see red
dotted line in Fig. 14(a)].

Finally, this analysis reveals several additional key obser-
vations regarding the combination of the three events (and
thus the three exchange phases) shown in Figs. 12(e)–12(l).

First, faint hyperbolae observed in the second and fourth
quadrants result from the incoherent combination of events
and are associated with α(exch)

p1,p2
. These shapes are therefore not

actually interference effects but a consequence of combining
the interference effects from αl,d , αr,u and αlT,dT incoherently,
since their fringe direction in the second and fourth quadrants
varies depending on the events’ locations in the pulse. The
spine, along with alternating intense positive and negative
fringes in the diagonal [both of which arise from αp1,p2 (t, t ′)]
contribute to the first and third quadrants, with the most dom-
inant events leading to the brightest and biggest contributions.

Second, in the quadrants where both α(exch)
p1,p2

and αp1,p2 (t, t ′)
are present, the effect of αp1,p2 (t, t ′) tends to be stronger caus-
ing the bright fringes to obfuscate the hyperbolae. However,
α(exch)

p1,p2
appears to bend these parallel fringes creating large

bright hyperbole-like structures on either side of the spine.
Where αp1,p2 (t, t ′) is less strong (i.e., in the second and fourth
quadrants) there are more clearly observable hyperbolae.
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FIG. 15. Correlated two-electron momentum distributions as
functions of the momentum components p1‖, p2‖ parallel to the
driving-field polarization, calculated for a single excitation channel
for the same pulse parameters employed in Fig. 10. The first row
corresponds to amplitudes where events are summed coherently and
symmetrization is performed incoherently, as given in Eq. (16), and
was calculated for φ1 = 65◦. The second and third rows show the
difference between the first row and its counterpart for CEP 155◦ and
the corresponding fully incoherent sums [see panels panels (a), (c),
(e) and (f) in Figs. 10 and 11], with CEP 65◦ and 155◦. These rows
show the interference arising from summing particle-exchange terms
incoherently and events coherently. The difference between the fully
coherent and incoherent distributions for the channels considered
here is shown in panels (m), (o), (q) and (r) of Figs. 10 and 11 for
CEPs 65◦ and 155◦, respectively. The signal in each panel has been
normalized with regard to its maximum.

C. Event interference

Next, we isolate the effects of the phase differences as-
sociated with the temporal shifts: αl,r , αlT,r , αlT,l and their
identical but transposed (symmetrized) counterparts: αd,u,
αdT,u, αdT,d . Figure 15 shows the momentum distribution
with incoherent symmetrization and coherent events, as well
as the differences between these distributions and the fully
incoherent sum for both CEPs. This enables us to investigate
interference effects emerging from four different phase dif-
ferences: α

(ene)
�τ , α

(A2 )
�τ (t ′, t ′′), α

(pond)
�τ (t, t ′′), and α

(p1,p2 )
�τ (t, t ′).

Figs. 15(e)–15(l) show distributions with alternating positive
and negative fringes, which are brightest in the region(s)
associated with the dominant event(s) for each excitation path-
way, for both CEPs. There appears to be a darker “box” in
the center of the distributions—most prominent for channels
with a higher number of angular nodes. All other prefactor
effects, such as nodes and relative distribution size, remain.
A faint circular substructure is also somewhat visible, partic-
ularly in Fig. 15(k). This is associated with α

(ene)
�τ [Eq. (26)]

which gives rise to circular fringes with a target-dependent
radius. This is expected because Eq. (26) is that of a hyper-
sphere. The radius of the largest circular fringe is obtained at
vanishing perpendicular momenta. These distributions occupy
similar momentum regions to the fully coherent distributions
in Figs. 10(m)–10(r) and Figs. 11(m)–11(r).

FIG. 16. Interference patterns associated with the temporal-shift
phase differences utilizing interfering pairs of the three most dom-
inant events within a pulse for the 3s → 3p transition (top, middle
rows) and the 3p → 4p transition (bottom row). The top row shows
the unsymmetrized distributions, while the middle and bottom rows
account for the transposed counterpart of the phase differences. The
same pulse parameters are employed as in Fig. 10, using a CEP
of 65◦ for the 3s → 3p transition (top and middle row) and a CEP
of 155◦ for the 3p → 4p transition (bottom row). The signal in
each panel has been normalized with regard to its maximum. The
gradients of the fringes are marked in panels (b) and (e) with solid
black lines. The red dotted box in panel (b) indicates the location
of fine fringes coming from α

(p1,p2 )
�τ (t, t ′), which are obfuscated by

the larger “wings” in the symmetrized distributions in panels (e) and
(h). The solid blue boxes in panel (d) indicate the noninterference

checkerboard patterns coming from α
(A2 )
�τ (t ′, t ′′). Purple dashed cir-

cles in panel (f) indicate the largest circular fringes resulting from
α

(ene)
�τ = 2πn where n = 3, 4. The symmetry along the diagonal of

the symmetrized distributions can also be seen by the dash-dotted
lines in panel (g)–(i).

As with the exchange-only case, we now isolate the effects
of αl,r , αlT,r , αlT,l for the 3s → 3p transition with CEP 65◦
[Fig. 15(e)]. However, this time 3p → 4p is taken with CEP
155◦ [Fig. 15(k)]. Figures 16(a)–16(c) show the separated
phases αu,d , αdT,u, αdT,d with the 3s → 3p transition. The
gradient of some of the fringes is indicated by the lines
in Fig. 16(b). As expected for up-down interference, the
majority of the lines in Figs. 16(a) and 16(b) are roughly
located in the up-down direction. In quadrants two and four
(depending on the events in question), we see thinner fringes,
coming from different directions and combining [Fig. 16(b)].
For their identical but transposed phases, we would expect
these distributions to also be transposed. An incoherent
sum of the temporal-shift phases with their transposed
counterparts, αu,d + αl,r , αdT,u + αlT,r , αdT,d + αlT,l is
provided in the second row for 3s → 3p, and in the third row
for 3p → 4p. In the first quadrants of Figs. 16(e) and 16(h),
we see widening v-shaped fringes which overlap to form
complex fine crisscrossed patterns. These are actually not
due to interference, but arise as a consequence of incoherent
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FIG. 17. Interference patterns associated with a pure temporal-

shift phase difference α
(A2 )
�τ computed for pairwise combinations of

the most dominant events that separated by half a cycle for the 3s →
3p transition and CEP 65◦. All other pulse parameters employed are
the same as in Fig. 10.

symmetrization—in Fig. 16(e), the gradients of the fringes
associated with αdT,u and αlT,r individually are indicated with
lines. The fine fringes in the red box in Fig. 16(b) are almost
completely obfuscated by the thicker fringes in that quadrant
coming from the symmetrized phase difference, forming a
“wing” shape along the antidiagonal in Figs. 16(d), 16(e),
16(g), and 16(h). These patterns occur mostly for intracycle
shifts as in the first two columns of this figure.

With intercycle shifts, i.e., αdT,d and αlT,l , almost circular
fringes are observed arising from α

(ene)
�τ , the largest radius of

which is positive only for n > 2 for the target in question.
The largest fringes are plotted with n = 3, 4 in Fig. 16(f) and
appear to be a fairly good match. The other rings may arise
from varying values of transverse momenta. We note that the
fringes are not centered at the exact origin, since the temporal
shift of 2π/ω from p3o4 to p5o6 is an approximation for the
few-cycle pulse.

We note that α
(A2 )
�τ (t ′, t ′′) depends only on the ionization

and rescattering times of the first electron. Therefore, we can
detangle the interference stemming from α

(A2 )
�τ (t ′, t ′′) by cal-

culating αl,r (+αu,d ) and αlT,r (+αdT,u) for the first and second
electron separately. The distribution with the first electron
only contains effects from all four phase differences asso-
ciated with temporal shifts including α

(A2 )
�τ (t ′, t ′′) while the

distribution from the second electron excludes the α
(A2 )
�τ (t ′, t ′′)

contribution. For more details, see Fig. 24 in Appendix B.
The one-electron unsymmetrized distributions (i.e., associ-

ated with interference along either the p1‖ or p2‖ axes) consist
of straight fringes parallel to the associated axis, varying in
intensity. When incoherently symmetrized, these fringes form
a cross shape. At the point where the fringes intersect, we see a
checkerboard-type pattern. When α

(A2 )
�τ (t ′, t ′′) is isolated, as in

Fig. 17, this pattern becomes even more detailed and complex
due to the subtraction of the two individual electrons’ fringes.
We can therefore deduce that this checkerboard, indicated by
the blue boxes in Fig. 16(d), for instance, is not actually an in-
terference effect but a symptom of incoherent symmetrization.

The wings of the distribution are likely to be brought about
by α

(p1,p2 )
�τ (t, t ′) [Eq. (28)], the only purely temporal-shift

phase which is both momentum and field dependent. Thus,
intuitively, when the momenta are large and have the same
sign (as in quadrants one and three), one expects that this

FIG. 18. Interference patterns associated with the temporal-shift
phase differences utilizing interfering pairs of the three most domi-
nant events within a pulse for the 3s → 3p transition (top row) and
the 3p → 4p transition (bottom row). A larger momentum region is
taken than in Fig. 16. The same pulse parameters are employed as in
Fig. 10, using a CEP of 65◦ for the 3s → 3p transition (top row) and
a CEP of 155◦ for the 3p → 4p transition (bottom row). The signal
in each panel has been normalized with regard to its maximum. The
blue lines in panel (c) along the axes are drawn to emphasize the
presence of the slightly off-axes circular fringes presumably coming
from α

(ene)
�τ . Panel (e) annotates the heart shape of the interference

which is also present in panels (a) and (b).

phase difference will be large and the fringes will be finer.
In contrast, if both momenta are small (close to the origin), or
if they are large but have opposing signs (second and fourth
quadrant), a small α

(p1,p2 )
�τ (t, t ′) will lead to thicker fringes.

This effect contributes to the appearance of the dark “box”
visible in some distributions of Fig. 15—there are simply
fewer interference fringes at play around the origin.

Figure 18 shows the temporal-shift phases for both chan-
nels, in a larger momentum space. As before, the wings can
be seen. In addition to the wings, the intracycle shifts also
exhibit heart shapes in the first or third quadrants (depend-
ing on the dominance of events involved), with “static-like”
patterns in the opposing quadrant. In Fig. 18(d) the heart
disappears, presumably because for CEP 155◦, p3o4 loses
dominance. The origin of this shape is unclear. However,
this behavior indicates that they may arise from a combina-
tion of the field-dependent temporal-shift phase differences.
Checkerboards appear only for small momentum values in-
dicating α

(A2 )
�τ (t ′, t ′′) is only influential in the regions where

the events are strongest, which makes sense as this phase
difference is field dependent only.

The intercycle shifts [Figs. 18(c) and 18(f)] show multi-
ple sets of circular fringes due to α

(ene)
�τ , located along the

axes, and faintly even in the quadrants. They are centered
slightly off axis due to the asymmetry of the pulse. Since α

(ene)
�τ

[Eq. (26)] gives the equation of a hypersphere, it is not trivial
to obtain the centers and sizes of these extra circular fringes.
Additionally, due to the strong dependence of α

(pond)
�τ (t, t ′′) on

the field shape, it is difficult to predict or untangle the effects
of this phase difference explicitly. However, all remaining
patterns stem from this term or from a combination of the
other phase differences.
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FIG. 19. Interference patterns associated with the combined ex-
change and temporal-shift phase differences utilizing interfering
pairs of the three most dominant events within a pulse for the
3s → 3p transition and a carrier-envelope phase of φ1 = 65◦. The
distributions shown are unsymmetrized (top row) and symmetrized
(bottom row). The same pulse parameters are employed as in Fig. 10.
The signal in each panel has been normalized with regard to its
maximum. The dashed black lines in panel (a) indicate an example
of a cut in the distribution, which also translates to the symmetrized
distribution in panel (d).

D. Exchange and event interference

The remaining six phases associated with a combination
of exchange and temporal shift terms, αl,u, αlT,u, αlT,d and
their identical transposed counterparts αr,d , αr,dT , αdT,l are
considered in Fig. 19, which shows the unsymmetrized and
incoherently symmetrized effects arising from these phases.
Due to the localization of the events within specific momen-

tum quadrants, we expect this phase to contribute the least to
the total coherent distributions. However, the effect is stronger
than for the monochromatic wave, as the asymmetry of the
pulse (and the effect of prefactors) causes the events to oc-
cupy regions near the origin and sometimes spill into other
quadrants. This enhances the events’ overlap.

Figures 19(a)–19(c) show fringes parallel to the pn‖ axes.
This is expected since only α

(p1↔p2 )
�τ [Eq. (31)] contributes

now. The locations of the brightest spots and their widths are
dependent, however, on the exact pulse field symmetry. The
distributions also appear to be cut [an example is given by the
dashed line in panel (a)].

The question then remains: which of these three types of
interference contribute most to the total coherent-coherent dis-
tribution? A comparison of exchange, event (temporal shift)
and combined exchange and shift interferences to the total
coherent interference is shown in Fig. 20. The top row shows
the momentum region of interest and the bottom row dis-
plays a larger momentum region containing the secondary
effects.

The pure exchange phases are the most influential, leading
to the spine and to small hyperbolic patterns in the total co-
herent distributions. These features will remain most resistant
to focal averaging. The pure temporal shifts serve to make the
spine a bit more jagged and blurred, while also shifting the
locations of the brightest maxima within the fringes them-
selves. The noninterference effects coming from summing
symmetrization incoherently further enhance the complexity
of the fringes in the first and third quadrants. The most notable
impact of temporal shifts emerges in the second and fourth
quadrants, where the large wings overshadow the smaller,

FIG. 20. Interference patterns arising within the region of interest (top row) and in a larger momentum region (bottom row) considering a
fully coherent sum of events and symmetrization [panels (a) and (e)], and isolating interference effects due to exchange [panels (b) and (f)],
temporal shifts [panels (c) and (g)] and those arising from a combination of exchange and event interference [panels (d) and (h)] for the same
pulse parameters employed in Fig. 10. The two most dominant events for the channel (3s → 3p) and CEP (65◦) have been taken. The signal in
each panel has been normalized with regard to its maximum. The contribution to the fully coherent interference pattern at larger momentum
values, arising from a combination of exchange and shift, has been indicated by arrows in panels (e) and (h).
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overlapping hyperbolic patterns from pure exchange phase
differences.

Predictably, the combined effect of exchange and temporal
shifts yields the smallest influence, lightly reinforcing some
effects from the other types of phase differences, such as
overlapping fringes in quadrants two and four. Notably, even
the discernible“cut” observed when isolating this phase dis-
sipates within the total coherent plot. For larger momentum
regions, the heart and static patterns disappear although the
effect of exchange and shift combined in skewing the fringes
becomes slightly more noticeable [indicated by the arrows in
Figs. 20(e) and 20(h)]. We have verified that these results hold
for other events, and also the other excitation channels.

VI. CONCLUSIONS

In conclusion, we investigate quantum interference in
recollision excitation with subsequent ionization (RESI) for
few-cycle pulses, focusing on two-electron interference pat-
terns associated with a single excitation channel. This type
of interference stems from quantum phase shifts which can
be derived analytically, thus adding predictive power and
transparency to the problem. This considerably extends our
previous investigations for monochromatic fields [5,6] and
reveals much more convoluted patterns. The added complex-
ity results from three key differences regarding the driving
field. First, the field cycles are not equivalent, which means
that there will be different kinds of interfering events and
many types of fringes. Second, the dominant events within the
pulse will be strongly influenced by the carrier-envelope phase
(CEP). Third, the symmetries associated with monochromatic
driving fields will be broken. A monochromatic field re-
mains invariant under a translation of half a cycle followed
by a reflection about the time axis, also known as the half-
cycle symmetry; a time reflection around its extrema, and a
time reflection around its zero crossings [62]. These three
symmetries translate into fourfold symmetric RESI distribu-
tions for monochromatic fields, if all transition amplitudes
are summed incoherently. For a few-cycle pulse, only sym-
metries associated with electron exchange will be retained.
Furthermore, because the field gradients will be unequal
around its maxima or zero crossings, the electron-momentum
distributions may be skewed towards a specific momentum
region.

With that in mind, we relaxed some key assumptions in
Ref. [5], including the field shape and polarization, and de-
rived a myriad of phase shifts for arbitrary driving fields,
which gave rise to generalized interference conditions. These
phase shifts stem from exchanging the momenta of the two
electrons, which is necessary due to their indistinguishability,
from events occurring at different times within the pulse, and
from electron exchange and temporally shifted events. The
analytic conditions obtained show a multitude of features,
some of which are field independent, and some of which
depend on its polarization, shape and symmetry. We have also
identified building blocks for those phase shifts. With pure
exchange, these are α(exch)

p1,p2
and αp1,p2 (t, t ′), where the first

term has a linear time dependence and the latter depends on
the field via the temporal arguments. With different events and
purely temporal shifts, we have identified α

(ene)
�τ , α

(A2 )
�τ (t ′, t ′′),

α
(pond)
�τ (t, t ′′), and α

(p1,p2 )
�τ (t, t ′) as the sources of interference.

The term α
(ene)
�τ is associated with the electronic bound-state

and kinetic energies, α
(A2 )
�τ (t ′, t ′′) is a field-dependent term

involving only the first electron, α
(pond)
�τ (t, t ′′) gives pondero-

motive energy shifts and α
(p1,p2 )
�τ (t, t ′) a term encompassing

both the field and momentum dependence. Finally, with both
exchange and temporally shifted events both types of phase
shifts will be present, but, instead of α

(p1,p2 )
�τ (t, t ′), it is de-

scribed by the α
(p1↔p2 )
�τ (t, t ′) term, which contains temporal

shifts and momentum exchange.
Particular cases of these conditions give the previous ex-

pressions derived in Ref. [5] for monochromatic fields. This
includes hyperbolic structures and spine-like fringes which
are reflection symmetric upon the diagonal p1‖ = p2‖ of the
p1‖ p2‖ plane. Nonetheless, because the half-cycle symme-
try is broken, such features are no longer symmetric about
(p1‖, p2‖) ↔ (−p1‖,−p2‖) and a bright interference maxi-
mum along the antidiagonal p1‖ = −p2‖ is also absent. The
specific case explored in this work, namely, a linearly polar-
ized few-cycle pulse, can be rewritten as a three-color field
[55]. Thus, many of the present studies can be modified to a
continuous bichromatic field or a long pulse with two colors.
Additionally, some conclusions can be anticipated for this
latter case. For instance, the intercycle patterns are expected
to be more prominent for a continuous wave or long enough
pulse. Furthermore, for linearly polarized fields of frequencies
rω and sω such that r + s is even (odd), the half-cycle symme-
try is retained (broken); thus, one expects that the interference
fringe predicted to exist in the antidiagonal will be present
(absent). More systematic studies of how the field symme-
tries affect the two-electron interference building blocks and
patterns would require the arguments and the formalism in
Ref. [62].

Furthermore, the bound-state prefactors Vp2e and Vp1e,kg

introduce additional phase shifts and momentum biases. The
prefactor Vp2e associated with the ionization of the second
electron determines the shapes of the distributions, and Vp1e,kg

influences more their centers and widths. However, although
the nodes are blurred for the latter prefactor, the field depen-
dence embedded in it means that it will get skewed for a pulse
due to the unequal cycles and gradients. Here, we provide an
analysis of how both prefactors can be mapped to the p1‖ p2‖
plane. In this work, we use argon as a target, for which there
are six excitation pathways to s, p, and d states. This facilitates
a comparison with our previous work.

Specifically for a pulse, it is crucial to identify dominant
events, whose interference one must study. In our previ-
ous paper [38], we studied this dominance using qualitative
arguments. Here, we propose a parameter that brings to-
gether three key factors influencing an event’s dominance:
the ionization probabilities of the first and second electrons,
which can roughly be associated with the minimal values
of (Im[t ′′])−1 and (Im[t])−1, and the momentum region for
which rescattering of the first electron has a classical coun-
terpart. The dominance parameter is a good indicator of
what should be discarded and of what physically happens in
the pulse.

However, it has a series of limitations, which boil down to
a single number not being sufficient to quantify dominance.
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The prevalence of a particular event depends strongly on the
momentum region. Therefore, if they are too discrepant, one
cannot use D(pi, o j ) to predict where the single main maxi-
mum lies. Instead, it indicates which event dominates in the
same region. Furthermore, the gradient of Im[t] is asymmet-
rical with regard to its minimum. Away from the minimum,
imaginary parts of the times associated with different events
follow each other closely. This is particularly true for high-
lying bound states, for which these gradients are steep. The
results in Sec. IV A show that the dominance parameter is not
reliable in these cases.

Another issue is that it does not allow us to compare an
event leading to a bright signal in a small momentum re-
gion with another, less bright probability density occupying
a larger region. A question remains on how to determine
what contributes more to the final map. Finally, the prefac-
tors also skew the momentum distributions and sometimes
mask the dominance. Still, if D(pi, o j ) is too low for a spe-
cific event, such as those at the trailing edges of the pulse,
the event can be discarded without compromising the key
results.

For the two specific CEPs employed in this work, we have
identified at most three dominant events in agreement with the
qualitative findings in Ref. [38]. Applying the equations and
criteria in Sec. III, we found 15 pairwise phase differences,
which are given in Table II. These phase differences were
then used as a guide to disentangle the interference patterns
obtained by subtracting the fully coherent from the fully in-
coherent single-channel distributions. The complexity of the
problem makes it sometimes impractical to obtain analytic
expressions in all cases. Nonetheless, one may still observe
an approximate hierarchy, as far as the interference types are
concerned.

Overall, the interference due to exchange-only processes
is more pronounced and behaves as predicted, with a bright
maximum along the main diagonal and hyperbolic patterns.
We also observe that the bright fringe along the antidiago-
nal and the symmetry upon exchanging the signals of both
parallel momenta are absent. This agrees with the analytical
predictions of Sec. III, which states that these features are only
present for fields with half-cycle symmetry. The interference
effects due to temporal shifts reinforce exchange-only effects
for the most part, except for the wing-shaped patterns in the
second and fourth quadrants. They also lead to ring-shaped
patterns, as predicted for temporal shifts of a full cycle, which
resemble those in Ref. [10]. The phase differences associated
with electron exchange and temporal shift have the subtlest
effect of all. Unfortunately, it is difficult to find a hierarchy of
the building blocks that constitute these types of interference.
Key challenges are to determine in which momentum regions
the building blocks are more or less significant and how this
might change with the pulse parameters given their strong
dependence on the pulse symmetry. This will be of extreme
importance in a more realistic scenario, in which the beam
profile and geometric phases must be considered. Further-
more, we have also identified patterns associated with three or
more interfering pathways, which are difficult to disentangle.

Regardless, the exchange-only patterns are expected to
be robust as many of them do not depend on the field.
This also explains their robustness against focal averaging

observed in Ref. [6]. This suggests that these patterns would
be the most prone to survive in a realistic setting. To some
extent, this is backed by a comparison with existing ex-
periments [63], in which traces of hyperbolic features and
fringes along the diagonals p1‖ = ±p2‖ are present. Because
the experiments had CEP-averaged pulses, we were able to
apply the simplified model developed for monochromatic
fields and compensated for the different frequency bandwidths
that exist in few-cycle pulses by employing ad hoc phases
and amplitudes. Thereby, interchannel interference was also
considered.

However, one may in principle find ways to enhance the
other types of interference by manipulating the field pa-
rameters. This can be achieved, for instance, by adapting
the knowledge obtained for controlling one-electron PMDs
in tailored fields to RESI [55,71–74]. It is also plausi-
ble that intercycle interference was observed in a TDSE
calculation, in form of ring-shaped structures [46]. How-
ever, a direct comparison with the present results is not
possible because those calculations were performed for a
parameter range in which EI is dominant. Interference be-
tween the EI and RESI pathway has also been reported
in Refs. [47,48,50].

Finally, several issues have been left out of this article.
First, there is evidence from our previous work that interchan-
nel interference can lead to striking results and also survive
focal averaging. So far, this type of interference has been stud-
ied in a simplified way, employing coherent superpositions of
excitation channels whose phases and weighting were chosen
in a partly ad hoc way. To tackle this problem more rigorously,
it will be necessary to seek an alternative strategy to the
analytic derivations performed here as intrachannel interfer-
ence is much more influenced by the bound-state geometry.
Thereby, key questions are how to establish whether specific
channels are comparable and if the fringes resulting from this
type of interference have high contrast.

Second, a realistic model will require incorporating the
residual binding potential in the electrons’ continuum prop-
agation. Our studies of ultrafast photoelectron holography,
using a fully Coulomb-distorted path-integral method in a sin-
gle electron context [61,75,76], provide us with some insight
into what to expect for RESI.

For the first electron, the SFA with a single act of rescat-
tering will be a good approximation for the actual dynamics
and, in order to account for Coulomb corrections, one may
need at most a phase shift in the action. A recent compari-
son shows that the rescattered SFA is a good approximation
for backscattered electron trajectories, which are those rel-
evant to the first electron [77]. These studies indicate that
the kinematic constraints such as rescattering ridges remain
practically unchanged. There are, however, small changes
close to the ionization threshold, and shifts in the interference
patterns arising from the two types (long and short) scattering
returning orbits in a pair. These shifts are very small for the
shortest, most relevant orbit pair, and the corresponding inter-
ference patterns are washed out upon transverse momentum
integration [37].

The dynamics of the second electron are expected to be
more influenced by the Coulomb potential, due to its kinetic
energy in the continuum being lower. A key issue is that,
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along the field polarization, the electron can no longer escape
with vanishing velocity due to the influence of the Coulomb
potential [78]. Thus, there would be a suppression at the
axes pn‖ in the RESI distributions stemming from this effect.
Furthermore, the longer direct orbit, which is degenerate for
the SFA, splits into two field-dressed Kepler hyperbolae if
the Coulomb potential is present [75]. One of them can still
be considered “direct,” while the other will exhibit a hybrid
character and will interact more with the core. Holographic
patterns stemming from these three types of orbits show that
their interference is strongly influenced by the binding poten-
tial [76,79]. Nonetheless, as these effects are angle dependent,
it is hard to predict what will survive upon transverse mo-
mentum integration. Because both electrons’ ionization times
will change due to the presence of the Coulomb potential, we
expect that two-electron interference effects involving time
delays will be more sensitive to its presence than those re-
sulting from electron exchange only. The Coulomb potential
could also break some of the symmetries that arise from the
field.

Third, in NSDI there is the matter of final-state electron-
electron repulsion. This effect has been incorporated for the
electron-impact (EI) ionization pathway in Refs. [15,16] and
affected the electron-momentum distributions. However, for
electron-impact ionization, the second electron is freed with-
out time delay, which justifies this repulsion being relevant. In
contrast, for RESI, the second electron leaves at a later time,
so that final-state electron-electron repulsion is expected to be
much weaker.

Fourth, there is focal averaging [80] and the effect of Gouy-
Maslov phases, which will potentially produce shifts in the
interference fringes and introduce momentum biases. Focal
averaging has been considered in Ref. [6] and Gouy-Maslov
phases have been studied in the context of photoelectron
holography [81–84]. A comparison with experiments will re-
quire taking these matters into account and will be the topic
of future work.
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APPENDIX A: PREFACTORS

In this Appendix, we provide a summary of how the
prefactors influence the electron momentum distributions
when integrated over the momentum components perpen-
dicular to the driving-field polarization. This is important
in both understanding the shapes of the two-electron
correlated momentum distributions and in locating the
phase shifts present in the quantum interference plots. They
were calculated assuming that all bound states involved
are hydrogenic and include all normalization and phases
necessary for computing coherent superpositions. For details
we refer to our previous publications [5,18,64].

1. Expressions

Here we give the general expressions for the prefactors.
The excitation prefactor reads

Vp1e,kg =
le+lg∑

L=|le−lg|

L∑
M=−L

(−i)LA1Y
M

L (θq, φq)

× (〈lg, le, 0, 0 | L, 0〉〈lg, le, mg,−me | L, M〉√
(2L + 1)

Ir,

(A1)

where

Ir =
bnglg∑
kg=0

bnele∑
ke=0

(−1)kg+ke 2a1−1−2LξL−a1�
ng

lgkg
�

ng

leke
�(a1)

kg!ke!
(
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!(bnele − ke)!�

(
3
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× d

ng
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dne

leke

q

ξ

L

2F1

(
1

2
a1,

1

2
(a1 + 1);

3

2
+ L; −q2

ξ 2

)
,

(A2)

and

A1 = (−1)meCnglgCnele
V12(q)√

2π

√
(2lg + 1)(2le + 1),

Cnl =
√

(n − l − 1)!

2n(n + l )!
, �n

lk = (
√

2En)
3
2 +l+k,

dn
lk = (n + l )!

(2l + k + 1)!
, ξ =

√
2Eng + √

2Ene ,

a1 = 3 + kg + ke + lg + le + L, bnl = n − l − 1.

The ionization prefactor Vp2e
is given by

Vp2,e = A2

bnele∑
k=0

(−1)k 2k (
√

2Ene )−
1
2 −le ple

2

(bnele − k)!k!
dne

lek

× �̄(a2)

�
(

3
2 + le

) 2F1

(
1

2
a2,

1

2
(a2 + 1);

3

2
+ le; − p2

2

2Ene

)
,

(A3)

where

A2 = 2(−i)leCneleY
me

le
(θp2

, φp2
),

a2 = 2 + k + 2le.

In the above equations, �(·) and 2F1(·) denote Gamma func-
tions and Hypergeometric functions, respectively.

2. Excitation prefactor shifts and mapping

Equation (4) shows a dependence of the excitation pref-
actor on q = (q2)1/2, where q = p1 − k, where k represents
the intermediate momentum of the first electron. Also, the
shape of this prefactor is strongly influenced by the orbital
angular momentum L resulting from the sum over the angular
momenta le and lg of the second electron’s ground and excited
states in Eq. (A1). The magnetic quantum number m = 0 is
used throughout for simplicity, although the expressions are
general.
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FIG. 21. The unshifted excitation prefactor and corresponding
mapping calculated using the short orbit and the most dominant pair
p4 for the (a)–(c) 3p → 4s, (d)–(f) 3p → 4p, and (g)–(i) 3p → 4d
transitions. The left column shows (a), (g) the imaginary part of the
prefactor for odd orbital quantum number L and (d) the real part
for even L. The same pulse parameters have been employed as in
Fig. 10, with CEP 65◦. Arrows in panels (e) and (h) indicate extra
maxima present due to the higher orbital quantum number L and
white boxes in panels (f) and (i) indicate how these maxima translate
to the mapping in the p1‖ p2‖ plane.

A general “unshifted” form of this prefactor was calculated
by setting q = p1. Figures 21(b), 21(e), and 21(h) show the
absolute value of this unshifted prefactor for three values of
orbital angular momentum L. With odd L, there are nodes
along p1‖ = 0. These prefactors are also purely imaginary
[Figs. 21(a) and 21(g)] due to the properties of the spheri-
cal harmonics and Clebsch-Gordon coefficients. They have
opposite and alternating phases above and below the central
node. With even L, this node at p1‖ = 0 is replaced with a
maximum, and the prefactor becomes real [Fig. 21(e)]. The
nodes are now at around ±√

Up. There are still alternating
phases above and below the nodes. It should be noted that
the unshifted prefactor is not orbit dependent, i.e., remains the
same for both the long and short orbits.

The locations of the maxima and nodes strongly translate to
the corresponding mappings of the excitation prefactor itself.
For the s and d states, there is suppression along the p1‖
axis and brightest maxima at ±√

Up. The p state leads to
brightest maxima at the origin forming a cross shape. With
larger L, there are two additional maxima indicated by arrows
in Figs. 21(e) and 21(h), leading to secondary maxima at their
corresponding locations indicated by the boxes in Figs. 21(f)
and 21(i).

The effect of the radial nodes is lost when we shift
the prefactor. Thus, they are neglected in this discussion.
It is difficult to predict the effect of shifting the momen-
tum p1 by k, not least because the intermediate momentum
has an imaginary component. The shifted prefactor is also
now orbit-dependent and therefore shapes for only the non-
divergent solution are shown here. For further details on

FIG. 22. The “shifted” excitation prefactor and corresponding
mapping calculated using the short orbit and the most dominant pair
p4 for the (a)–(c) 3p → 4s, (d)–(f) 3p → 4p, and (g)–(i) 3p → 4d
transitions. The left column shows the (a), (g) imaginary part of the
prefactor for odd orbital quantum number L and the (d) real part for
even L. The same pulse parameters have been employed as in Fig. 10,
with CEP 65◦.

the divergence of orbits and the uniform approximation, see
Refs. [18,70].

The imaginary parts of the shifted prefactor, with the short
orbit and taking the dominant p4 pair, are shown in Figs. 22(a)
and 22(g). For odd L, the central node has now shifted to
−2

√
Up. The phases above and below the node still alternate

but have swapped sign, possibly due to k being complex

FIG. 23. (a)–(c) The shifted excitation prefactor and (d)–(f) cor-
responding mappings calculated using the short orbit for the 3p →
4d channel using the three most dominant events. The same pulse
parameters have been employed as in Fig. 10, with CEP 65◦.
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FIG. 24. Pure temporal-shift interference patterns separated for
the (a)–(d) first electron and the (e), (f) second electron shown
(a), (b) unsymmetrized and (c)–(f) symmetrized and computed for
pairwise combinations of the most dominant events that separated by
half a cycle for the 3s → 3p transition and CEP 65◦. All other pulse
parameters employed are the same as in Fig. 10.

which introduces extra phase shifts. For even L, there now
exists an imaginary component for the prefactor with a node
at −2

√
Up coming from the k shift as with the odd L case

and the central maximum in the real part of the prefactor
shifts to −2

√
Up [Fig. 22(d)]. The real parts of the shifted

prefactor for all L have some stretching distortion towards
lower values of p1‖. This is because the real part of k dom-
inates and increases linearly with the x axis with an average
of around

√
Up so prefactors are also shifted by around this

amount.
The prefactor has also significantly narrowed in the mo-

mentum plane, so much so that the absolute value of the

shifted prefactor loses its characteristic geometry-dependent
shape when mapped, since the nodes have been washed out.
The mappings therefore lead to a bright maximum around
−2

√
Up. The position of this maximum is dependent on where

the event in question is located in the pulse, since k depends
on the ionization and rescattering times of the first electron.
Figure 23 shows how the maximum of the shifted prefactor,
and thus its mapping changes with event for a given channel.

APPENDIX B: UNTANGLING INTERFERENCE
DUE TO α(A2 )(t ′, t ′′ )

Here, we consider the interference due to temporal shifts
for each electron separately in order to untangle effects aris-
ing from α(A2 )(t ′, t ′′) explicitly. We employ this to determine
whether the checkerboard patterns are due to quantum in-
terference or incoherent symmetrization effects. This can be
done by computing αl,r , αlT,r , αlT,l and their transposed coun-
terparts with just the pairs (first electron), or just the orbits
(second electron). These momentum distributions with the
first electron will contain all four of the phase differences
associated with the temporal shifts. However, those with the
second electron will be missing the interference resulting
from α(A2 )(t ′, t ′′) since this is dependent only on the times
for the first electron. In Fig. 24, the interferences coming
from the p3, p4 and p4, p5 interfering pairs for the first elec-
tron are shown, unsymmetrized [Figs. 24(a) and 24(b)] and
symmetrized [Figs. 24(c) and 24(d)]. The symmetrized in-
terference coming from o4, o5 and o5, o6 interfering orbits
are shown in Figs. 24(e) and 24(f). The differences between
Figs. 24(c) and 24(e) and Figs. 24(d) and 24(f) are taken to
find the contribution of interferences from α(A2 )(t ′, t ′′), for the
two sets of events.

Figures 24(a) and 24(b) show alternating horizontal stripes
for the unsymmetrized case, which when symmetrized lead
to a cross with small checkerboards at the intersection of the
horizontal and vertical stripes, in the quadrant associated with
the more dominant of the pair of interfering pairs [Figs. 24(c)
and 24(d)] for the first electron. Similarly, checkerboards in
the quadrants associated with the more dominant of the two
orbits for the second electron can be seen in Figs. 24(e) and
24(f). When the difference between the electron one only and
electron two only distributions are found, these checkerboards
overlap and cause more intricate and complex patterns.
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[55] D. Habibović, W. Becker, and D. B. Milošević, Symmetries
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