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Intra- and intercycle analysis of intraband high-order harmonic generation
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We study intraband high-order harmonic generation arising from a band-gap material driven by a linearly
polarized laser field. We factorize the intraband high-order harmonic-generation signal into intracycle and
intercycle terms. The intracycle term uniquely determines the spectral characteristics, whereas the intercycle
term merely modulates the spectral features by imposing energy conservation in the long-pulse limit. Through
analysis of the intracycle interference, the cutoff is identified, and the origin of the harmonic selection rules is
revealed. Further, it is outlined how different components of the band structure contribute to different regions of
the harmonic spectrum, giving rise to nontrivial intensity scaling of individual harmonics in the plateau region.
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I. INTRODUCTION

Targeting matter with an intense laser pulse induces the
nonlinear process of high-order harmonic generation (HHG),
which can be applied to generate extremely short laser pulses
[1,2]. HHG was first observed in atoms and is most com-
monly understood through the three-step model [3-5]. In the
three-step model, the atom is first ionized, the continuum
electron then gains kinetic energy by propagating through the
laser field, and finally it recombines with the ionized atom,
releasing high-energy radiation. The cutoff for HHG in atoms
was observed to depend quadratically on the driving electric
field strength.

Observations of HHG with few-cycle, infrared driving
pulses were extended to solid-state systems in 2011 [6] and
have since been a topic of active research; see Ref. [7] for
an example of earlier work in the mid-infrared regime. For
band-gap materials, the process of HHG is typically under-
stood through inter- and intraband electron dynamics [8,9].
The interband contribution can be understood through a three-
step model, similar to that of the atomic case. First, an
electron transitions from the valence band to the conduction
band, creating an electron-hole pair; the electron-hole pair is
then accelerated by the laser field, and finally, the electron
recombines with the hole releasing high energy radiation.
Conversely, the intraband contribution is due to the accelera-
tion of electron wave packets within a band which, due to the
nonparabolic band structure, results in the emission of high
energy radiation. The intraband contribution dominates the
emitted spectral regime below the band-gap energy, whereas
the interband contribution dominates above the band-gap en-
ergy. In both cases, the cutoff is observed to depend linearly on
the driving electric field strength, highlighting the difference
between HHG in atoms and solids. It is interesting to study
the inter- and intraband contributions to HHG in isolation.
Here, we wish to concentrate on the intraband contribution,
which dominates the HHG process in the long-wavelength
regime when the electromagnetic field with frequency wy
is unlikely to cause interband transitions above the minimal
band-gap energy, €g.p > fiw,. The intraband process of HHG
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in band-gap materials has proven particularly useful in outlin-
ing polarization dependencies [10,11] and extracting material
properties such as conduction band reconstruction of ZnSe
[12] and measuring the ratio between harmonic dispersion
components of SiO; [13]. However, the Bloch electron model
of the intraband electron dynamics has so far not provided a
clear differentiation of spectral plateau and cutoff [14].

For strong-field processes, it is often useful to employ an
analysis based on intra- and intercycle dynamics. Here, intra-
cycle contributions occur within a single cycle of the driving
electric field and intercycle contributions arise from electron
processes across multiple cycles of the electric field. An intra-
and intercycle analysis has been particularly useful to study
above-threshold ionization (ATI) [15]. The intrinsic periodic
properties of the ATI process allow the ATI spectrum to be
factorized into a product of intercycle and intracycle interfer-
ences. Such analysis was first conducted within the electric
dipole and strong-field approximation, where intracycle inter-
ference was shown to act as a modulator of the multiphoton
peaks generated by intercycle interference. This picture was
subsequently shown to hold when going beyond the strong-
field approximation, as the Coulomb potential merely causes
an intracycle interference phase shift [16]. These results have
since been generalized to the full momentum distribution [17]
and applied to identify intracycle trajectories that account for
holographic interference [18-21]. Moreover, this framework
of analysis was extended to a consideration of nondipole-
induced effects in the ATI spectra [22], two-color atomic
ionization [23,24] as well as laser-assisted photoionization
both within [25-27] and beyond the electric dipole approxi-
mation [28]. Experimental procedures have been developed to
extract inter- and intracycle interferences from laser-assisted
photoionization of argon [29].

An intra- and intercycle analysis of HHG in atoms or
molecules can be performed in the Floquet limit [30] or from
saddle-point analysis [4]. It is natural to ask whether such
analysis can be performed for the case of HHG in solids, and
this question is addressed for the intraband mechanism in the
present work. We show that intraband HHG can be factorized
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in terms of intra- and intercycle interferences, analyze the
characteristic features of the two terms, and link the nontrivial
properties of the harmonic spectra to the intracycle term.

The paper is organized as follows. In Sec. II, we present
the theoretical model. The results are discussed in Sec. III,
followed by a conclusion in Sec. IV. Atomic units are used
throughout unless indicated otherwise.

II. THEORETICAL MODEL

Throughout this paper, the interaction between a linearly
polarized laser field with a band-gap material is studied
in a one-dimensional setting using the electric dipole ap-
proximation and neglecting interband processes. The linearly
polarized N.-cycle laser pulse is described by the vector po-
tential A(t) = (% sin(wyt), where F is the peak electric field
strength and w;, the driving laser frequency. The electric field
F(t) is related to the vector potential by F(f) = —09,A(¢).
Such a laser field corresponds to a flat-top pulse if neglecting
ramp-on and ramp-off, as in Ref. [15]. We consider the dy-
namics of an intraband electron wave packet of Bloch states,
which is likely to be generated in the conduction band at the
earliest electric field maxima, which occur at time ¢t = O for
the chosen laser parameters. Here, the electron wave packet
is generated centered at crystal momentum k(f = 0) = k.
The ensuing dynamics of the electron wave packet obey the
acceleration theorem [31-33],

k=—F(@), (1)

and the group velocity of the wave packet v, is determined
by [34]

de(k)
YT ok

2

k(t)

where e(k) is the band dispersion. Throughout this work, a
material of inversion symmetry is considered and thus the
dispersion can be expanded in a Fourier series

Mtop

e(k) = Z ¢, cos(nka), 3)

n=0

where a is the lattice constant and ¢, are coefficients that
include all material-specific properties and correspond to the
nth harmonic component of the effective band dispersion. In
Eq. (3), the upper limit n, denotes the last term included
in the series. For a convergent series, the coefficient ¢, is
relatively small and contributes insignificantly to the series.
In our analysis below, the last significant term in the series,
with visible impact on the form of the HHG spectra, will be
denoted by nmax. As we shall see, nmax (< nyp) relates to the
cutoff in the HHG spectra. With the band structure at hand,
the current is evaluated from Eq. (2), and is given as

J (@) = —vglk(1)], 4
where k(t) = ko + A(t) follows from integration of Eq. (1).

The generated intraband current is related to the emitted HHG

spectrum by [35]
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FIG. 1. HHG spectra generated by a N, =5 cycle laser pulse
of peak electric field strength of (a) Fy = 0.008, (b) Fy = 0.016,
(c) Fp = 0.024, and (d) Fy = 0.032. The predicted cutoffs in units
of harmonic order [Eq. (13)] are illustrated by vertical dashed gray
lines and given by y =22.8, y =45.7, y =68.5, and y =91.3 in
(a)—(d), respectively.

where F denotes the Fourier transform given as

8‘7 _ oo —iwlg
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For a comparison of this intraband model with time-
dependent density-functional calculations, we refer the reader
to Ref. [36]. In the present work, HHG spectra are ob-
tained for simulations of four different values of peak field
strength and shown in Figs. 1(a)-1(d), where the spectra
consist of a plateau region of odd-ordered harmonics be-
fore the cutoff. Simulations throughout this paper consider
the initial wave-packet crystal momentum to be at the mini-
mum band-gap energy, corresponding to ky = 0, which is the
most probable point of generation. Furthermore, the simula-
tions are performed with driving laser frequency w; = 0.0227
the alpha-quartz, SiO,, band structure from Ref. [13] with
band coefficients, ¢y = 10.6, ¢y = —1.669, ¢, = 0.0253, c; =
—0.0098, c4 =0.0016, ¢s =0.0263, c¢¢ = —0.0052, c¢; =
0.0103, and cg = 0.0005, and a lattice constant of ¢ = 9.285.
The dashed gray vertical lines in Fig. 1 show the analytical
cutoff, which arises from the following intra- and intercycle
analysis and is given by Eq. (13) below. The main purpose of
Fig. 1 is to remind the reader of typical intraband HHG spectra
and their observed linear scaling of the cutoff with electric
field strength. In the rest of the paper, such spectra will be
analyzed in terms of intra- and interband contributions.

III. RESULTS AND DISCUSSION

Inserting Egs. (1)—(3) into Eq. (4) and exploiting the peri-
odicity of the laser pulse, A(t) = A(¢ + i—’;), one can factorize
the emitted HHG spectrum

I(®) o |A (0)*|A™ ()] (7)
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FIG. 2. (a) The norm squared intercycle amplitude for a N, = 25
(blue line) and N, = 5 cycle pulse (red line). (b) The norm squared of
the intracycle amplitude along with the predicted cutoft as illustrated
by the vertical dashed line. The cutoff in units of harmonic order is
at y = 22.8 as obtained by Eq. (13). (¢) HHG spectra of Eq. (7) for
the short and long pulse of (a). The electric field strength is set to
Fy = 0.008 for (a)—(c).

into its intercycle amplitude

N—1
Aer(a)) — Z e—zm27rﬁ (8)
m=0
and intracycle amplitude
2 07
A™ () = / Cemie =gy, ©9)
0 ot

The intercycle term is compared for a few-cycle N, = 5 driv-
ing field pulse and a long N, = 25 pulse in Fig. 2(a). With
an increasing number of cycles, the peaks of the intercycle
interference, at integer multiples of w;, become narrower and
steeper. The intercycle term converges to a Dirac comb for
N, — 00 [37]. Thus, the intercycle interference is responsible
for energy conservation in the long-pulse limit, where energy
must be exchanged as multiples of w;. Since the intracycle
amplitude as defined in Eq. (9) is independent of N, and
since the intercycle amplitude of Eq. (8) is independent of
material-specific parameters and acts similarly across all spec-
tral regimes, the role of the intercycle interference is clear.
It simply modulates the intracycle interference by imposing
energy conservation at increasing number of laser cycles. In
other words, the structure of the HHG spectrum, such as the
harmonic cutoff, selection rules, and material-specific char-
acteristics, derives solely from intracycle interference. This
is demonstrated by comparing the HHG spectrum for N, =
5 and N, =25 in Fig. 2(c). Here, all spectral characteris-
tics arise from the corresponding intracycle interference of
Fig. 2(b), which is modulated by the intercycle interference
of Fig. 2(a).
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FIG. 3. The norm squared intracycle amplitude for n, = 6, 7,
and 8 along with the predicted cutoff as illustrated by the vertical
dashed line for n,,,x = 7. The cutoff in units of harmonic order is at
y = 22.8 as obtained by Eq. (13). The electric field strength is set to
Fy, = 0.008.

Focusing on the intracycle term, we come back to Eq. (3)
and identify the influence from the nonlinear band structure
components ¢, arising in the HHG spectra. Doing so, we
initially identify the highest nonlinear band-structure compo-
nent that contributes to the intracycle series, i.e., we identify
Nmax- In Fig. 3, we show the norm squared of the intracycle
amplitude of Eq. (9) for the laser parameters detailed in the
caption. We see that |[A™ (w)|? varies from Niop = 610 Nyep =7,
but changes very little from n,p, = 7 to nyp = 8. Therefore,
the figure shows that all nonlinear components of the band
structure are consequential until the 7n,,,x = 7th term.

Considering now only the intracycle term, it can be further
decomposed as

o]

A%w)= Y (), (10)
[=—00
where
e P 1 2
O1(w) = mﬂw;ﬁle + w—L]lw=1wL, (11)

in which 1., = 1ifx # o and 0 if x = o. Likewise, 1,—, =
1 if x = @ and O if x # «. The second factor in Eq. (10) is

Nmax

I . .
=1 chnfl<%°)m ek (=1 = e, (12)

n=1

where J; is the Bessel function of the first kind of /th order,
which originates from the use of the Jacobi-Anger expansion.
Note that the upper limit in the sum in Eq. (12) is nOW 7pax,
corresponding to the last Fourier coefficient ¢, that con-
tributes to the spectrum. To initially understand the behavior
of 0;(w), it is illustrated for [ = 1,2, 3, and 4 in Fig. 4. It
is evident from Eq. (11) that for all [ < O the term 6;(w)
returns a value of zero for all positive integer multiples of
wr. In light of this, since we only consider @ > 0, we only
examine terms arising from / > 0. For all [ > 0 the term 6;(w)
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FIG. 4. The intracycle term of 6,(w) of Eq. (11) for I = 1 (blue
line), /| = 2 (green line), / = 3 (red line), and / = 4 (orange line).

returns a value of zero for all integer multiples of w; except
lwp, where it returns the value 27 /w;. Hence, the intensity
of the /th harmonic is solely determined by the /th term
in Eq. (10).

Note that since ®; is independent of w, the pair 6;(w)P,
can be interpreted as follows: For each [ > 0 the term 6;(w)
generates a spectral peak centered at a harmonic order lwy,
and the term &; generates the intensity for the peak at lwy.
This suggests that &, is responsible for both the odd-harmonic
selection rule, the harmonic cutoff and any material-specific
spectral features. More specifically, in Eq. (12) one can explic-
itly identify the selection rule for the allowed harmonic orders
to arise from the factor [e~ "% (—1)! — ¢"%0]. For ky = 0 all
band components ¢, provide odd harmonic selection rules re-
gardless of their nth order. We note that any realistic excitation
of the symmetric material will lead to a symmetric popula-
tion of negative and positive crystal-momentum values. The
integration of the signal amplitude, i.e., the intraband current,
over the full Brillouin zone following this initial wave-packet
excitation will also only lead to odd harmonics, as it should.
Any even harmonics generated from an initial nonvanishing kg
value in the wave packet cancels with the contribution to the
current from —ky. The term &®; is shown for odd harmonics
in Fig. 5 for ky = 0, where the harmonic cutoff is illustrated.
This cutoff in units of harmonic order, Lo = ¥, is directly
explained by the properties of the Bessel function (which
decays when its order becomes larger than the magnitude of
its argument) and is given by

Nmax @ 0 . (1 3)
wr
A similar equation for the cutoff was found in Refs. [6,13].
Our analysis, however, identifies that the cutoff arises solely
from the intracycle interference and finds it to be independent
of the initial crystal momentum ky. Morever, Eq. (13) can
be viewed as a momentum space analog to the cutoff found
using a Wannier representation in Ref. [14]. The intracycle
analysis thus implies a linear relationship between the cutoff
and the peak electric field strength, consistent with exper-
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FIG. 5. Theintracycle term ®,; of Eq. (12) for odd values of / > 0
and field strengths as given in the insert. The predicted cutoffs of
Eq. (13) are at y = 22.8, 28.5, and 34.2, as indicated by the dashed
vertical lines.

imental observations [6,13]. The obtained intraband cutoff
scaling relation bears similarities to the linear cutoff scaling
of the interband generation process [38]. However, instead of
originating from the energy scale of interband transitions, the
obtained intraband cutoff is intrinsically linked to the nonlin-
earity of the band structure. It also implies that, by measuring
a cutoff experimentally, one can determine the 7, i.€., the
largest harmonic band-structure component needed to accu-
rately describe the band structure of Eq. (3). The influence of
the band-structure components was alluded to in Ref. [6] and
an analysis based on the largest harmonic band-structure com-
ponent was performed in Ref. [13], where the cutoff formula
was found to be in excellent agreement with the experimental
findings.

To further highlight the origin of the cutoff, it is meaning-
ful to decompose the intracycle interference in terms of the
contributions from each band-structure coefficient ¢, as done
in Ref. [13]. To this end, in Fig. 6, the intracycle contribu-
tion is provided from each coefficient of the band structure
and compared to the total intracycle signal. In doing so, we
identify a convergence between the intracycle contribution
of the band-structure coefficient with n;,,x and the intracycle
contribution of the full band structure in the high-frequency
spectral regime. That is, the cutoff for the HHG spectrum is
alone determined by the ¢, coefficient in the band structure
as given in Eq. (13).

Another observation from Fig. 6 is the fact that each coef-
ficient up to and including ¢, only contributes significantly
within a narrow spectral range. This is explained by the prop-
erties of the Bessel functions, where each band coefficient,
cn(n =1, ..., nmax), 1S accompanied by a Bessel function,
Ji(naFy/wy), with an associated cutoff y,, = naFy/wy. There-
fore, the band coefficient ¢, only contributes significantly up
to harmonic orders of y,. Since typical band structures exhibit
decreasing magnitude of ¢, for increasing n, there will, in
the limit of large field strength, exist separate regions of the
harmonic spectrum where different coefficients dominate the

063109-4



INTRA- AND INTERCYCLE ANALYSIS OF INTRABAND ...

PHYSICAL REVIEW A 109, 063109 (2024)

T
1
4 | i
10 Iy |
’ \,
AR - !
™ Y S I
N o N/ ‘.\ ’,..\b\
\ N/ kY » S
\ NS N
O~y N/ 1 N
— 101 a A \71\ ! \‘
2 / W | .
= ) \ [=5% - \
5 / RN o AT n
o ,F‘ L P N AN
=~ ’ NG S /7 N 71 Y
£ PAeANY RNY
© —2 ’ © \ 1 DAY
S04 0T VN e | RN
« i \ \ AN 1 Ve
s fog] \ \ \ i VA
& o/} \ \ \ ! R
< /] \ =] : \
— ANy} \ ] \
’ \ \ \ 1
s ° \ \ \ |
1075 _ b \ A
et R e cr
“°= c2 cs  TO7 cs
c3 ce -e-- 3 cCn
10—8 P P

135 7 9111315171921232527293133
Harmonic order
FIG. 6. Norm-squared intracycle amplitude of Eq. (10) decom-
posed in band-structure coefficients as detailed in the insert. The
norm-squared intracycle amplitude for the full band structure is given
for comparison in black. The predicted cutoff of Eq. (13) at y = 22.8

is illustrated by the dashed vertical line. The electric field strength is
Fy, = 0.008.

optical response. We note that identification of such separate
spectral regions would allow for experimental reconstruc-
tion of the band structure, through reconstruction of its ¢,
components.

Returning to Fig. 5, we notice how the signal for many
harmonics within the plateau show nonmonotonic behavior
with increasing field strength. We see how, e.g., harmonic or-
der 13 attains its smallest signal for the highest field strength.
This effect is due to a combination of the oscillating behavior
of the Bessel function of order /, once away from the cutoff
regime, and the intracycle interference arising from the sum
over the band-structure components in Eq. (12). Regions of
interference occur between different components of the band
structure in the intracycle interference, and these regions are
expected to shift linearly with the peak field strength like
the harmonic cutoff. The regions of interference thus also
open an avenue for band-structure reconstruction, by carrying
information about the relative importance of adjacent band-
structure components to complement reconstruction protocols
[12]. For example, destructive interference between the har-
monic amplitudes related to different ¢, contributions to the
band structure of Eq. (3) is observed in Fig. 6 for harmonic

order 17. For this harmonic we see how the norm-squared of
the intraband amplitudes corresponding individually to cs, cg,
and c¢7 are all larger than the norm-square of the amplitude
of the sum over contributions from all ¢,,. We note that inter-
ference for the yield of the /th harmonic only occurs within
the plateau region / < y, where the harmonic yield oscillates
in magnitude with varying peak field strength. For the cutoff
region of / > y, the harmonic yield scales as (Fy)* as given
by the asymptotic form of the Bessel function and also pre-
dicted from Ref. [14]. Note also that we recover the expected
scaling of harmonic signal for a given harmonic order in the
low-field limit. Namely, for sufficiently low field strengths, the
cutoff order will be low and the (Fy)* scaling emerges for all
harmonic order /. In this manner, we recover the monotonous
increase in the harmonic yield with field strength as predicted
by Ref. [39] and outline the origin of the transition away from
monotonous yield, consistent with experimental observations
of Refs. [12,13,40,41].

IV. CONCLUSION

In conclusion, we have factorized the intraband HHG spec-
trum into contributions of intra- and intercycle interferences,
showing how the spectral characteristics of the intraband
HHG spectrum derive solely from the intracycle interference
and that intercycle interference merely modulates the intra-
cycle interference by imposing energy conservation in the
long-pulse limit. Furthermore, the analysis confirmed that the
cutoff for the intraband HHG spectrum depends linearly on
the electric field strength. The analysis showed that the cutoff
links directly to the largest significant harmonic component
of the band structure [Eq. (3)]. In addition to this, it was
found that different harmonic contributions of the dispersion
contribute to different emitted spectral regions as determined
by their accompanying Bessel function. In the limit of large
field strengths, each coefficient typically dominates a sepa-
rate spectral region, leading to perspectives for band-structure
reconstruction. Finally, in the plateau region, a nonmono-
tonic behavior of the intensity scaling of individual harmonics
was related to the interference between contributions to
the HHG amplitude associated with different band-structure
components.
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