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We investigate theoretically the laser intensity dependent valley polarization in gapped graphene driven by
the circularly polarized pulse. The results show that the valley polarization without considering decoherence
displays a nonmonotonic behavior as a function of the laser intensity. By analyzing the conduction-band electron
distribution, we demonstrate that the decrease of the valley polarization in low laser intensity is caused by the
change of dominant physical mechanisms, i.e., from few-photon to diabatic tunneling transitions. While in high
laser intensity, the analysis of electron dynamics trajectories indicates that the intercycle interference determines
the different k-resolved electron distributions in K and K′ valleys, influences the valley polarization, finally leads
to the formation of a peak. Moreover, when the decoherence is considered, although the interference structure of
the k-resolved electron distribution becomes blurred, the oscillation of valley polarization with the laser intensity
is still present. Our work illustrates that the laser intensity can significantly influence the field-driven electron
dynamics processes and can be as a knob to adjust the valley polarization in gapped graphene.
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I. INTRODUCTION

The interaction between intense lasers and solids is
a research hotspot in the fields of strong-field physics
and condensed-matter physics. It has a potential for prob-
ing and controlling ultrafast carrier dynamics and material
properties. Among them, the light-induced phenomena in-
cluding high-harmonic generation [1–12] and field-driven
current [13–15] provide routes for exploring electron-photon
coupling [16,17], electron-density information [18], energy-
band structure [19–21], Berry curvature [22] and more. So
far, the underlying electronic dynamics have been extensively
studied and two main mechanisms were proposed to under-
stand these processes: interband polarization and intraband
current [23–25]. However, deeper understanding of the un-
derlying physics is still limited by the complicated structure
and dynamical processes in solids. Because it is the funda-
mental of developing modern technologies, e.g., lightwave
electronics [26] and information processing [27–29], compre-
hensive knowledge and control carrier dynamics are important
in condensed-matter systems.

Two-dimensional materials with hexagonal lattice such as
graphene and gapped graphene are a promising platform to
study light-field-controlled carrier dynamics because of their
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ultrafast optical response, high carrier mobility, and high
damage threshold [30,31]. In particular, compared with
graphene, the gapped graphene has an extra electronic degree
of freedom, i.e., the valley pseudospin. It is associated with the
energy-degenerate valleys K and K′ in the lowest conduction
band of the Brillouin zone. The flexible control over this
valley degree of freedom has the potential in processing and
storing quantum information [29,32,33], opening the applica-
tions of valleytronics [34–36]. Advances in the ultrafast laser
technology have enabled the generation of precise subcycle
laser pulse, which provides new opportunities for valleytron-
ics [37–40]. Specifically, due to the valley optical selection
rules for interband transition [41,42], circularly polarized
lasers have been employed to obtain valley-selectivity excita-
tion in gapped two-dimensional (2D) materials [32,33,43–46].
Besides, similar significant success has been achieved by lin-
early polarized laser [47–49].

The laser parameters are important for realizing the ul-
trafast lightwave control of electron dynamics. In this work,
the laser intensity dependent valley polarization is theoreti-
cally investigated in gapped graphene. The simulation results
show that the valley polarization without considering decoher-
ence displays a nonmonotonic behavior as a function of the
laser intensity, and there are valley and peaks. By analyzing
the conduction band electron distributions, we demonstrate
that the dynamics process is dominated by the few-photon
transition at low laser intensity. Further increasing the laser
intensity, the diabatic tunneling prevails and determines the
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FIG. 1. (a) Hexagonal lattice structure of gapped graphene with
two sublattices, A and B. (b) Corresponding Brillouin zone with two
valleys K′ and K.

probability of electron being excited to the conduction band.
Therefore, the decrease of valley polarization at low laser
intensity is related to the change of dominant mechanism in
interband transition. While at high laser intensity, i.e., the tun-
neling regime, the analysis of electron dynamics trajectories
indicates that a peak is caused by the intercycle interfer-
ence. Specifically, this interference determines the different
k-resolved electron distributions in the K and K′ valleys, thus
causing the oscillation of valley polarization with the laser in-
tensity. Moreover, we show that this oscillation is still present
when the decoherence is considered.

II. THEORETICAL METHODS

The unit cell of the gapped graphene arranged in a hon-
eycomb lattice structure is illustrated in Fig. 1(a), which
contains two sublattices labeled A and B. The correspond-
ing Brillouin zone of the reciprocal lattice is shown in
Fig. 1(b), in which the high-symmetry points [K = ( 2π√

3a
, 2π

3a )

and K′ = ( 2π√
3a

,− 2π
3a ) with the lattice constant a = 0.246 nm]

are marked.
In the laser field, electron dynamics can be described by the

time-dependent Schrödinger equation (TDSE). In the length
gauge, the TDSE reads [atomic units (a.u.) are used through-
out unless otherwise specified]

i
∂�(t )

∂t
= [H0 + r · F(t )]�(t ), (1)

where H0 is the field-free Hamiltonian and F(t ) is the
electric field. In the nearest-neighbor tight-binding model,
the reciprocal-space Hamiltonian H0(k) has the following
form [50]:

H0(k) =
[

�/2 γ f (k)
γ f ∗(k) −�/2

]
. (2)

Here � = 2 eV is the finite gap between the conduction
band and valence band and γ = −3.03 eV is the hopping
integral between nearest-neighbor atoms. The corresponding
real system of gapped graphene can be obtained by doping
and incommensurate substrate [51,52]. The function f (k) de-
scribing the nearest-neighbor hopping is given by

f (k) = exp

(
i
akx√

3

)
+ 2exp

(
−i

akx

2
√

3

)
cos

(
aky

2

)
, (3)

where k = (kx, ky) is the in-plane lattice momentum. Note
that, although recent work has shown the defects of the
nearest-neighbor tight-binding model in the study of solids
harmonics [53], a previous study [54] and our calculations
demonstrated that it is sufficient to use this model to reveal
the ultrafast charge dynamics in graphene. By diagonalizing
the Hamiltonian H0(k), the energies of conduction band and
valence band can be determined as

Ec(k) = +
√

γ 2| f (k)|2 + �2

4
,

Ev (k) = −
√

γ 2| f (k)|2 + �2

4
. (4)

In gapped graphene, the applied ultrafast and strong laser
field induces both the interband and intraband electron dy-
namics. According to the Bloch acceleration theorem [55], the
temporal evolution of the electron wave packet in reciprocal
space is k(t ) = k0 − ∫ t

−∞ E(τ )dτ , with initial momentum k0.
The corresponding adiabatic wave functions, which are the
solutions of Eq. (1) within a single band m without interband
coupling, are well-known Houston functions [56],

�H
m,k(t )(r, t ) = �m

k(t )(r) exp
[−iφD

m (k(t )) − iφB
m(k(t ))

]
, (5)

where m = c, v for conduction band and valence band,
respectively. �m

k(t )(r) are the Bloch functions. φD
m (k(t ))

and φB
m(k(t )) are the dynamics and Berry (geometry)

phase [57,58] in the band m, respectively, and defined by

φD
m (k(t )) =

∫ t

−∞
Em[k(τ )]dτ,

φB
m(k(t )) =

∫ t

−∞
F(τ ) · dmm[k(τ )]dτ. (6)

Here, dmm(k) = i〈μm
k (r)|∇k|μm

k (r)〉 is the Berry connection
with μm

k the periodic part of Bloch function for the band
m. The electron wave functions can be expanded using the
Houston functions:

�k0 (r, t ) =
∑

m=c,v

am,k0 (t )�H
mk0

(r, t ). (7)

By substituting this ansatz into TDSE, one can derive the
two-level density-matrix equations (DMEs) [3,59], which are

∂t

k0 (t ) = −i�cv[k(t )]

[
Nk0

v (t ) − Nk0
c (t )

]
ei[φD

cv (k(t ))+φB
cv (k(t ))]

− 
k0 (t )

T2
,

∂t N
k0
v (t ) = −2Re{i�∗

cv[k(t )]
k0 (t )e−i[φD
cv (k(t ))+φB

cv (k(t ))]},
∂t N

k0
c (t ) = 2Re{i�∗

cv[k(t )]
k0 (t )e−i[φD
cv (k(t ))+φB

cv (k(t ))]}, (8)

where 
k0 (t ) = ac,k0 a∗
v,k0

is the off-diagonal element of
the density matrix, Nv and Nc are the populations of the
valence band and conduction band, respectively. Initially,
all electrons are in the valence band before the exter-
nal field is turned on. �cv[k(t )] = F(t ) · dk(t )

cv is the Rabi
frequency, and dcv (k) = i〈μc

k(r)|∇k|μv
k(r)〉 is the transi-

tion dipole moment. φD
cv (k(t )) = φD

c (k(t )) − φD
v (k(t )) and

φB
cv (k(t )) = φB

c (k(t )) − φB
v (k(t )) are the transition dynamics

phase (DP) and Berry phase (BP), respectively. Note that in
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FIG. 2. (a) Conduction-band population of gapped graphene
(band gap � = 2 eV) after applying a right circularly polarized
laser pulse with the frequency ω = 0.77 eV and intensity I0 =
8×1010 W/cm2. The white squares show the areas around K′ and
K points. (b) Valley polarization of gapped graphene as a function
of the laser intensity. The black circles and red triangles illustrate
the results obtained by solving the DMEs with dephasing times of
T2 = T0 and T2 = ∞. The prediction by the RST model is shown by
the blue squares.

Eq. (8), the decoherence is considered by phenomenologically
adding the −
k0 (t )/T2 term, where T2 is the dephasing time.

The response of the laser-driven electron in the gapped
graphene can be obtained by solving the DMEs. In our simula-
tion, the DMEs are numerically solved using the fourth-order
Runge-Kutta method with a time step of dt = 0.2 a.u. The re-
ciprocal space kx ∈ [−

√
3π
a ,

√
3π
a ] and ky ∈ [− 2π

a , 2π
a ], shown

as the dashed lines in Fig. 1(b), was sampled with a 761×817
grid. The convergence of the time step and space step in
reciprocal space was tested.

III. RESULTS AND DISCUSSION

We apply an ultrafast right-circularly polarized pulse inci-
dent normally to the monolayer gapped graphene. The electric
field is written as

F(t ) = F0 f (t )[cos (ωt )ex + sin (ωt )ey], (9)

where F0 is the peak electric-field strength, ω = 0.77 eV is
the laser frequency, ex and ey are the unit vectors. f (t ) is the
temporal envelope with a trapezoidal shape, raising linearly
during one optical cycle (T0), then keeping constant for two
optical cycles and decreasing linearly during the last one
optical cycle of the laser pulse.

A. Determination of the electron-excitation mechanism

Figure 2(a) illustrates the conduction-band population dis-
tribution over the whole Brillouin zone after excitation by the
laser pulse with an intensity I0 = 8×1010 W/cm2, which is
obtained by solving the DMEs with dephasing time T2 = ∞.
It is shown that the conduction-band population distribution
in the K and K′ valleys is asymmetric, which agrees with
the previous theoretical calculations [44,45]. To quantify this
asymmetry, we define the valley polarization as

η = nK − nK ′

nK + nK ′
×100%,

FIG. 3. Residual conduction-band populations (normalized to
unity) as a function of the laser intensity and the distance from (a) K
and (b) K′ points. Here, �ky = ky0 − ky and ky0 is the coordinate of
K or K′ points on the ky axis. The black dash-dotted curves represent
the resonances, where the energy difference between the two bands
corresponds to the photon energy 3h̄ω (lower lines) or 4h̄ω (higher
lines). The black symbols indicate the maximum vector potential in
the y direction.

where nK (nK ′) is the electron occupation of valley K (K′),
which is obtained by integrating the population around K (K′),
as indicated by the white squares. The valley polarizations
with respect to the laser intensity, which are simulated by the
DMEs with T2 = ∞ and T2 = T0, are shown in Fig. 2(b). We
find that the valley polarization obtained with T2 = ∞ clearly
displays a nonmonotonic behavior as a function of the laser
intensity, and there is a valley around 6×1010 W/cm2 and a
peak around 1.2×1011 W/cm2.

To clarify the origin of this peculiar dependence, we further
show the residual conduction-band populations as a func-
tion of the laser intensity and the distance from K and K′

points in Fig. 3. For comparison, the resonances, where the
energy difference between the two bands (Eg = Ec − Ev) cor-
responds to the photon energy 3h̄ω or 4h̄ω, are indicated
by the black dash-dotted curves. By comparing the electron
distribution and the position of resonance line, we found
a change of interband excitation mechanism with increas-
ing laser intensity. Specifically, in the weak-field region of
I0 < 2×1010 W/cm2, the electrons transition to conduction
band by few-photon excitation and are distributed along the
3h̄ω resonance line. Note that the energy shift of the posi-
tion of electron maximum population from 3h̄ω is caused
by the light-induced energy-band shift. Because the electron
transition rate is proportional to the laser intensity in the
few-photon regime, the conduction-band electron population
increases with the laser intensity. Increasing the laser intensity
to I0 = 4×1010 W/cm2, more electrons are excited to higher
energy around the Eg = 4h̄ω resonance line. In addition, most
of the excited electrons are distributed away from the reso-
nance line 3h̄ω. This conduction-band electron distribution
suggests that the electron transition mechanism is dominated
by diabatic tunneling rather than few-photon excitation at this
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FIG. 4. Residual conduction-band populations around (a) K′ and
(b) K points calculated by solving the DMEs (T2 = ∞). The laser
intensity is I0 = 8×1010 W/cm2. The black dash-dotted curves rep-
resent the resonances, where the energy difference between the two
bands corresponds to the photon energy 4h̄ω. The black dashed
curves show the vector potential of laser pulse. The conduction-
band maximum populations are illustrated by the blue solid curves,
which are obtained by fitting with the function (a) Eg = nK′ h̄ω and
(b) Eg = nK h̄ω. (c) The electron population on ky axis extracted from
panels (a) and (b). The black solid and dashed lines represent the
electron distribution around the K and K′ points, respectively. For
comparison, the electron population around the K′ point is scaled by
a factor of 60.

intensity [45]. Therefore, the decrease of valley polarization at
low laser intensity can be attributed to the change of dominant
physical mechanism in interband transition.

B. Analysis of the k-resolved electron distribution

In the high laser intensity region of I0 =
4×1010–1.6×1011 W/cm2, most of the excited electrons
are distributed between the resonance lines of 3h̄ω and
4h̄ω, and the position of the conduction-band maximum
population decreases with increasing laser intensity.
Figures 4(a) and 4(b) further show the conduction-band
electron distributions around K′ and K points induced by the
laser field of I0 = 8×1010 W/cm2. By fitting the position of
the maximum population in the conduction band with the
function Eg = nK′ h̄ω [Fig. 4(a)] or Eg = nKh̄ω [Fig. 4(b)],
we find nK ′ = 3.76 and nK = 3.57, which are nonintegers,
similar to the results in a recent study [60]. The difference of
k-resolved electron distribution around the K and K′ points
is further illustrated in Fig. 4(c). To better understand the
physical processes, we resort to the reciprocal-space trajectory
(RST) model [59]. Specifically, by substituting Eq. (7) into
the TDSE, one can obtain the following differential equation:

d

dt
ac,k0 (t ) = −iav,k0 (t )�cv[k(t )]ei[φD

cv (k(t ))+φB
cv (k(t ))]. (10)

When the excitation probabilities are small (i.e.,
av,k0 ≈ 1) [3,59], the approximate solution of Eq. (10)

is

ac,k0 (t ) = −i
∫ t

−∞
�cv[k(τ )]ei[φD

cv (k(τ ))+φB
cv (k(τ ))]dτ

= −i
∫ t

−∞
|�cv[k(τ )]|eiφtot

cv (k(τ ))dτ. (11)

Here, φtot
cv (k(t )) = φD

cv (k(t )) + φB
cv (k(t )) + φT

cv (k(t )) and
φT

cv (k(t )) = arg{�cv[k(t )]} are defined as the total phase
and transition dipole moment phase (TDP), respectively. The
results of the RST model are displayed by the blue squares in
Fig. 2(b). It is shown that at low laser intensity, the value of
valley polarization is consistent with that obtained by solving
the DMEs with T2 = ∞. While at higher laser intensity, the
deviation of this result from the DMEs is caused by the low
excitation probability approximation.

Figure 5 illustrates the conduction-band populations cal-
culated by the RST model after excitation with the same
laser parameters as Figs. 4(a) and 4(b), but discarding the
Berry phase or transition dipole moment phase manually. In
Figs. 5(a) and 5(b), the simulation results including the BP
and TDP agree well with those from solving the DMEs with
T2 = ∞, i.e., Figs. 4(a) and 4(b), verifying the validity of the
RST model in this laser parameter. The results of discarding
the BP are shown in Figs. 5(c) and 5(d). It is shown that
compared with the results in Figs. 5(a) and 5(b), the electron
distributions around K′ point change significantly, but the
electron distributions around the K point are almost invari-
ant. When the TDP is discarded, compared with K′ point,
the changes are more significant for the K point, as shown
in Figs. 5(e) and 5(f). Furthermore, when both the BP and
the TDP are discarded [Figs. 5(g) and 5(h)], the electron
distributions is similar for the K′ and K points. These results
unambiguously identify the effect of different kinds of phase
on the k-resolved electron distribution. In the following, we
explain the nonintegral nK′ and nK quantitatively by analyzing
the reciprocal electron trajectories.

For the laser field with an intensity I0 = 8×1010 W/cm2,
we choose initial momentum P1 = (0,−0.982), which is lo-
cated at the maximum of conduction-band population around
the K point and indicated by the black dot in Fig. 6(a). The
corresponding field-driven dynamic trajectory is shown by
the black dashed curve. Figure 6(b) illustrates the instanta-
neous transition rate |�cv| and total phase φtot

cv [Eq. (11)]
with respect to the transition time. It is shown that for the
initial momentum P1, the maximally instantaneous transition
rate |�max

cv | is observed at time NT0 (N = 1, 2, 3). Electrons
excited at these times dominate the transition process. The
interference between these electrons belongs to the intercy-
cle interference, and its intensity is proportional to χcv =
||�max

cv |(1 + ei�φtot
cv )| [61]. Here, �φtot

cv is the difference of total
phase between adjacent maximum transitions, as shown by
the vertical dash-dotted blue lines in Fig. 6(b). Therefore, the
electron transition probability is determined by the maximum
transition rate |�max

cv | and the total phase difference �φtot
cv .

Figure 6(c) illustrates |�max
cv | and �φtot

cv for the electron with
initial momentum along the ky axis. The further calculated
interference intensity χcv is shown by the black solid line
in Fig. 6(d). For comparison, the conduction-band electron
distribution on the ky axis is extracted from Fig. 6(a) and
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FIG. 5. (a), (c), (e), (g) Residual conduction-band populations around K′ and (b), (d), (f), (h) K points simulated by the RST model under
the situations: (a), (b) Both the BP (Berry phase) and the TDP (transition dipole moment phase) are included. (c), (d) Only BP is discarded. (e),
(f) Only TDP is discarded. (g), (h) Both the BP and TDP are discarded. The laser intensity is I0 = 8×1010 W/cm2. For comparison, the position
of the conduction-band maximum populations calculated by solving the DMEs (T2 = ∞) with same laser parameters, i.e., Figs. 4(a) and 4(b),
are indicated by the blue solid curves. The black dash-dotted curves represent the resonances, where the energy difference between the two
bands corresponds to the photon energy 3h̄ω or 4h̄ω.

indicated by the blue dashed line in Fig. 6(d). The simi-
larity between the distribution of interference intensity and
lineout confirms that the k-resolved electron distribution is
determined by the intercycle interference. For the initial mo-
mentum P1, although the maximum transition rate is smaller
than that of some points, more electrons are eventually excited
to the conduction band because �φtot

cv (P1) = 5.87π is closer
to 2Nπ .

These results unambiguously indicate that in the dia-
batic tunneling regime, the intercycle interference determines
the distribution of conduction-band populations at the non-
integral photon energy. Besides, because the total phase
difference �φtot

cv is related to the laser intensity, the position of
conduction-band maximum population changes with increas-
ing intensity.

Next, we investigate the difference of the position of
conduction-band maximum populations between the K′ and
K points, as shown in Figs. 4(a)–4(c). Compared with the K
point, electrons around the K′ point are distributed at higher
|ky|, which corresponds to the higher energy in conduction
band. To understand this difference, we choose two initial mo-
menta P2 = (0, 0.816) and P3 = (0,−0.816). As indicated
by the black dots in the insets of Figs. 7(a) and 7(c), P2
is located on the fitting curve of conduction-band maximum
population around the K′ point (nK ′ h̄ω), while P3 is away
from the fitting curve of nK h̄ω. Figures 7(a) and 7(c) illustrate
the instantaneous transition rates and the total phases of P2
and P3. It is shown that the maximum instantaneous transition
rate of two initial momenta is the same, but their total phase
difference is different. For P2, the total phase difference is
9.88π , which is close to 2Nπ . It is consistent with the ab
initio result that P2 is located on the fitting curve of nK ′ h̄ω.
While for P3, the total phase difference is 6.17π . To determine
the origin of this phase difference between �φtot

cv (P2) and

�φtot
cv (p3), we further decompose the total phase difference

into �φtot
cv = �φD

cv + �φT
cv + �φB

cv , where �φD
cv , �φT

cv , and
�φB

cv are the difference of dynamics phase, transition dipole
moment phase, and Berry phase between adjacent maximum
transitions, respectively. Since the band structure of gapped
graphene is symmetric about the kx axis, �φD

cv of P2 and P3
should be the same. Furthermore, for intercycle interference,
�φT

cv is zero or 2Nπ for P2 and P3. Therefore, the difference
of the Berry phase difference of two points is determined as

�φB
cv (P2) − �φB

cv (P3) = [
�φtot

cv (P2) − �φtot
cv (P3)

]
− [

�φT
cv (P2) − �φT

cv (P3)
]

= 9.88π − 6.17π − 4π

= −0.29π. (12)

Figures 7(b) and 7(d) illustrate the Berry phases with respect
to the transition time of two initial momenta. It is shown that,
for P2 and P3, the Berry phase difference is opposite. The
difference of the Berry phase difference is −0.28π , which
equals the result of Eq. (12). It indicates that the difference
of total phase difference between P2 and P3 originates from
the Berry phase. This opposite �φB

cv influences the inter-
cycle interference, resulting in a difference in the position
of conduction-band maximum population between K′ and K
points.

C. Scheme for increasing the valley polarization

We have quantitatively demonstrated that the position
of conduction-band maximum population is determined by
|�max

cv | and �φtot
cv , which are related to the laser param-

eters. Therefore, by adjusting the laser parameters, more
electrons will be excited to the conduction band when the

063106-5



YU, DU, TAN, LIU, LU, AND ZHOU PHYSICAL REVIEW A 109, 063106 (2024)

(a)

P1

-0.1 0 0.1
k

x
 (a.u.)

-1.0

-0.9

-0.8

k y (
a.

u.
)

0 1 2 3 4
t (o.c.)

0

0.5

1

|
cv

| (
10

-2
 a

.u
.)

0

10

20

cvto
t  (

un
its

 o
f 

)

(b)

cv
tot=5.87

-1.01 -0.98 -0.95
k

y
 (a.u.)

0.8

0.85

0.9

0.95

|
cvm

ax
| (

10
-2

 a
.u

.)

5

6

7

cvto
t  (

un
its

 o
f 

)

(c)

-1.01 -0.98 -0.95
k

y
 (a.u.)

0

1

2

cv
 (

ar
b.

un
its

)

0

0.1

0.2

N
c (

ar
b.

 u
ni

ts
)

(d)

FIG. 6. (a), (b) Analysis of transition, dynamic trajectory and interference for initial momentum P1 = (0, −0.982) in the reciprocal space.
(a) The black dot represents the initial momentum P1. For comparison, the K point is indicated by the black triangle. (b) The transition rate
|�cv| (black dashed line) and total phase φtot

cv (blue solid line) with respect to the transition time for point P1. The maximum transition rates
are marked with black squares. Meanwhile, the electron trajectory of point P1 is illustrated in black dashed curve of panel (a), and the position
corresponding to the maximum transition rate is also represented by the black square. (c) The maximum transition rate |�max

cv | (black dashed
line) and the total phase difference �φtot

cv (blue solid line) for initial momentum of electron along the ky axis. (d) The intensity of intercycle
interference χcv is illustrated by the black solid line. For comparison, the lineout taken along the ky axis from panel (a) is shown by the blue
dashed line.

electron with initial momentum PK has maximal |�max
cv (PK )|

and �φtot
cv (PK ) = 2Nπ . Moreover, due to the opposite Berry

phase, the conduction-band populations around the K′ and
K points could not be maximized simultaneously. This
opens the opportunity to modulate the valley polarization.
Figures 8(a) and 8(b) illustrate the conduction-band popula-
tions after excited by the laser pulse with an intensity I0 =
1.2×1011 W/cm2. In particular, the position of conduction-
band maximum population around the K point, as shown
in Fig. 8(b), almost coincides with the vector potential of
laser pulse. Figures 8(c) and 8(d) illustrate the correspond-
ing |�max

cv | and �φtot
cv as a function of the initial momentum

of electron around the K′ and K points, respectively. It is
shown that at the initial momentum PK = (0,−0.973), as
indicated by the black dot in Fig. 8(d), |�max

cv (PK )| max-
imizes and �φtot

cv (PK ) = 5.99π . For the initial momentum
PK′ = (0, 0.973), |�max

cv (PK′ )| maximizes while �φtot
cv (PK′ ) =

9.47π . In this case, only the population of the excited elec-
tron around K point is increased by intercycle interference,
resulting that the difference between nK and nK ′ and thus
the valley polarization enhance. These results are consistent
with that of Fig. 2(b), where the valley polarization peaks at
laser intensity of I0 = 1.2×1011 W/cm2. With the increase
of laser intensity, the positions of conduction-band maximum
populations of the K′ and K points change, which further
weakens the valley polarization. These results indicate that in
the gapped graphene, the valley polarization can be modulated

by changing the laser intensity and does not monotonically
increase as the laser intensity increases.

D. The effect of decoherence

It is well known that decoherence is an important physi-
cal process in solids. Previous studies have shown the effect
of decoherence by phenomenologically incorporating a con-
stant dephasing time T2 in calculation. Note that due to the
complexity of the decoherence mechanism, the value of the
dephasing time has not been determined, and different values
have been used in previous studies [3,62–64]. In our work,
we fix T2 = T0 as the effective interband dephasing time to
investigate the effect of decoherence on the k-resolved elec-
tron distribution and valley polarization. The black circles
in Fig. 2(b) illustrate the valley polarization for a dephasing
time of T2 = T0, which shows a clear oscillation with laser
intensity. In addition, the valley polarization simulated with
T2 = T0 peaks at the laser intensity of I0 = 1.2×1011 W/cm2,
which is consistent with the result simulated with T2 = ∞.
While the difference between the two results can be attributed
to the deexcitation of conduction-band electron induced by the
decoherence, which is stronger for the distribution of conduc-
tion band with fewer excited electrons. Therefore, at lower
laser intensity, the conduction-band electron population and
thus the valley polarization obtained with T2 = T0 is different
for the results of T2 = ∞. This difference makes it possible
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cv and Berry phase φB

cv for the initial point P2 = (0, 0.816) around K′ is shown by blue solid line in panels
(a) and (b), respectively. For comparison, the transition rate is shown by the black dashed line. The inset at the bottom right corner of panel
(a) illustrates the corresponding electron trajectory. (c), (d) Same as panels (a), (b), but for the initial point P3 = (0, −0.816) around K.

to determine the dephasing time in terms of the influence of
decoherence on the valley polarization in the future.
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FIG. 8. (a), (b) Residual conduction-band populations around
(a) K′ and (b) K points calculated by solving the DMEs (T2 = ∞).
The laser intensity is I0 = 1.2×1011 W/cm2. The black dash-dotted
curves represent the resonances, where the energy difference be-
tween the two bands corresponds to the photon energy 4h̄ω. The
black dashed curves show the vector potential of laser pulse. (c),
(d) The maximum transition rates |�max

cv | (black dashed lines) and
the total phase differences �φtot

cv (blue solid lines) with respect to the
initial momentum of electron along the ky axis. The black dots repre-
sent the initial momenta PK′ = (0, 0.973), PK = (0,−0.973) where
|�max

cv | maximizes. (c) �φtot
cv (PK′ ) and (d) �φtot

cv (PK ) are marked by
the blue dash-dotted lines.

In Fig. 9, we further illustrate the conduction-band pop-
ulations calculated by solving the DMEs with T2 = T0 after
excitation with the laser intensity of I0 = 8×1010 W/cm2

[Figs. 9(a) and 9(b)] and I0 = 1.2×1011 W/cm2 [Figs. 9(c)

FIG. 9. Conduction-band populations after excitation around (a),
(c) K′ and (b), (d) K points calculated by solving the DMEs (T2 =
T0). The laser intensities are (a), (b) I0 = 8×1010 W/cm2 and (c),
(d) I0 = 1.2×1011 W/cm2. The black dash-dotted curves represent
the resonances, where the energy difference between the two bands
corresponds to the photon energy 4h̄ω. The black dashed curves
show the vector potential of laser pulse. For comparison, the posi-
tions of conduction-band maximum population calculated by solving
the DMEs (T2 = ∞) with I0 = 8×1010 W/cm2 are shown by the blue
solid curves in panels (a), (b).
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and 9(d)]. It is shown that, except for Fig. 9(a), the k-resolved
electron distributions obtained by solving the DMEs with
T2 = T0 are similar to that obtained with T2 = ∞. Specifi-
cally, at the laser intensity of I0 = 8×1010 W/cm2, for the
K point, the position of the conduction-band maximum pop-
ulation obtained with T2 = T0 is the same as that obtained
with T2 = ∞, as shown by the blue solid curve in Fig. 9(b).
Furthermore, in the laser intensity of I0 = 1.2×1011 W/cm2,
the position of the conduction-band maximum population of
the K point almost coincides with the vector potential of laser
pulse, which is consistent with the result shown in Fig. 8(b).
Therefore, the valley polarization can be modulated through
changing the laser intensity. Even if decoherence impacts the
k-resolved electron distribution and thus the value of valley
polarization. The oscillation of valley polarization with laser
intensity presents.

IV. CONCLUSION

We investigate theoretically the valley polarization in
gapped graphene driven by a right-circularly polarized pulse
and analyze the k-resolved electron distributions in the con-
duction band. The valley polarization obtained by solving
the DMEs with the dephasing time T2 = ∞ reveals a non-
monotonic dependence on the laser intensity, and there are
valley and peaks. By analyzing the conduction-band popula-
tions, we find that different physical mechanisms dominate
the interband transition at different laser intensities. In the
low-intensity limit, few-photon transition prevails, with the
increase of laser intensity the dominant mechanism is diabatic
tunneling. The transition of excitation mechanism results in
the decrease of valley polarization at low laser intensity.

Further increasing the laser intensity, we find that the ex-
cited electrons in the conduction band are distributed at the
energy Eg = nK′ h̄ω and Eg = nKh̄ω, where nK′ and nK are
nonintegers. By analyzing the electron dynamics trajectories,
we demonstrate that the k-resolved electron distribution is

determined by the intercycle interference. The position of the
electron maximum populations around the K and K′ points
can be quantitatively identified by the instantaneous transi-
tion rate |�max

cv | and the total phase difference �φtot
cv between

adjacent maximum transitions, which are related to the laser
parameters. Therefore, by adjusting the laser intensity, the
k-resolved electron transition probability can be modulated,
which further influences the valley polarization. These results
clarify the origin of the last peak of valley polarization in the
diabatic tunneling regime.

Besides, the effect of decoherence has been consid-
ered by phenomenologically introducing the dephasing time.
The results indicate that even if decoherence influences the
k-resolved electron distribution, the oscillation of valley polar-
ization with laser intensity presents. In summary, by clarifying
the dependence of valley polarization on laser intensity, we
provide an intuitive physical picture for field-driven electron
dynamics of gapped graphene. Furthermore, we propose a
scheme for modulating the valley polarization, which is one
of the manifestations of optical control over the light-mater
interaction process. Our study is useful for the fundamental
understanding and further applications of strong-field-driven
electrons in two-dimensional materials, including graphene
and transition-metal dichalcogenide monolayers.
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