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Noninteger high-order harmonic generation from extended correlated systems
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The spectra produced by high-order harmonic generation (HHG) typically exhibit well-defined peaks at odd
integers times the laser frequency. However, in recent investigations of HHG from correlated materials, spectra
exhibit signals at noninteger harmonics which do not conform to the well-known symmetry-based selection rules
for HHG spectra. Here, we use the Fermi-Hubbard model to study HHG from a linear chain of atoms. This model
allows us to study both the correlated and uncorrelated phases through a specification of the amount of onsite
electron-electron repulsion. The presence of signal at noninteger harmonics can be interpreted as originating
from the population of multiple Floquet states. We show how this coupling to different Floquet states depends
on the characteristics of the driving pulse and the strength of the electron-electron interaction in the system.
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I. INTRODUCTION

In the process of high-order harmonic generation (HHG),
a medium (atomic gas, molecules, solid) is driven by an in-
tense laser pulse causing highly nonlinear electron dynamics.
The result is the emission of electromagnetic radiation in
pulses that can be subfemtoseconds in duration. The attosec-
ond pulses and the HHG process itself enable the study of
electrons at their natural timescale [1,2]. If the high-harmonic
generating system is inversion symmetric and if the driving
pulse is sufficiently long, selection rules are imposed on the
HHG spectrum allowing only odd harmonics [3]. This is veri-
fied in both atomic gases [4], molecules [5], and solids [6–8].

In recent years, there has been an increasing interest in
HHG from correlated materials, i.e., materials where a be-
yond mean-field electron-electron repulsion is of significance.
These systems cannot be described by a multiband picture
but are instead described by effective models, such as the
Fermi-Hubbard model [9], which allows for a description of
electrons moving in a chain of atoms in terms of effective hop-
ping and onsite electron-electron repulsion parameters. With
this model it was found that the electron-electron correlation
can lead to an enhanced signal for certain harmonics [10–18].
Curiously, however, HHG spectra from these types of systems
show noninteger harmonics [10–19] which do not obey the
symmetry-imposed selection rules [3]. Furthermore, even if
these symmetries are broken, signal is still only expected
to be found at (both even and odd) integer harmonics. The
origin of these noninteger harmonics has been hypothesized
to be the presence of correlations [10] or due to a short pulse
or missing dephasing channels [15], or has simply not been
discussed [11–14,16–19]. Thus, a satisfactory explanation of
the reported signal at noninteger harmonics in HHG spectra
from correlated systems is lacking.

*These authors contributed equally to this work.

In this work, therefore, we discuss the physical origin of the
signal at noninteger harmonics. To do so, we use the prototyp-
ical Fermi-Hubbard model [9]. This model captures aspects of
physics relevant to real materials, including cuprates and some
high-Tc superconductors [20,21]. Conveniently, this model al-
lows us to treat the electron-electron correlation strength, the
Hubbard U , as a tunable parameter which enables us to study
the model with various degrees of electron-electron correla-
tions, ranging from the uncorrelated tight-binding limit to the
highly correlated Mott-insulating limit, where the electrons
are distributed evenly among the sites.

The paper is organized as follows. First, in Sec. II, the
Fermi-Hubbard model is discussed. The results are presented
in Sec. III. Here, the uncorrelated case, a case with interme-
diate correlation strength, and finally the highly correlated
Mott-insulating phase are investigated. We conclude and sum-
marize our findings in Sec. IV. Throughout this paper atomic
units are used unless explicitly stated otherwise.

II. MODEL AND OBSERVABLES

We study HHG spectra generated by strong-field driving of
the Fermi-Hubbard model [9]. We consider a one-dimensional
chain of atoms corresponding to a one-band system at half-
filling with the Hamiltonian given as

Ĥ (t ) = Ĥhop(t ) + ĤU . (1)

Here

Ĥhop(t ) = −t0
∑
j,μ

(eiaA(t )ĉ†
j,μĉ j+1,μ + H.c.), (2)

ĤU = U
∑

j

(ĉ†
j,↑ĉ j,↑)(ĉ†

j,↓ĉ j,↓) (3)

describes the electron hopping and onsite electron-electron re-
pulsion, respectively. The parameter t0 describes the strength
of an electron hop from site j to its neighboring sites j ± 1
(with periodic boundary conditions), a is the lattice spacing,
A(t ) is the vector potential of the driving laser polarized along
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the lattice dimension, and U is the onsite electron-electron
repulsion strength. The electronic annihilation operator for an
electron with spin μ ∈ {↑,↓} on site j is denoted ĉ j,μ with
the creation operator ĉ†

j,μ. We treat U as a tunable parame-
ter allowing us to study the system with various degrees of
electron-electron correlation. As apparent from Eq. (2), the
laser-matter interaction is described through the Peierls phase
exp[iaA(t )] [9,22]. In the limiting case of vanishing U , the
system is simply a tight-binding model as the Hamiltonian of
the system in Eq. (1) reduces to Eq. (2). For a finite U �= 0,
however, onsite electron-electron interactions are apparent,
making the system more involved.

The current operator for this model is given as [13,15,17]

ĵ(t ) = −iat0
∑
j,μ

(eiaA(t )ĉ†
j,μĉ j+1,μ − H.c.). (4)

The expectation value of the current is calculated as

j(t ) = 〈�(t )| ĵ(t )|�(t )〉, (5)

where |�(t )〉 is the time-dependent wave function evolved ac-
cording to the time-dependent Schrödinger equation (TDSE)

i
∂

∂t
|�(t )〉 = Ĥ (t )|�(t )〉, (6)

with the Hamiltonian given in Eq. (1). The many-electron state
|�(t )〉 is expanded in configurations |�I〉, specifying the site
occupations through the multi-index I , i.e.,

|�(t )〉 =
∑

I

CI (t )|�I〉, (7)

where CI (t ) is the time-dependent amplitude to be solved for.
To drive the system, we use a linearly polarized pulse of

the form

A(t ) = A0 f (t ) sin
(
ωLt + π

2

)
, (8)

where A0 is the amplitude of the vector potential and where
the dipole approximation is assumed to be valid. The envelope
function of the vector potential is given by

f (t ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin2

(
ωLt

4Non

)
, 0 < t

T < Non

1, Non < t
T < (Non + Npl )

sin2

(
ωL(t − NplT )

4Non

)
, (Non + Npl ) < t

T

< (2Non + Npl )

0, otherwise,
(9)

i.e., as a flat top pulse with a sin2 ramp. Here Non and Npl are
the number of cycles in the ramp and plateau of the pulse,
respectively, and T = 2π/ωL is the period of the laser. We
keep the number of cycles on the top constant, specifically
Npl = 10, and by changing Non we can study the effect of a
longer pulse with a less steep ramp.

The observable of interest is the spectrum generated from
the HHG process. It is given by

S(ω) = |ω2 j̃(ω)|2, (10)

where j̃(ω) is the Fourier transform of the current in Eq. (5).

We note that for a laser pulse of constant amplitude [ f (t ) =
1], the Hamiltonian in Eq. (1) is periodic with the laser period,
i.e., Ĥ (t ) = Ĥ (t + T ). In this limit, the solution to the TDSE
[Eq. (6)] is given by Floquet states on the form [23,24]

|� j (t )〉 = e−iE j t |u j (t )〉, (11)

where |u j (t )〉 = |u j (t + T )〉 are T -periodic functions and E j

are the quasienergy levels which are only uniquely defined
up to integer multiples of the laser frequency ωL. The set of
quasienergies {E j} and their corresponding Floquet functions
are determined by the parameters of the electronic system
but also by the amplitude A0 and frequency ωL of the vector
potential [24].

Furthermore, we note that for a constant vector potential
amplitude and for all correlation strengths, the system is
symmetric under reflection in space and time translation by
half a period. That is Ĉ2Ĥ (t )Ĉ−1

2 = Ĥ (t ). Here Ĉ2 = R̂2 · τ̂2,
where R̂2 is reflection of the electronic system and τ̂2 is a
time translation by T/2. With this symmetry and if the system
only populates a single Floquet state, only odd harmonics
are allowed in the spectrum as shown in Ref. [3]. A de-
tailed symmetry calculation for the present model is found
in Appendix A and the related selection rules are derived in
Appendix B.

Here, we investigate a system of L = 10 sites with peri-
odic boundary conditions with a lattice spacing of a = 7.5588
a.u., and t0 = 0.0191 a.u. similar to Refs. [10,13,14,17,18].
These values are picked to fit those of the cuprate Sr2CuO3

[25]. The field has an amplitude of A0 = F0/ωL = 0.194 a.u.
with angular frequency 0.005 a.u. = 33 THz. This choice of
field strength corresponds to a peak intensity of F0 = 3.3 ×
1010 W/cm2. To solve the dynamics of the system driven
by the laser governed by the TDSE in Eq. (6), we use the
Arnoldi-Lancoz algorithm [26–29] with a Krylov subspace
of dimension 4. To simplify the numerical calculations, we
exploit that the Hamiltonian in Eq. (1) is invariant under
spin flip of all electrons and under translations of the entire
system corresponding to spin-flip symmetry and conservation
of total crystal momentum, respectively [9]. In this manner,
the number of configurations entering the expansion in Eq. (7)
is reduced. In our simulations, we start from a nondegener-
ate spin-symmetric ground state with vanishing total crystal
momentum, and as such only states within that subspace
are needed in the basis. All results have been checked for
convergence.

III. RESULTS AND DISCUSSION

In this section, we show the effects of correlations and
pulse characteristics on the generated HHG spectra. The re-
sults presented will be followed by a discussion based on
Floquet theory to explain the observations. In Fig. 1 the
spectra for an uncorrelated system (U = 0) and for a sys-
tem with an intermediate correlation strength of U = t0 are
shown. We note how the clear peaks in the uncorrelated phase
at lower odd harmonics (ω/ωL � 11) completely disappear
when correlations are introduced. Furthermore, we note that
correlations enhance the spectrum and extend it to much
higher harmonics without any clear peaks, indicating that the
presence of correlations drastically changes the underlying
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FIG. 1. Spectrum for an uncorrelated system (U = 0) and a cor-
related system (U = t0). We note how the presence of correlations
completely changes the spectrum. Both spectra have been obtained
with an identical pulse with Non = 3 [see Eq. (9)] and parameters
specified in the text. The gray vertical dashed lines indicate odd
harmonics to guide the eye.

physics that generates the spectrum. While this enhancement
and extension of the spectrum has already been observed and
is well understood in the Mott-insulating phase [10,11,13–
15], a satisfactory explanation of the absence of well-defined
peaks is still missing. We will in this section first discuss
the uncorrelated case before investigating the case with an
intermediate correlation strength of U = t0. At the end of
the section also the Mott-insulating phase (U = 10t0) will be
investigated.

A. Uncorrelated phase

When U = 0 the Hamiltonian reduces to a simple tight-
binding model with Ĥ (t ) = Ĥhop(t ) in Eq. (2). This case
corresponds to a one-band model, where only intraband
harmonics can be generated. The importance of this limit
in understanding experimental data is well documented
[6,30,31]. It can be shown that Ĥhop(t ) commutes with itself at
all times [17]. It then follows that the time-evolution operator
in this limit is given as Û (t, ti ) = exp[−i

∫ t
ti

Ĥhop(t ′)dt ′]. Tak-
ing the many-electron initial state |�(ti )〉 to be an eigenstate
of the field-free system, the state in the uncorrelated phase at
any time is therefore given as

|�(t )〉 = Û (t, ti )|�(ti)〉 = e−i
∫ t

ti
E (t ′ )dt ′ |�(ti )〉, (12)

where E (t ) is the time-dependent energy and ti is the initial
time at which interactions between the laser and electronic
system are turned on. It is seen from Eq. (12) that the time
evolution is simply accounted for by a time-dependent phase
applied to the initial state. As such, only a single many-
electron Floquet state is populated at all times.

To reexpress Eq. (12) using Floquet theory, we define

E = 1

T

∫ ti+T

ti

E (t ′)dt ′, (13)

which enables us to rewrite the phase in Eq. (12) as

e−i
∫ t

ti
[E (t ′ )−E+E]dt ′ = e−iE (t−ti )e−i

∫ t
ti

[E (t ′ )−E]dt ′
, (14)

FIG. 2. Spectra for a correlated system with U = t0 for turn-on
cycles Non = 3, 60, 400, 2000 [see Eq. (9)]. We note how peaks at
odd harmonics become clearer with a more adiabatic (longer) turn-on
of the pulse. The numbers in the parentheses in the inserts indicate
that the spectra are scaled for visual clarity.

which by inserting into Eq. (12) yields

|�(t )〉 = e−iE (t−ti )|u(t )〉, (15)

where we have defined |u(t )〉 = e−i
∫ t

ti
[E (t ′ )−E]dt ′ |�(ti)〉. We

note that in the limit of periodic driving, i.e., when E (t ) =
E (t + T ) the state |u(t )〉 = |u(t + T )〉 is periodic. Equa-
tion (15) expresses the formal solution to the many-electron
Hamiltonian [Eq. (1)] in the U = 0 case in a Floquet picture,
and since only a single Floquet state is populated [Eq. (15)],
only odd harmonics are found in the spectrum [3]. This con-
clusion is also reached by noting that the expectation value of
the current [Eq. (5)] is in this case simply

〈 ĵ(t )〉 = 〈u(t )| ĵ(t )|u(t )〉, (16)

which only contains frequency components determined by
A(t ). The sharpness of the peaks is only limited by the integra-
tion limits of the Fourier transform involved in obtaining the
spectra [Eq. (10)] and is hence determined by the bandwidth
of the driving pulse. We note that it is not necessary to inves-
tigate the uncorrelated phase from the perspective of Floquet
theory to conclude that only odd harmonics are visible in the
spectrum. This can also be shown explicitly algebraically (see
Appendix C).

B. Noninteger HHG in a correlated system

When we introduce correlations to the system, the spec-
trum changes completely, as seen in Fig. 1. For U �= 0 no
simple analytical expression for the wave function exists and
we rely on numerical simulations. We first use a moderate
electron-electron correlation strength of U = t0. To study the
effect of the pulse ramp and pulse length, we will in the
remainder of this work consider pulses with various ramp
lengths, starting from a typical ramp extending to an ex-
tremely long pulse with a highly adiabatic ramp by using
Non = 3, 60, 400, 2000 in Eq. (9).

Naively, one would think that the spectrum presented in
Fig. 1 does not show clear harmonics due to a short pulse
(Non = 3). However, this is only partially true as seen in Fig. 2
where spectra for the various ramp lengths are shown. Here,
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the spectra have been scaled for visual clarity as indicated by
the number in the parentheses in the inserts to the right. To
obtain a well-resolved spectrum, a window function of cos8

has been used in all figures for the case of a very short ramp
of Non = 3. This is not necessary for Non = 60, 400, 2000. As
seen in Fig. 2, the signal at odd harmonics becomes clearer
with increasing pulse length. Surprisingly, however, we see
how the peaks are accompanied by a broadening which does
not disappear for a longer ramp though the spectrum becomes
more regular. This behavior is different from the uncorrelated
case where only sharp peaks are found at the odd harmonics
without such a broadening (Fig. 1). As such, the presence of
correlations introduces new phenomena not found in uncorre-
lated systems.

We will now explain the origin of the signal at noninteger
harmonics. As discussed below, the presence of these indi-
cates that, despite the extremely adiabatic turn-on of the laser,
the system is still populated by more than a single Floquet
state. Different from the uncorrelated case, the presence of
correlations now allows coupling between (Floquet) states
during the dynamics. In the present case where the ampli-
tude of the vector potential changes with time, the set of
quasienergies and corresponding Floquet functions depend on
the instantaneous field amplitude, i.e., E (t ) = E[A0(t )] [24],
where we for simplicity define A0(t ) = A0 f (t ) with f (t ) given
in Eq. (9). We may formally expand a general state |�(t )〉 in
terms of Floquet states

|�(t )〉 =
∑

j

c j (t )e−i
∫ t

ti
E j (t ′ )dt ′ |uE j (t )(t )〉. (17)

Here c j (t ) is a time-dependent expansion coefficient to ac-
count for couplings between Floquet states. In the absence
of couplings c j (t ) = δ j,i, where i denotes the Floquet state
initially populated at t = ti. We note that Eq. (17) reduces
to the form of Eq. (15) for a constant field amplitude and no
couplings. The time integrals of the quasienergies in Eq. (17)
reflect that these quasienergies now depend on time through
the time dependence of the field.

The expectation value of the current [Eq. (5)] for the state
in Eq. (17) is readily calculated as

〈 ĵ(t )〉 =
∑
i, j

c∗
i (t )c j (t )e−i

∫ t
ti

[E j (t ′ )−Ei (t ′ )]dt ′

× 〈uEi (t )(t )| ĵ(t )|uE j (t )(t )〉. (18)

Equation (18) looks vastly different than if only a single
Floquet state is populated as in Eq. (16). In particular, we
see that the phase exp (−i

∫ t
ti

[E j (t ′) − Ei(t ′)]dt ′) contains fre-
quency components which are in general not a multiple of the
laser frequency. That is, if more than a single Floquet state
is populated, this phase will generate noninteger harmonics
in the spectrum. These are the so-called hyper-Raman lines
previously found in HHG studies in atomic systems [32–36].

Based on the above discussion and the results presented in
Fig. 2, it seems likely that the system indeed populates more
than a single Floquet state throughout the dynamics. The pop-
ulation of multiple Floquet states can be explained by possible
resonances in the quasienergy spectrum. However, the size
of the system and the low frequency of the laser impede a
numerical diagonalization of the full Floquet Hamiltonian to

FIG. 3. Adiabatic eigenenergies as a function of the magnitude
of the vector potential with an electron-electron correlation strength
of U = t0 and parameters specified in the main text. We note that for
A ≈ 0.04 a.u. the ground state is at a nonadiabatic one-photon reso-
nance with the first excited state. The dashed vertical line indicates
the reduced A′

0 value considered (see text).

obtain the entire spectrum of quasienergies. Instead, we gain
insight from the adiabatic eigenenergies which are obtained
by diagonalizing Ĥ (t ) in Eq. (1) for a fixed value of A(t ),

Ĥ (t )|ψ j (t )〉 = Ej (t )|ψ j (t )〉, (19)

where t is a fixed parameter and |ψ j (t )〉 is the adiabatic
eigenstate with adiabatic eigenenergy Ej (t ). The adiabatic
eigenenergies can be related to the Floquet quasienergies
through a perturbative expansion of the latter in even powers
of the small laser frequency ω2n

L (n = 0, 1, 2, . . . ) p. 271
in Ref. [24]. Figure 3 shows the adiabatic eigenenergies for
vector potential amplitudes up to the A0 value of A0 = 0.194
a.u. used in the TDSE simulations generating the spectra in
Figs. 1, 2, and 6. We note how the gap in energies changes
and especially that a one-photon resonance occurs between
the two lowest-lying states at around A ≈ 0.04 a.u., indicating
a strong nonadiabatic coupling. We can examine these nona-
diabatic couplings by expanding a general state in terms of

adiabatic eigenstates |�(t )〉 = 
 jc j (t )e−i
∫ t

ti
dt ′Ej (t ′ )|ψ j〉. The

equation of motion for c j (t ) then reads as [37]

ċ j (t ) = − c j〈ψm|ψ̇m〉

−
∑
n �= j

cn
〈ψ j | ˙̂H (t )|ψn〉

En − Ej
e−i

∫ t
ti

dt ′[En(t ′ )−Ej (t ′ )]
, (20)

where the time derivative of the Hamiltonian in Eq. (1) is
explicitly given as

˙̂H (t ) = iat0F (t )
∑
j,μ

(eiaA(t )ĉ†
j,μĉ j+1,μ − H.c.) = −F (t ) ĵ(t ),

(21)

where it was used that the electric field is given by F (t ) =
−∂t A(t ). We first note that the nonadiabatic couplings are
suppressed by the energy denominator in Eq. (20) which
suppresses the influence of higher-lying energy states when
only the ground state is initially populated. We further note
that the strength of the adiabatic coupling is proportional to
the amplitude of the electric field.
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FIG. 4. Spectra for a correlated system with U = t0. The same
parameters as in Fig. 2 have been used except for a smaller vector
potential amplitude of A′

0 = 0.1, A0 = 0.0194 a.u. We note that clear
peaks are found at odd harmonics with a much smaller broadening
when compared to Fig. 2.

Based on the above considerations, we now consider the
results of a TDSE simulation for the same system driven
with a weaker vector potential amplitude of A′

0 = 0.1A0. This
is done in order to be off resonant with the one-photon
transition between the two lowest-lying states (see Fig. 3).
The spectra for the system driven with a vector potential
of amplitude A′

0 are seen in Fig. 4. Here we clearly see
that for all the values of Non considered, peaks are found
at odd harmonics with increasing sharpness for longer pulse
lengths. We ascribe this finding to the fact that the field
strength remains far to the left of the resonance seen in Fig. 3,
prohibiting many Floquet states from becoming populated.
Naturally, n-photon resonances are also present for lower
values of A(t ), e.g., a five-photon resonance at A(t ) ≈ 0.015
a.u., leading to some coupling to other Floquet states which
is also seen in Fig. 4 where the peaks have some finite
width. Nonetheless, as the spectrum in Fig. 4 is regular at
odd harmonics, these higher n-photon resonances are suffi-
ciently suppressed to not significantly impact the dynamics
and we emphasize that the signal seen at odd harmonics of the
laser frequency dominates the noninteger signal by orders of
magnitude.

The origin of noninteger HHG in correlated systems can
hence be ascribed to the population of multiple Floquet states
due to resonances in the Floquet quasienergy spectrum. In the
uncorrelated case, only the pulse length dictates the resolu-
tion of the peaks at odd harmonics, as only a single Floquet
state is populated throughout the dynamics. In the correlated
case, not only the length and the ramp of the pulse is of
importance, but also its amplitude plays a role. This is due
to the fact that when correlations are introduced, couplings
are allowed and other Floquet states can become populated.
The strength of this coupling depends both on the vector
potential amplitude of the driving laser (compare Figs. 2 and
4) and on the degree of correlations in the target system.
These findings can be used to study the quasienergy levels of
a correlated system. In particular, the HHG spectrum can be
used to study the presence of such resonances throughout the
dynamics by varying the maximum amplitude of the vector
potential.

FIG. 5. Adiabatic eigenenergies as a function of the magnitude of
the vector potential with an electron-electron correlation strength of
U = 10t0 and parameters specified in the main text. We note that in
this Mott-insulating limit, �Mott is largely independent of the strength
of the electric field.

C. Noninteger HHG in Mott insulators

We now consider a system with an electron-electron cor-
relation strength of U = 10t0 which places the system in
the Mott-insulating phase. Several works have observed non-
integer harmonics and a general irregular spectrum above
the so-called Mott gap [10,11,13–17]. As mentioned in the
Introduction, the presence of noninteger HHG has been hy-
pothesized to be due to missing dephasing channels and a
short pulse length [15] or due to the presence of correlations
[10], and some works have simply not discussed this aspect
of the HHG spectrum [11,13,14,16,17,19]. In view of the
symmetry-based constraints for the present system with Ĉ2

symmetry allowing only odd harmonics in the long pulse limit
[3], it seems relevant to provide an explanation of the origin
of the occurrence of noninteger HHG.

Before going into the discussion about HHG in this type
of system, we first introduce the relevant physical quantities.
In the Mott-insulating limit, the eigenenergies of the field-free
system split into several Hubbard subbands (see Fig. 5). In the
first subband, which contains the lowest-energy eigenstates
including the ground state, the system is largely dominated by
configurations with only a single electron on each site as it is
energetically expensive to have two electrons on the same site
due to the large value of the Hubbard U . Similarly, the states
in the second subband are dominated by configurations that
contain a single double occupancy of electrons on a site. Such
a double occupancy is called a doublon and can be considered
a quasiparticle. This doublon is accompanied by an empty
site called a holon quasiparticle [11,14,15,17,18]. These two
lowest subbands are the relevant ones in this work. Also of
relevance is the energy difference between the ground state in
the first subband and the lowest state in the second subband
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FIG. 6. Spectra for the Mott insulating phase with U = 10t0 for
various pulse lengths and parameters specified in the main text.
Above the Mott gap (solid vertical line) clearer peaks are seen for
longer pulse lengths.

described by �Mott called the Mott gap (see Fig. 5). This
separation gives rise to two different kinds of currents: the
intrasubband and intersubband currents [11,15] reminiscent
of intraband and interband currents for band-gap materials
[6–8]. The intrasubband current originates from the propa-
gation of the states with a single doublon-holon pair within
the second subband which results in harmonics with energies
below the Mott gap. The intersubband current originates from
the recombination of a doublon-holon pair. Here transition
occurs from the second subband to the first subband resulting
in the emission of a harmonic with energy around or above
�Mott [11,15]. In this work �Mott = 26.4ωL. We note that the
current operator in Eq. (4) involves moving a single electron
which will create a single doublon-holon pair when applied
to a state within the first subband. As all states within the
first subband contain virtually no doublon-holon pairs, the
matrix element 〈�i| ĵ(t )|� j〉, with |�i, j〉 being states within
the first subband, is insignificant and there will be virtually no
current contribution from couplings within the first subband
(see Fig. 5). Further discussions about the Mott-insulating
phase in the presence of intense laser pulses can be found,
e.g., in Refs. [10–12,14,15,38].

The spectra obtained for the Mott-insulating phase are
shown in Fig. 6. Here, clear peaks at odd harmonics in the
intrasubband region with energies below �Mott are seen for
all considered pulse lengths. On the contrary, the peaks in the
intersubband region above the Mott gap become more visible
for longer ramp times. We further note that the broadening
of the peaks for U = t0 found in the spectra in Fig. 2 is not
similarly found in Fig. 5. This indicates that no resonances
between states occur with the varying strength of the vector
potential in the Mott-insulating phase. Indeed, this is consis-
tent with the adiabatic eigenenergies for the Mott-insulating
phase shown in Fig. 5, where we see that the eigenenergies
are virtually constant for a varying strength of the vector
potential. In other words, the coupling between states does
not change with a varying field strength prohibiting the same
kind of field control of the dynamics as in the case of U = t0.
The possible population of multiple Floquet states will thus
not change notably with a varying amplitude of the vector
potential or with a longer pulse, the latter of which is also

testified in Fig. 6. It is worth pointing out that it is primarily
the peaks in the interband region that are broadened. This is
due to the fact that though the dynamics populate multiple
Floquet states, the states with a higher energy than the lowest
state in the second subband in Fig. 5 have relatively little
population. Consequently, the contribution to the current from
terms which involve only states with a higher energy than
the lowest state in the second subband (Fig. 5) is negligible
when compared to terms which involve the lowest state in the
second subband or states in the first subband as these are in
general more populated. The off-diagonal terms contributing
to the current in Eq. (18) will hence only have a phase with
a difference in quasienergy at around or above �Mott which
broadens the signal only in the interband region of the spec-
trum. Similarly to the spectra in Fig. 4, the spectra in Fig. 6
become dominated by the signal at odd harmonics by orders
of magnitude when compared to the signal at noninteger har-
monics with increasing ramp time.

IV. SUMMARY AND CONCLUSION

In this work, we investigated the origin of noninteger har-
monics found in spectra modeling the response of correlated
solids. We employed the Fermi-Hubbard model and varied
the Hubbard U , to analyze both the uncorrelated case and
the correlated case. In the correlated case we investigated
both an intermediate and high degree of electron-electron
correlations, the latter known as the Mott-insulating phase. In
the uncorrelated case, only odd harmonics were found in the
spectrum, consistent with the population of a single Floquet
state throughout the dynamics. Conversely, in the correlated
phase with moderate electron-electron correlation (U = t0),
even with prolonged ramps, signal appeared at frequencies
not an odd multiple of the laser frequency. This latter signal
originates from the concurrent population of multiple Floquet
states during the dynamics and is not at odds with the strong
symmetry-based argument allowing only odd harmonics, as
this assumes only a single Floquet state to be populated [3].
The varying amplitude of the vector potential causes states
to become resonant, allowing multiple Floquet states to cou-
ple. Notably, reducing the maximum amplitude of the vector
potential mitigated this resonance, resulting in predominantly
odd harmonics with minimal broadening, indicating fewer
populated Floquet states. The duration and bandwidth of the
pulse crucially determine the resolution of the HHG peaks in
the spectrum. However, changes in the vector potential ampli-
tude via the pulse envelope can lead to resonances between
states, populating multiple Floquet states which will generate
a noninteger harmonic signal. Similar observations hold true
for the Mott-insulating phase (U = 10t0) where quasienergy
levels remain largely unaffected by the magnitude of the
vector potential amplitude. Thus, a longer pulse suffices to
resolve the HHG peaks at odd harmonics in the interband
regime of the spectrum. These findings are similar to the
so-called hyper-Raman lines predicted [32–35] and recently
observed [36] in studies of HHG in atoms, now reemerging
in materials when accounting for beyond mean-field electron-
electron correlations. However, the large energy gap in atoms
between ground and excited states made it difficult to observe
these noninteger spectral features in atomic HHG experiments
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and necessitated a two-color approach for their observation
[36]. In contrast, the energy difference between states in
the present model can be much smaller, which could lead
one to expect that experimental observations and potential
technological applications of noninteger HHG are feasible in
correlated materials.
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APPENDIX A: DYNAMICAL SYMMETRIES
OF THE FERMI-HUBBARD MODEL

In this Appendix, we show that the Fermi-Hubbard Hamil-
tonian in Eq. (1) is invariant in the continuous laser-field limit
under the application of Ĉ2 = R̂ · τ̂2, where R̂ is space inver-
sion of all electronic coordinates and τ̂2 is time translation by
half a period, i.e., τ̂2 t τ̂−1

2 = t + T/2. We note that the spatial
inversion does not affect the Peierls phase as this phase is still
a coordinate of the vector potential [9].

The effect of space inversion on the electronic operators in
Eq. (1) is readily calculated:

R̂

[ ∑
j,μ

ĉ†
j,uĉ j+1,μ

]
R̂−1 =

∑
j,μ

ĉ†
− j,uĉ− j−1,μ =

∑
j′,μ

ĉ†
j′+1,μĉ j′,μ,

(A1)

where we have used the change of index j′ = − j + 1. Apply-
ing space inversion to the hopping Hamiltonian in Eq. (2) thus
yields

R̂Ĥhop(t )R̂−1 = −t0
∑
j,μ

(eiaA(t )ĉ†
j+1,μĉ j,μ + H.c.) �= Ĥhop(t ).

(A2)

We see that the Peierls phases in Eq. (A2) would also need to
change sign for Ĥhop(t ) to be invariant. Hence, we also apply
τ̂2 and use that A(t + T/2) = −A(t ), in the Floquet limit of
continuous monochromatic lasers. We then obtain that

Ĉ2Ĥhop(t )Ĉ−1
2 = Ĥhop(t ). (A3)

As space inversion leaves the single-site dynamics invariant,
it follows that the U term [Eq. (3)] is invariant under space
inversion and hence under Ĉ2. We thus conclude that the
Fermi-Hubbard Hamiltonian in Eq. (1) is Ĉ2 symmetric:

Ĉ2Ĥ (t )Ĉ−1
2 = Ĥ (t ). (A4)

We now look at the current operator [Eq. (4)]. Here we as-
sume A(t ) = A0 sin(ωLt ) and use the Jacobi-Anger expansion
to decompose the Peierls phase

eiaA(t ) =
∑

m

Jm(aA0)eimωLt , (A5)

where Jm(z) is mth Bessel function of the first kind. We further
note that

e−iaA(t ) = eiaA(t+T/2) =
∑

m

Jm(aA0)(−1)meimωLt . (A6)

Inserting Eqs. (A5) and (A6) into the current operator
[Eq. (4)], it can be written in a decomposed form

ĵ(t ) =
∑

m

Jm(aA0)eimωLt ĵm, (A7)

where we have defined

ĵm =
∑
j,μ

[ĉ†
j,μĉ j+1,μ − (−1)mĉ†

j+1,μĉ j,μ]. (A8)

By using Eq. (A1), we note that

R̂ ĵmR̂−1 = Ĉ2 ĵmĈ−1
2 = (−1)m+1 ĵm, (A9)

i.e., jm is odd for even m and vice versa. The symmetries of
both the Hamiltonian found in Eq. (A4) and of the current
operator in Eqs. (A7) and (A9) will be used to derive the
related selection rules of HHG in Appendix B.

APPENDIX B: SELECTION RULES FROM DYNAMICAL
SYMMETRIES

In this Appendix, we show how the dynamical symmetries
derived in Appendix A lead to selection rules for the harmonic
spectrum. We start by investigating the electronic states. We
consider the Floquet state in Eq. (11) and insert it into the
TDSE [Eq. (6)] and obtain the Floquet Hamiltonian [39]

(−i∂t + Ĥ (t ))|u(t )〉 = E |u(t )〉, (B1)

where the subscript has been dropped for notational conve-
nience. By applying Ĉ2 from the left in Eq. (B1) and inserting
that Ĉ−1

2 Ĉ2 = 1 we find( − i∂t + Ĉ2Ĥ (t )Ĉ−1
2

)
Ĉ2|u(t )〉 = EĈ2|u(t )〉

= (−i∂t + Ĥ (t ))R̂|u(t + T/2)〉
= ER̂|u(t + T/2)〉, (B2)

where we have exploited the symmetry of the Hamiltonian
[Eq. (A4)] and used that Ĉ2|u(t )〉 = R̂|u(t + T/2)〉. By com-
paring Eqs. (B1) and (B2), we obtain

|u(t )〉 = eiθ R̂|u(t + T/2)〉, (B3)

where θ is a phase.
As the Floquet state in Eq. (11) is periodic with the laser

frequency, it can be decomposed into its Fourier components

|�(t )〉 = e−iEt |u(t )〉 = e−iEt
∑

l

eilωLt |φl〉, (B4)

where l is an integer and the subscript of the Floquet state has
been dropped for simplicity.

Using the Fourier decomposition in Eq. (B4) and compar-
ing it with (B3) we obtain the relation

|φl〉 = eiθ (−1)l R̂|φl〉. (B5)
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Using Eq. (10) the signal is readily calculated:

S(ω) =
∣∣∣∣ω2

∫ ∞

−∞
dt〈�(t )| ĵ(t )|�(t )〉e−iωt

∣∣∣∣
2

=
∣∣∣∣ω2

∫ ∞

−∞
dt

∑
l,l ′,m

Jm(aA0)e−i(ω−(m+l−l ′ )ωL )t 〈φl ′ | ĵm|φl〉
∣∣∣∣
2

=
∣∣∣∣ω2

∑
l,l ′,m

Jm(aA0) δ[ω−(m+l−l ′)ωL]〈φl ′ | ĵm|φl〉
∣∣∣∣
2

,

(B6)

where we have used the Fourier decomposition of the Floquet
state in Eq. (B4) and of the current operator in Eq. (A7). By
defining n = m + l − l ′, we can rewrite Eq. (B6) as

S(ω) =
∣∣∣∣ω2

∑
l,m,n

δ(ω − nωL ) Jm(aA0)〈φm+l−n| ĵm|φl〉
∣∣∣∣
2

.

(B7)
We now focus on the matrix element in Eq. (B7). Inserting the
symmetries of the states and the current operator [Eqs. (B5)
and (A9)] we obtain

〈φm+l−n| ĵm|φl〉 = (−1)m+l−n+l+m+1

× 〈φm+l−n|R̂−1R̂ ĵmR̂−1R̂|φl〉
= (−1)n+1〈φm+l−n| ĵm|φl〉, (B8)

where we have used that R̂ = R̂−1 = R̂†. We see that Eq. (B8)
vanishes for even n. Using this result in Eq. (B7) we conclude
that due to the symmetries of the Hamiltonian, only odd
harmonics are allowed in the spectrum when only a single
Floquet state is populated during the dynamics.

APPENDIX C: EXPLICIT CALCULATION OF
UNCORRELATED PHASE

In this Appendix, we show by algebraic derivations, with-
out the use of Floquet theory, that the uncorrelated phase
(U = 0) yields only odd harmonics. The state of the system
at all times is given in Eq. (12) in the main text and is restated
here for convenience:

|�(t )〉 = e−i
∫ t

ti
E (t ′ )dt ′ |�(ti)〉. (C1)

We start by transforming the fermionic creation operator
from a site-specific description (site index j) to a crystal

momentum-specific description (crystal momenta q)

ĉ†
j,μ = 1√

L

∑
q

e−iR j qĉ†
q,μ (C2)

and similarly for the annihilation operator. Here Rj = ja is the
position of the jth site with a being the lattice constant. The
transformation in Eq. (C2) allows us to describe the system in
the spatially delocalized Bloch basis instead of the localized
Wannier basis underlying the representations in Eqs. (1)–(4).
Inserting Eq. (C2) into the Hamiltonian in Eq. (2) yields

Ĥhop(t ) = −2t0
∑
q,μ

cos{[q + A(t )]a}ĉ†
q,μĉq,μ, (C3)

and the current operator in Eq. (4) likewise transforms as

ĵ(t ) = 2t0a
∑
q,μ

sin{[q + A(t )]a}ĉ†
q,μĉq,μ. (C4)

From Eqs. (C3) and (C4) it is clearly seen that the system is
diagonal in q space. Further, we note from Eq. (C3) that the
ground state has a symmetric distribution of electron crystal
momenta around q = 0.

The expectation value of the current is calculated using
Eq. (C4),

j(t ) = 〈 ĵ(t )〉 = 2t0a
∑
q,μ

sin{[q + A(t )]a}nq,μ, (C5)

where nq,μ = 〈�(t )|ĉ†
q,μĉq,μ|�(t )〉 is the number of electrons

with crystal momentum q and spin μ which remains constant
throughout the dynamics. We now expand the sinusoidal func-
tion in Eq. (C5):

j(t ) = 2t0a
∑
q,μ

nq,μ{sin(qa) cos[A(t )a]

+ cos(qa) sin[A(t )a]}. (C6)

We see that the first term in Eq. (C6) vanishes as

q,μ sin(qa)nq,μ = 0 for all distributions symmetric around
q = 0 which includes the ground state for L = 10. Taking a
field of constant amplitude, A(t ) = A0 sin(ωLt + φ), we then
expand the sine function in Eq. (C6) using the Jacobi-Anger
expansion and obtain

j(t ) = 4t0a
∑
q,μ

nq,μ cos(qa)

×
( ∞∑

n=1

J2n−1(A0a) sin[(2n − 1)(ωLt + φ)]

)
, (C7)

where Jn is the nth Bessel function of the first kind. The spec-
trum is finally obtained from the norm square of the Fourier
transform of Eq. (C7):

j̃(ω) = 4t0a
∑
q,μ

nq,μ cos(qa)
∞∑

n=1

J2n−1(A0a)
∫ ∞

−∞
e−iωt sin[(2n − 1)(ωLt + φ)]dt

= −4iπt0a
∑
q,μ

nq,μ cos(qa)
∞∑

n=1

J2n−1(A0a){ei(2n−1)φδ[ω − (2n − 1)ωL] − e−i(2n−1)φδ[ω + (2n − 1)ωL]}, (C8)
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where we have assumed an infinitely long pulse for sim-
plicity. We see that Eq. (C8) is only nonvanishing for odd
integer values of ω showing that only odd harmonics are
found in the spectrum in the uncorrelated phase. For a finite

pulse (also with an envelope), still only odd harmonics will
be found in the spectrum, though less sharply peaked. In
that case, the equations become more involved and are not
included here.
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