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Experimental determination of the diffusion coefficient in a coated cell
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The motional averaging effect of the alkali-metal atoms in a coated cell is influenced by the non-negligible
background gas and is characterized by the diffusion coefficient of the alkali-metal atoms. In this paper, we
present an experimental approach to measure the atomic diffusion coefficient within a paraffin coated cell through
analyzing the spin relaxation caused by first-order and second-order magnetic-field gradients, respectively, given
the distinct dependencies of these two relaxation effects on the diffusion coefficient. The diffusion coefficient is
measured to be 0.137 m2/s for the fabricated paraffin coated cell, indicating an estimated pressure of background
gas at approximately 0.25 Pa, which is orders of magnitude higher than the typical saturated vapor pressure of
the alkali-metal atoms. Our work serves as a potential nondestructive method for analyzing the background gas
pressure and offers new insights into the performance characterization of the coated cell.

DOI: 10.1103/PhysRevA.109.062814

I. INTRODUCTION

Polarized alkali-metal atoms inside a cell with antirelax-
ation coating can undergo thousands of collisions with the
wall surface without losing polarization, resulting in a long
relaxation time [1–3]. Such an advantage has propelled the
alkali-metal vapor cell with antirelaxation coating to play a
remarkable role in widespread applications [4–7]. Further-
more, in a buffer-gas-free coated cell, the low pressure allows
alkali-metal atoms to rapidly sample the overall volume of the
cell, thereby averaging the magnetic field over the relaxation
time [8]. This characteristic constitutes another advantage
of the coated cell, called the motional averaging effect,
which suppresses the relaxation effect induced by magnetic-
field gradient [9,10] and has been utilized in various studies
[11,12]. The motional averaging effect is closely related to
the atomic motional characteristics. With the consideration of
low saturated alkali-metal atomic vapor pressure, the mean
free path of atoms inside the coated cell is significantly
larger than the cell size. As a result, the atoms travel ballisti-
cally between adjacent atom-wall collisions [13,14], leading
to a strong suppression of magnetic-field-gradient-induced
relaxation [15,16].

Nevertheless, under certain conditions, the atomic mo-
tional characteristics within the coated cell do not exhibit ideal
ballistic motion. Due to chemical reactions of alkali-metal
atoms with the coating, resulting in outgassing, the existence
of non-negligible background gas is not an occasional phe-
nomenon in the coated cell [17–22]. It has been reported that
the pressure of background gas (∼1 Pa) is much larger than
the saturated vapor pressure of alkali-metal atoms [23,24].
Consequently, atoms no longer travel ballistically between
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the adjacent atom-wall collisions, leading to suppression of
atomic motion and degradation of the motional averaging
effect. The diffusion coefficient of alkali-metal atoms in the
background gas is an essential parameter for analyzing the
atomic motional characteristics inside the coated cell. There-
fore, a precise measurement of the diffusion coefficient is
important for accurately estimating the performance of the
coated cell.

The determination of the diffusion coefficient can be
achieved by analyzing spin-polarization relaxation caused by
a magnetic-field gradient and can be dated back to the early
1950s. The diffusion of particles is initially taken into con-
sideration in the spin-echo experiment and the impact of
diffusion on magnetic-field-gradient-induced spin relaxation
is explicitly described by Hahn [25]. The related spin-echo
method is developed and becomes an effective approach to
measure the diffusion coefficient [26], particularly in the case
of the liquid molecular samples with very small diffusion
coefficients (∼10−5 cm2/s) [27–29] and alkali-metal atomic
cells with high-pressure buffer gas [30–32].

However, in the case of the coated cell, even when consid-
ering the presence of background gas, the diffusion coefficient
of alkali-metal atoms is typically much larger than the val-
ues of the examples mentioned above [33]. The much larger
diffusion coefficient requires precise control of considerably
shorter pulse intervals and shorter pulse widths, compared
to previous works in the spin-echo method [27–32]. Such a
necessity makes it a complex and challenging task to measure
the diffusion coefficient of alkali-metal atoms in the coated
cell through using the spin-echo method.

Torrey proposes an alternative description for the influence
of diffusion on magnetic-field-gradient-induced relaxation
[34], which combines the normal diffusion equation with the
Bloch equation and gives results similar to those obtained in
earlier spin-echo experiments [25,26]. Taking it a step fur-
ther, Torrey’s method is extended by the perturbative theory
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and is applied to study the magnetic-field-gradient-induced
spin relaxation with the consideration of boundaries [35]. In
Ref. [36], an equivalent approach combines the Redfield the-
ory and normal diffusion equation, yielding the same results
as in Ref. [35]. These methods establish a relation between
the magnetic-field-gradient-induced relaxation and the diffu-
sion coefficient and then are applied to measure the diffusion
coefficients of noble gases [37–40] and the atomic cell filled
with high-pressure buffer gas [41].

Notably, the analysis methods mentioned above are only
applicable to cells with high-pressure gas, where the mean
free path of atoms is much smaller than the cell size (λ � R)
[42]. For the coated cell, the mean free path of atoms may be
comparable to or even larger than the cell size. Under such
conditions, the normal diffusion equation is not valid and a
modified theory should be applied to analyze magnetic-field-
gradient-induced relaxation in the coated cell [43]. References
[24] and [33] investigate the alkali-metal atomic diffusion in
the presence of background gas by measuring the velocity-
changing collisions rate and spin-noise spectrum in the coated
cell, respectively. Besides, the majority of previous research
on analyzing background gas inside the coated cell are
typically destructive and rely on a mass spectrometer for
analysis [20–23].

In this paper, we present a method for promptly analyzing
the atomic diffusion coefficient and a potential nondestruc-
tive method to obtain the background gas pressure inside the
coated cell. The Redfield theory combined with Langevin’s
diffusion equation is applied to theoretically analyze the
magnetic-field-gradient-induced relaxation in the coated cell.
We experimentally obtain the diffusion coefficient of potas-
sium atoms in a fabricated cylindrical paraffin-coated cell,
along with the corresponding uncertainty, by measuring and
analyzing the transverse spin relaxation caused by first-
order and second-order magnetic-field gradients, respectively,
given the different dependencies of these two different re-
laxation effects on the diffusion coefficient. Although the
diffusion coefficients obtained under the two magnetic-field
gradients exhibit some deviation, we show in detail how to
perform error analysis and determine that such a deviation
is dominantly attributed to the estimated error of the cell
position.

II. THEORY

This section presents a basic theoretical model for depict-
ing the magnetic-field-gradient-induced spin relaxation in a
coated cell. The theoretical model combines the Redfield the-
ory with Langevin’s diffusion equation [43]. Additionally, this
section outlines the fundamental procedures for determining
the diffusion coefficient based on the analysis of magnetic-
field-gradient-induced relaxation.

In general, the magnetic-field-gradient-induced spin re-
laxation is described by the Redfield theory, which is a
generalized treatment of second-order time-dependent pertur-
bation [44,45]. Redfield theory has been applied to analyze
the magnetic-field-gradient-induced spin relaxation for the
cell filled with noble gas [36]. It has also been proved that
this approach is equivalent to the theory based on Torrey’s
diffusion equation with perturbative theory [35,42].

To utilize the Redfield theory for analyzing magnetic-field-
gradient-induced relaxation in the coated cell, it is necessary
to analyze the characteristic of atomic motion within the cell.
The atomic motion can be represented by the conditional
probability density, denoted as ρ(�r, t | �r0, t0), which indicates
the conditional probability density of an atom being at po-
sition �r at time t , given that its initial time and position are
t0 and �r0, respectively. For an atomic vapor cell filled with
high-pressure gas, in which the mean free path of the atoms is
much smaller than the size of cell (λ � R), the atomic motion
can be described by the normal diffusion equation [36]

∂

∂t
ρ(�r, t | �r0, t0) = D∇2ρ(�r, t | �r0, t0), (1)

where D is the diffusion coefficient. Nevertheless, in the case
of a coated cell with non-negligible background gas, where
the mean free path of atoms is comparable to the size of the
coated cell, our previous research suggests that Langevin’s
diffusion model is more appropriate for describing the atomic
motion [43]

∂

∂t
ρ(�r, t | �r0, t0) = D

(
1 − e− |t−t0 |

τD

)
∇2ρ(�r, t | �r0, t0), (2)

where τD = Dm/(kBT ), in which m is the mass of a single
atom, T is the temperature of the cell, and kB is the Boltzmann
constant. To solve Eq. (2), the boundary condition is assumed
to have the form

�n ∂ρ(�r, t | �r0, t0)

∂n

∣∣∣∣
r=R

= 0, (3)

where �n is an outwardly directed normal unit vector to the
spherical wall. Equation (3) is known as the Neumann bound-
ary condition and is suitable for high-quality coated cells,
i.e., the wall-induced spin relaxation is neglected and the
spin relaxation time is much longer than the atomic motional
time between adjacent wall collisions [46,47]. The relaxation
caused by the magnetic-field gradient can thus be determined
by combining the Redfield theory with Langevin’s diffusion
equation. Detailed derivations can be seen in Appendix A 2.
The magnetic-field-gradient-induced spin relaxation is closely
associated with the motional characteristics of atoms in the
coated cell, i.e., the diffusion coefficient. Thus measuring the
magnetic-field-gradient-induced relaxation allows for the de-
termination of the diffusion coefficient D of the atoms within
the coated cell. For a cylindrical coated cell with its axis
perpendicular to the z axis (the direction of the bias magnetic
field), as detailed in Appendix A 2, the transverse relaxation
time T2 caused by first-order magnetic-field gradient ∂Bz/∂z
and second-order magnetic-field gradient ∂2Bz/∂z2 are
given by

1

πT2
= γ 2

π
W (R, L, D) ×

(
∂Bz

∂z

)2

= a1 ×
(

∂Bz

∂z

)2

(4)

and

1

πT2
= γ 2

π
P(R, L, D) ×

(
∂2Bz

∂z2

)2

= a2 ×
(

∂2Bz

∂z2

)2

, (5)

where R and L represent the radius and length of the cylin-
drical coated cell, respectively. The terms W (R, L, D) and
P(R, L, D) are the comprehensive functions that depend on
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FIG. 1. Experimental setup of an all-optical potassium atomic
magnetometer for measuring the magnetic-field-gradient-induced
spin relaxation. FC, fiber coupler; PMF, polarization-maintaining
fiber; λ/2, half-wave plate; λ/4, quarter-wave plate; WP, Wollaston
prism; R, reflector; AOM, acousto-optic modulator; PD, photodetec-
tor; LIA, lock-in amplifier; SG, signal generator; CS, current sources.
The dashed circles represent the coils, including the nonmoment
coil (black), the second-order gradient coil (gray), and the first-order
magnetic-field-gradient coil (brown).

both the cell size and the diffusion coefficient. Detailed calcu-
lations are provided in Appendixes A 2 c and A 2 d. Besides,
it should be noted that the proposed theoretical model is
applicable for different cell shapes [43].

The transverse relaxation demonstrates a quadratic rela-
tion with both ∂Bz/∂z and ∂2Bz/∂z2 and the corresponding
quadratic coefficients are denoted as a1 and a2, which are re-
lated to D. Furthermore, the ratio a1/a2 remains a function of
D, as is shown in Appendixes A 2 c and A 2 d. This indicates
that the two functions a1 and a2 are linearly independent [48].
Consequently, the diffusion coefficient can be independently
assessed by measuring the transverse spin relaxation caused
by first-order and second-order magnetic-field gradients,
respectively.

III. EXPERIMENT

In this section, an all-optical atomic magnetometer is
applied to measure the transverse spin relaxation caused
by first-order and second-order magnetic-field gradients, re-
spectively, within a cylindrical paraffin-coated cell. The
corresponding diffusion coefficients are determined by com-
bining the experimental results with the proposed theory in
Sec. II.

A. Apparatus

An all-optical potassium atomic magnetometer based on
the Bell-Bloom configuration is schematically shown in Fig. 1
[49]. The 39K atomic vapor cell coated with paraffin is
cylindrical with a radius of R = 12.65 mm and a length of

L = 30 mm. The coated vapor cell is heated and maintained
at a temperature of 58.8 ◦C to enhance the signal-to-noise ratio
of magnetic resonances.

A circularly polarized pump laser, which is tuned to be
resonant with the potassium D1 line, is applied to optically
pump the transverse spin polarization along the x axis. The
power of the pump laser is modulated with a 10% duty cycle
to drive the spin precession synchronously, if the modulation
frequency is close to the spin precession frequency under
the axial bias magnetic field B0. A linearly polarized laser
(∼200 MHz blue detuned from the D2 line of the potassium)
propagating along the y axis is used to measure the trans-
verse spin polarization through an optical rotation effect [50].
The power of both lasers entering the vapor cell is less than
100 µW. Polarization-maintaining fibers and fiber couplers
are applied to transmit the laser beams into the four-layer
magnetic shield. All optical components inside the magnetic
shield are nonmagnetic. The coated cell, relevant optical com-
ponents, and a photodetector are integrated into a detection
module made of polyetheretherketone (PEEK).

The coils inside the magnetic shield are driven with the
current sources. A nonmoment coil generates the bias mag-
netic field B0 along the z axis (aligned with the axial direction
of the magnetic shield and perpendicular to the propaga-
tion direction of both the pump beam and the probe beam).
Additionally, two magnetic-field-gradient coils are used to
independently generate the first-order and second-order ax-
ial magnetic-field gradients, i.e., ∂Bz/∂z and ∂2Bz/∂z2. The
central axes of the magnetic shield and the coils are aligned
through manual adjustments. The detection module and first-
order gradient coil are fixed together and the cell is positioned
at the center of the first-order gradient coil.

The optical rotation signal is measured with a photode-
tector and is demodulated with a lock-in amplifier (Stanford
Research Systems, SR865A). The magnetic resonance is
recorded as a function of modulation frequency and a
Lorentzian function is utilized for the fitting of magnetic
resonance, facilitating the extraction of the signal linewidth
[full width at half maximum (FWHM)], as detailed in Ap-
pendix B 1. In our experiment, the relation between the
linewidth of magnetic resonance and the transverse relaxation
time T2 takes the form of FWHM = 1/(πT2), with the unit
Hz. This is a general expression for analyzing the linewidth of
magnetic resonance. The primary contributions to transverse
spin relaxation include three main factors: wall relaxation,
optical power broadening, and magnetic-field gradient. Our
work primarily focuses on the transverse spin relaxation
caused by the magnetic-field gradient through examining the
relation between the magnetic-field gradient and the linewidth
of magnetic resonance.

B. Magnetic-field-gradient-induced relaxation

To analyze the magnetic-field-gradient-induced trans-
verse spin relaxation, the linewidths of magnetic resonances
are recorded under different first-order and second-order
magnetic-field gradients, respectively. The bias magnetic field
is adjusted as B0 ≈ 1200 nT. Under this condition, the cor-
responding Larmor frequency satisfies the condition ω0 �
D/R2, allowing one to disregard the influence of T1 on T2 [43].
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FIG. 2. Experimental results of magnetic-field-gradient-induced
relaxation under B0 ≈ 1200 nT. (a) Relation between the measured
linewidth of the magnetic resonance and the applied first-order
magnetic-field gradient (∂Bz/∂z). A quadratic function (red line) is
used to fit the measured data (black points). (b) Relation between
the measured linewidth of the magnetic resonance and the applied
second-order magnetic-field gradient (∂2Bz/∂z2). A quadratic func-
tion (blue line) is used to fit the measured data (black points). For
each gradient, the magnetic resonance linewidth is measured for five
times, through which the error bar is derived.

T2 is sensitive to the axial gradient ∂ lBz/∂zl generated with the
coils and remains independent of the bias magnetic field [35].

Figure 2(a) illustrates the relation between the measured
linewidth of the magnetic resonance and the first-order
magnetic-field gradient, ∂Bz/∂z. For each gradient, the mag-
netic resonance linewidth is measured for five times. The
standard deviation gives the corresponding error bar. Equa-
tion (4) shows clearly that the corresponding transverse spin
relaxation exhibits a quadratic dependence on ∂Bz/∂z, which
takes the form

FWHM = 1

πT2
= a1

(
∂Bz

∂z
− b1

)2

+ γ0, (6)

where a1 is the fitted quadratic coefficient, which character-
izes the response to the first-order magnetic-field gradient of
the transverse spin relaxation; b1 denotes the constant residual
first-order magnetic-field gradient at the position of the cell.
Since b1 is a constant, it does not affect the estimation of a1;
γ0 is the intrinsic relaxation caused by wall relaxation and
optical power broadening. It is important to note that, even
in the presence of a small amount of background gas, atoms
still diffuse rapidly and pass through the beam region multiple
times during the relaxation time. Hence the impact of beam

size and optical power broadening on a1 is negligible when
considering the relaxation effect caused by the magnetic-field
gradient in our coated cell [43].

Special attention should be given to the quadratic coeffi-
cient a1 since it is associated with the diffusion coefficient
D. To determine the value of the fitted quadratic coefficient
a1 along with its uncertainty, it is necessary to consider
both the errors in measured linewidths and magnetic-field
gradients. A fluxgate magnetometer is applied to calibrate
the current-gradient coefficients of the gradient coils. The
fluxgate magnetometer is positioned near the cell position
and shifted axially, and the corresponding magnetic fields
generated with the gradient coils are recorded. Multiple sim-
ilar measurements are performed with different currents. The
current-gradient coefficients of the magnetic-field-gradient
coils are thus obtained through fitting the relation between
the axial positions and the axial magnetic fields. The current-
gradient coefficient of the first-order gradient coil in our
experiment is calibrated as 24.28 ± 0.06 (nT/cm)/mA (see
Appendix B 2 for details).

It is reasonable to assume that the errors in first-order
magnetic-field gradients and errors in linewidths are indepen-
dent. Furthermore, both errors follow normal distribution [51].
With the consideration of both errors in measured linewidths
and in measured first-order magnetic-field gradients, the fitted
quadratic coefficient a1 can be obtained through combining
total least squares and Monte Carlo methods [52,53]. For each
data set in the Monte Carlo simulation, random errors with
corresponding normal distributions are added to the gradients
and linewidths, respectively. Then the value of a1 is obtained
through the method of total least squares (see Appendix B 3).
After 104 Monte Carlo simulations, the mean value and the
standard deviation of a1 are

a1 = (8.35 ± 0.12) × 10−2(Hz cm2/nT2), (7)

which represents the transverse spin relaxation caused by first-
order magnetic-field gradient ∂Bz/∂z. Similarly, the measured
current-gradient coefficient of the second-order gradient coil
is 0.753 ± 0.006 (nT/cm2)/mA. The fitted quadratic coeffi-
cient a2 shown in Fig. 2(b) is

a2 = (8.80 ± 0.15) × 10−3(Hz cm4/nT2), (8)

which represents the transverse spin relaxation caused by
second-order magnetic-field gradient ∂2Bz/∂z2.

C. Determination of the diffusion coefficient

As indicated in Eqs. (4) and (5), the quadratic coefficients
a1 and a2 are influenced by both the cell size and the diffusion
coefficient

a1 = γ 2

π
× W (R, L, D), a2 = γ 2

π
× P(R, L, D). (9)

The detailed expressions for W (R, L, D) and P(R, L, D) can
be found in Appendixes A 2 c and A 2 d. These relations are
also depicted in Fig. 3(a) for the cylindrical coated cell in
our experiment. Therefore, the diffusion coefficient D can be
determined through numerical solution after measuring a1 and
a2 experimentally.
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FIG. 3. Impact of quadratic coefficients and cell size on the mea-
sured diffusion coefficients. (a) The influence of a1 and a2 on the
diffusion coefficients with constant cell size. (b) The influence of
cell radius R on the diffusion coefficients with constant quadratic
coefficients.

It should be noted that magnetic-field-gradient-induced
transverse relaxation is sensitive to the cell size, as shown in
Fig. 3(b); thus the measured error of cell size should be taken
into consideration. The instrumental error 	 = 0.02 mm is
used to represent the uncertainty of measured cell size. Con-
sidering the errors in cell size measurement and the errors
in experimental fitting, the Monte Carlo simulation and nu-
merical calculation are applied to determine the diffusion
coefficients along with uncertainties based on the measured
a1 and a2, respectively, and give the values as

a1 → D1 = 0.137 ± 0.002 m2/s,

a2 → D2 = 0.116 ± 0.002 m2/s, (10)

where D1 and D2 denote the diffusion coefficients acquired
through analyzing first-order and second-order magnetic-
field-gradient-induced transverse relaxation, respectively.

IV. SYSTEMATIC ERRORS ANALYSIS

It is observed that there exists some deviation between
the values of D1 and D2, denoted as δD = D1 − D2 =
0.021 m2/s. Furthermore, the uncertainties associated with
the diffusion coefficients due to cell size measurement and
experimental fitting (	D1 ≈ 	D2 ≈ 0.002 m2/s) are about
one order of magnitude smaller than the deviation δD. Hence
it is necessary to analyze additional potential systematic errors
contributing to δD.

A. Cell misalignment

For an ideal situation, the cylindrical cell should be po-
sitioned at the center of the gradient coils and its axis of
symmetry should be aligned along the same direction as the y
axis. However, it is challenging to achieve a perfect alignment
of the cell, resulting in rotational error that can impact the
analysis of relaxation.

As discussed in Appendix A 3, when the cylindrical cell is
positioned at the center of the gradient coils, rotation around
the x axis affects the relaxation caused by magnetic-field
gradients. It is assumed here that the smallest rotation error
observed manually is approximately 	α � 2◦. Combining
coordinate transformations with numerical solutions, the two
uncertainties of the diffusion coefficients caused by the rota-
tion error can be obtained as follows:

	α ≈ 2◦ → 	D1 ≈ 0.0007 m2/s,

	α ≈ 2◦ → 	D2 ≈ 0.0017 m2/s. (11)

It is shown that the associated uncertainties are tiny
(	D1,	D2 � δD). In reality, through calibration with some
horizontal references, the rotational error during the experi-
ment should be smaller than the set value 	α ≈ 2◦. Therefore,
the misalignment error of the cell is not the dominant contri-
bution of δD = 0.021 m2/s.

B. Cell position

For a practical situation, it is also difficult to position the
cell perfectly at the center of the gradient coils, resulting in
displacement error that affects the analysis of relaxation. We
present here a thorough analysis on displacement error of
the cell in relation to the first-order gradient coil. The spatial
distribution of the magnetic field generated with the first-order
gradient coil can be shown as

Bz =
√

4π

3
rY 0

1 (θ, φ)k1I = z × k1I, (12)

where k1 = 24.28 ± 0.06 (nT/cm)/mA denotes the gradient
coil coefficient and I is the current. Equation (12) shows that
the first-order magnetic-field gradient experienced by the cell,
∂Bz/∂z = k1I , is independent of displacement.

However, due to imperfections in the coil design, the spa-
tial distribution of the first-order gradient is not uniform.
Therefore, displacement error affects the first-order magnetic-
field gradient experienced by the cell, ultimately leading
to uncertainty in diffusion coefficient estimation. It is as-
sumed here that the displacement error is about 0.5 cm. As
a result, the uncertainty of the diffusion coefficient can be
calculated as

	x ≈ 5 cm → 	k1 → 	D1 ≈ 0.0006 m2/s,

	y ≈ 5 cm → 	k1 → 	D1 ≈ 0.0006 m2/s,

	z ≈ 5 cm → 	k1 → 	D1 ≈ 0.0012 m2/s. (13)

It is shown that the associated uncertainties are as well tiny
(	D1 � δD). The cell is securely fixed at the center of the
first-order gradient coil through designed structural compo-
nents and the actual displacement error is significantly less
than the set value 0.5 cm. Consequently, the displacement
error of the cell in relation to the first-order gradient coil is
not the dominant contribution of δD = 0.021 m2/s.

Another examination is performed on the displacement
error of the cell in relation to the second-order gradient coil.
The spatial distribution of the magnetic field generated with

062814-5



ZHENG, ABDUKERIM, LI, WU, AND GUO PHYSICAL REVIEW A 109, 062814 (2024)

FIG. 4. Impact of the spatial displacement on measurement of
diffusion coefficient D2. (a) The influence of z displacement on a2

and D2 is measured in the experiment. The position of the detection
module is manually adjusted along the z axis and the corresponding
values for a2 and D2 are recorded. The cell is positioned near the
center of the second-order gradient coil. Adjustments in the x and y
axes are constrained by the fixed structure. (b) The δD-displacement
surface is calculated based on our proposed theory. In this figure, x, y,
and z denote the displacements of the cell along the three directions
relative to the center of the second-order gradient coil. The origin of
the coordinate system represents D2 = D1 and at each point on this
surface D2 = D1 − δD, where δD = 0.021 m2/s.

the second-order gradient coil can be depicted as

Bz =
√

π

5
r2Y 0

2 (θ, φ)k2I =
(

z2

2
− x2 + y2

4

)
× k2I, (14)

where k2 = 0.753 ± 0.006 (nT/cm2)/mA denotes the gradi-
ent coil coefficient; x, y, and z represent the displacements
along the three directions relative to the center of the gradient
coil. Due to the quadratic correlation between Bz and the dis-
placement, the presence of a displacement between the atomic
cell and the center of the second-order gradient coil introduces
an additional first-order magnetic-field gradient. This addi-
tional gradient can induce extra transverse relaxation. Under
this condition, the quadratic coefficient a2 increases, result-
ing in a smaller corresponding D2 deduced by a2. In other
words, the experimental measured result of D2 is sensitive
to the nonzero displacement between the atomic cell and the
center of the second-order gradient coil. Figure 4(a) shows the
influence of z displacement on the experimental measurement
of D2. To ensure the accuracy of the experiment, the coated
cell should be positioned at the center of the second-order

gradient coil. Under this condition, the measured a2 is at
the most accurate and the minimum level. The measured a2

in Eq. (8) represents the minimum result achievable through
manual adjustments on the axial displacement of the detection
module. However, the corresponding diffusion coefficient D2

is still smaller than D1.
Assuming that there is an optimal placement of the atomic

cell where D2 equals D1, then a δD-displacement surface can
be employed to depict the relation between the displacement
and the deviation δD. The δD-displacement surface is illus-
trated in Fig. 4(b), where the origin of the coordinate system
means δD = D1 − D2 = 0 and, at each point on this surface,
δD = 0.021 m2/s. It can be observed that the boundary of
axial displacement corresponding to the δD-displacement sur-
face is approximately 1 mm. Given that δD is also sensitive
to displacements along the x axis and y axis, performing
fine manual adjustments becomes challenging. Therefore, it is
reasonable to conclude that the displacement error of the cell
in relation to the second-order gradient coil is the dominant
factor contributing to δD = 0.021 m2/s.

C. Coil imperfections

Imperfections in the coil design may also introduce addi-
tional errors. For the first-order gradient coil, the generated
magnetic-field gradient includes not only the first-order
component but also higher-order components. Hence, as men-
tioned above, the imperfection in design of the first-order
gradient coil is similar to a displacement problem of the cell
and is not the dominant factor of δD = 0.021 m2/s. Similarly,
there will be additional tiny first-order gradients generated
with the second-order gradient coil. However, as we discussed
earlier, the relative displacement between the cell and the
center of the second-order gradient coil as well causes the
cell to experience an additional first-order gradient. In other
words, the imperfection in design of the second-order gradient
coil can be equated to a displacement problem of the cell.

In conclusion, after analyzing the impact of various er-
rors independently, it can be determined that the deviation,
δD = 0.021 m2/s, primarily originates from the displacement
of the cell relative to the center of the second-order gra-
dient coil, as summarized in Table I. It is also credible to
assume that there exists an ideal position for the cell where
δD = D1 − D2 ≈ 0, which means that the diffusion coeffi-
cient measured by the proposed method is about 0.137 m2/s.
Considering that the measurement result error is more sen-
sitive to the displacement and/or misalignment error from
the second-order magnetic-field-gradient coil, we adopt the
measured diffusion coefficient based on using the first-order
magnetic-field-gradient coil as the final result. This result is
consistent with the order of magnitude reported in pioneering
studies of coated cells with background gas [24,33].

V. DISCUSSION

A. Pressure of the background gas

In this work, the magnetic-field-gradient-induced spin re-
laxation is analyzed to determine the diffusion coefficient for
potassium atoms in the background gas within a cylindrical
paraffin-coated cell. The corresponding diffusion coefficient
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TABLE I. Summary of potential systematic errors in diffusion coefficient measurements. 	R and 	L represent errors in cell size
measurements, 	a1 and 	a2 represent errors in experimental fitting, 	α means rotational (misalignment) errors of the cell, and 	z means
displacement errors of the cell.

Source of error Uncertainty 	D1 	D2

Cell size measurements and data fitting 	R, 	L, 	a1, 	a2 ∼ 0.002 m2/s ∼ 0.002 m2/s
Rotation of the cell 	α ≈ 2◦ ∼ 0.0007 m2/s ∼ 0.0017 m2/s
Displacement of the cell 	z ≈ 1 mm ∼ 0.0002 m2/s ∼ 0.02 m2/s

is obtained as 0.137 m2/s. As discussed in our previous work,
a potential application of measuring the diffusion coefficient
is to evaluate the pressure of the background gas within the
coated cell [43].

Based on the classical kinetic theory, the relation between
diffusion coefficient and mean free path can be expressed as
D = λv̄/6 in a three-dimensional random walk, where v̄ is the
thermal velocity of potassium atoms. With the consideration
of background gas, the mean free path and diffusion coeffi-
cient are given by

λ = kBT

pbσc

v̄

vrel
, D = kBT v̄2

6pbσcvrel
, (15)

where vrel is the mean relative velocity between potassium
atoms and background gas molecules, T is the temperature
of the cell, kB is the Boltzmann constant, pb is the pres-
sure of the background gas, and σc is the cross section for
velocity-changing collisions between the potassium atom and
background gas. Hence, once the diffusion coefficient is mea-
sured, the knowledge of the cross section σc allows us to
deduce the pressure of the background gas.

Theoretical calculation of the cross section σc is chal-
lenging due to the necessity of precise interaction potentials
in quantum scattering theory [54,55]. Therefore, the cross
section is primarily obtained through experimental measure-
ments. The typical value of σc for the alkali-metal atoms and
background gas molecules is chosen as ∼1 × 10−18 m2 based
on previous work [24,33,43]. Actually, the selection of σc

depends on the composition of the background gas inside the
coated cell. To the best of our knowledge, in-depth research
on the composition of background gas inside potassium vapor
cells coated with paraffin is currently insufficient. Conse-
quently, it should be emphasized that our estimation of the
background gas pressure is a relatively rough approximation.

For the alkali-metal atomic vapor cell coated with paraffin,
which is typical composed of long-chain alkanes, alkali-metal
atoms could undergo a chemical reaction with paraffin upon
contact with the coating. The corresponding chemical reaction
could lead to the breaking of the carbon chain in the paraffin,
potentially producing hydrogen and hydrocarbons. Reference
[23] describes an experiment in which a paraffin-coated Rb
vapor cell is opened in a vacuum chamber and the released
background gas is analyzed using a quadrupole mass spec-
trometer. The result suggests that the background gas inside
the paraffin-coated Rb vapor cell is predominantly composed
of hydrocarbons with three or more carbon atoms (C3 and
higher), along with hydrogen.

In our fabricated coated cell, it is assumed that the pri-
mary components of the background gas are hydrogen and

hydrocarbons. Some measured cross sections between potas-
sium atoms and various molecules are listed in Table II.
Considering the diverse components of the background gas,
the approximate mean values are opted for vrel ≈ 1000 m/s
and σc ≈ 5 × 10−18 m2/s. The pressure of background gas of
our coated cell can be determined as pb ≈ 0.24 Pa, which is
significantly higher than the saturated vapor pressure of the
potassium atoms (9.21 × 10−5 Pa).

It is important to reiterate that our measurement about
background gas pressure is a rough estimation, due to the
complex mechanism of chemical reaction between alkali-
metal atoms and the coating material, as well as the
dependence of background gas composition on the type of
paraffin [23]. Nevertheless, our work still introduces a po-
tential noninvasive method for analyzing background gas
pressure inside the coated cell.

B. Performance of the coated cell

Our work provides a noninvasive method for measuring
the diffusion coefficient of atoms in the background gas, as
well as an estimation of background gas pressure through
diffusion coefficient measurement. The measurement of these
parameters facilitates further evaluation for the performance
of the coated cell.

The measurement of diffusion coefficient helps directly
assess the motional averaging effect. In addition to the
magnetometry, the coated cell exhibiting the motional av-
eraging effect is also employed in the development of
quantum systems that require long coherence times, such as
photonic networks and single-photon sources [11,12]. Conse-
quently, measuring the diffusion coefficient is advantageous
for evaluating the performance of the coated cell in practical
applications.

Taking into account the saturated vapor pressure under
ideal condition, the mean free path of atoms inside the coated

TABLE II. Corresponding cross sections (σc) between potas-
sium atoms and various molecules are experimentally determined in
Refs. [56,57]. The mean relative velocities between potassium atoms
and these molecules are calculated at a temperature of 58.8 ◦C.

Molecule σc (m2) vrel (m/s)

K - H2 2.36 × 10−18 2077.9
K - CH4 7.12 × 10−18 850.9
K - C2H4 9.54 × 10−18 709.9
K - C2H6 9.62 × 10−18 696.0
K - C3H6 11.52 × 10−18 637.3
K - C3H8 11.82 × 10−18 630.3

062814-7



ZHENG, ABDUKERIM, LI, WU, AND GUO PHYSICAL REVIEW A 109, 062814 (2024)

cell is much larger than the cell size. The relaxation caused
by the magnetic-field gradient is inversely proportional to the
atomic velocity [15], which indicates that a higher velocity
results in a more pronounced motional averaging effect. With
the consideration of the background gas, the mean free path
of atoms becomes comparable to or even smaller than the cell
size. Under this condition, the motional averaging effect is
more effectively characterized by the diffusion coefficient D
than by the atomic velocity v̄. A larger diffusion coefficient
implies more rapid atomic motion, indicating a more sig-
nificant motional averaging effect. Furthermore, it should be
noted that, in order to guarantee the validity of our proposed
method, the background gas pressure inside the cell must not
be too high, so that the corresponding diffusion coefficient
must not be too small.

Measuring the diffusion coefficient and estimating the
background gas pressure are also advantageous for a more
accurate assessment of wall-induced relaxation. The wall-
induced relaxation can be represented by the longitudinal
relaxation time T1, which can be measured in experiment. T1

is related to the atomic diffusion and the number of bounces
N before depolarization. In other words, T1 is closely related
to the time taken by the atom to undergo N depolarization
wall collisions. Therefore, a longer T1 implies a smaller wall-
induced relaxation rate.

At the presence of a small amount of background gas, in
the case where T1 � R2/D, due to the cluster of background
gas near the cell wall, the atoms tend to hit the wall several
times before diffusing away [58]. Under this condition, the
presence of background gas does not affect the time taken
by atoms to undergo N depolarization wall collisions. In
other words, a small amount of background gas does not
impact the longitudinal relaxation time T1, i.e., the wall-
induced relaxation rate [43]. However, when the background
gas pressure becomes higher, wall-induced relaxation involves
a more intricate mechanism and T1 is related to the diffu-
sion coefficient of atoms [59,60]. Under this condition, the
presence of background gas can influence the wall-induced
relaxation.

Additionally, the measurement of diffusion coefficient and
background gas pressure are beneficial for evaluating the per-
formance of the coating. The background gas is generated
through the chemical reaction between alkali-metal atoms and
the coating. On the one hand, this chemical reaction may have
positive effects on the coating. Some previous experiments
indicate that the wall-induced relaxation rate decreases after
alkali-metal atoms react with the coating [19,20]. Reference
[20] indicates that chemical reactions with Rb atoms remove
residual silanol groups (Si-OH) from the wall surface. This
process leads to a more uniform coverage of the surface with
methyl -CH3 groups, which could be a potential factor con-
tributing to the enhancement of coating properties. On the
other hand, the chemical reaction also generates compounds
of alkali metal, which may act as impurities adhering to the
coating surface and thus affect the performance of the coating
[20]. Thus the measurement of the background gas pressure
becomes beneficial for evaluating the performance of the coat-
ing and provides a feasible approach for analyzing the degree
of chemical reaction between the coating and alkali-metal
atoms.

VI. CONCLUSIONS AND OUTLOOK

With the consideration of non-negligible background gas,
the diffusion coefficient of potassium atoms in a cylindrical
paraffin-coated cell is determined by analyzing the trans-
verse spin relaxation caused by first-order and second-order
magnetic-field gradients, due to the distinct dependencies of
these two relaxation effects on the diffusion coefficient. Our
experiment shows that there is a deviation between the two
measured values, denoted as δD. Further error analysis reveals
that this deviation mainly arises from the relative displace-
ment between the cell and the center of the second-order
gradient coil. Based on detailed calculations, it can be found
that the deviation δD corresponds to a cell displacement error
of approximately 1 mm. Considering the precision of manual
adjustments, it is determined that the measured deviation falls
within the estimated error range. Ultimately, it is reasonable to
adopt the value of 0.137 m2/s as the diffusion coefficient of
potassium atoms in background gas, indicating an estimated
background gas pressure at approximately 0.25 Pa. This pres-
sure is significantly higher than the saturated vapor pressure
of alkali-metal atoms. Our study offers a potential guidance
to determine the background gas pressure nondestructively,
facilitates a more complete evaluation on the performance of
the coated cell, and is of crucial importance for promoting the
applications of coated vapor cells in high-sensitivity magne-
tometry in challenging environments.
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APPENDIX A: THEORETICAL MODEL

1. Spherical harmonic expansion of magnetic field

This section introduces the relation between the magnetic
field and magnetic-field gradient ∂ lBz/∂zl . According to the
classical electromagnetic theory, the magnetic field experi-
enced by the cell can be represented by the scalar potential

�B = −∇ϕ. (A1)

The scalar potential satisfies Laplace’s equation, ∇2ϕ = 0,
and the corresponding general solution takes the form

ϕ = −
∑
lm

Bm
l

√
4π

l!
√

2l + 1
rlY m

l (θ, φ), (A2)

where Y m
l (θ, φ) is the spherical harmonic with l and m; Bm

l

represents the weight of the corresponding component in �B.
Based on Eqs. (A1) and (A2), the magnetic field could be
arranged as [61]

�B =
∑
lm

Bm
l

√
4π l

l!
rl−1 �Y l−1,1

j=l,m (θ, φ). (A3)
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Here, �Y l−1,1
j=l,m (θ, φ) is the vector spherical harmonic [62]

�Y l−1,1
j=l,m (θ, φ) =

∑
m′,σ

〈l − 1, m′; 1, σ | j = l, m〉Y m′
l−1(θ, φ)�eσ ,

(A4)

where 〈l − 1, m′; 1, σ | j = l, m〉 is the Clebsch-Gordan co-
efficient and �eσ is the spherical unit vector. Therefore, the
longitudinal component of the magnetic field is

B′
z�ez =

∑
lm

Bm
l

√
4π l

l!
rl−1〈l − 1, m; 1, 0 | l, m〉Y m

l−1(θ, φ)�ez,

(A5)

where the constant Bm
l represents the gradient components

with different orders. If l = 1, then only m = 0 holds; B0
1

means the uniform component of B′
z. If l = 2, then m = 0,±1

holds and Bm
2 means the three independent first-order gradi-

ent components corresponding to B′
z and can be denoted as

∂B′
z/∂x, ∂B′

z/∂y, and ∂B′
z/∂z. If l = 3, then m = 0,±1,±2

holds and Bm
3 means the five independent second-order gradi-

ent components corresponding to B′
z. Consequently, Eq. (A5)

illustrates how the axial magnetic field is expanded in terms
of magnetic-field gradients.

Since the coils used in the experiment exhibit rotational
symmetry about the z axis, the axial magnetic field B′

z gen-
erated with the coils also exhibits azimuthal symmetry. By
setting m = 0, the spherical harmonic Y m

l−1(θ, φ) in Eq. (A5)
becomes independent of φ and B′

z transforms into an az-
imuthally symmetrical field:

B′
z =

∑
l=1

B0
l

√
4π l

l!
rl−1〈l − 1, 0; 1, 0 | l, 0〉Y 0

l−1(θ, φ)

=
∑
l=0

B0
l+1

1

l!

√
4π

2l + 1
rlY 0

l (θ, φ). (A6)

It can be observed that the constant B0
l+1 corresponds to the

zonal magnetic-field gradient ∂ lBz/∂zl :

B′
z =

∑
l=0

∂ lBz

∂zl

1

l!

√
4π

2l + 1
rlY 0

l (θ, φ). (A7)

Finally, B′
z can be expressed as an expansion of zonal

magnetic-field gradient ∂ lBz/∂zl with the spherical harmonic

B′
z(x, y, z) = B0

1 + rY 0
1 (θ, φ)

√
4π

3

∂Bz

∂z
+ r2Y 0

2 (θ, φ)

√
π

5

∂2Bz

∂z2
+ r3Y 0

3 (θ, φ)
1

3

√
π

7

∂3Bz

∂z3
· · ·

= B0
1 + r cos θ

∂Bz

∂z
+ r2

4
(3 cos2 θ − 1)

∂2Bz

∂z2
+ r3

12
(5 cos3θ − 3 cos θ )

∂3Bz

∂z3
· · ·

= B0
1 + z

∂Bz

∂z
+

(
z2

2
− x2 + y2

4

)
∂2Bz

∂z2
+

(
5z3

12
− zr2

4

)
∂3Bz

∂z3
· · · , (A8)

where B0
1 is the uniform component of the magnetic field;

(x, y, z) and (r, θ, φ) represent the positions in Cartesian co-
ordinates and spherical coordinates, respectively. Based on
Eq. (A8), it can be deduced that any arbitrary azimuthally
symmetrical field B′

z(x, y, z) generated with the coils can be
expressed in terms of zonal magnetic-field gradients. The
expansion coefficient associated with displacement represents
the spatial distribution mode of the corresponding constant
∂ lBz/∂zl . For the uniform field B0, the corresponding gradient
components are zero, indicating that the magnetic field does
not vary spatially.

2. Redfield theory with Langevin’s diffusion equation

a. Redfield theory

In the Redfield theory, the relaxation of spin polarization
caused by magnetic-field gradient can be represented through
the power spectral density of the magnetic-field perturbation,
along with the longitudinal relaxation time T1 and the trans-
verse relaxation time T2 [36,43],

1

T1
= γ 2

2
[S1x(ω0) + S1y(ω0)],

1

T2
= 1

2T1
+ γ 2

2
S1z(0), (A9)

where

S1x,y,z(ω) =
∫ +∞

−∞
〈B1x,y,z(�r, t )B1x,y,z(�r, t + τ )〉e−iωτ dτ

(A10)
are the power spectral density of magnetic-field perturbation
B1x,y,z(�r, t ). 〈. . .〉 means the ensemble average, γ is the gyro-
magnetic ratio, and ω0 = γ B0 is the atomic spin precession
frequency under the bias magnetic field B0, which is assumed
to be along the z axis.

More specifically, the total magnetic field experienced by
the atoms can be denoted as B = B0 + B1x,y,z(�r, t ), where
B0 denotes the uniform component and B1x,y,z(�r, t ) repre-
sents the nonuniform magnetic-field perturbation along the
x, y, and z axes, respectively. The perturbation B1x,y,z(�r, t )
is related to the influence of the magnetic-field gradient on
the atoms. In this work, the primary goal is on the impact
of the axial perturbation B1z(�r, t ) on transverse spin relax-
ation. The magnetic-field perturbation itself does not change
over time. However, due to the rapid atomic motion within
the cell, B1x,y,z(�r, t ) experienced by an atom varies at dif-
ferent moments. Redfield theory requires that the impact of
magnetic-field perturbation on the evolution of spin polar-
ization is small. Based on Eqs. (A9) and (A10), the spin
relaxation problem is simplified to determining the correct
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form of the autocorrelation function of magnetic-field pertur-
bation, denoted as 〈B1x,y,z(�r, t ) · B1x,y,z(�r, t + τ )〉.

Taking the first-order magnetic-field gradient as an exam-
ple, autocorrelation function of magnetic-field perturbation
takes the form

〈B1i(t ) · B1i(t + τ )〉 = |∇B1i|2〈i(t )i(t + τ )〉, i = x, y, z,
(A11)

where ∇B1i represents the first-order of the magnetic-
field gradient, i(t ) means the position of an atom at the
moment t , and 〈i(t )i(t + τ )〉 represents the autocorrela-
tion function of the position along the i axis. 〈i(t )i(t +
τ )〉 can be derived from the conditional probability den-
sity, providing insights into the characteristic of atomic
motion

〈i(t )i(t + τ )〉 = 〈i(t0 + τ )i(t0)〉 =
∫∫

ρ(�r0, t0)ρ(�r, t0 + τ | �r0, t0)i(t0 + τ )i(t0)dΩ dΩ0, (A12)

the integration boundaries of dΩ and dΩ0 are determined
by the shape and size of the cell, and ρ(�r0, t0) = 1/V is a
uniform initial probability density for the cell with volume
V . The term ρ(�r, t | �r0, t0) in Eq. (A12) represents the con-
ditional probability density of an atom being at position �r
at time t , given that its initial time and position are t0 and
�r0, respectively. Therefore, our problem is reduced to finding
the correct expression for the conditional probability density
ρ(�r, t | �r0, t0).

b. Solution of Langevin’s diffusion equation

Based on Langevin’s diffusion equation, the evolution of
the conditional probability density satisfies [43]

∂

∂t
ρ(�r, t |�r0, t0) = D

(
1 − e−|t−t0|/τD

)∇2ρ(�r, t |�r0, t0). (A13)

Here, τD = Dm/(kBT ), in which m is the mass of a single
atom, T is the temperature of the cell, and kB is the Boltzmann
constant. For a cylindrical cell with its axis aligned along
the y axis, Langevin’s diffusion equation can be solved in
cylindrical coordinates

z = r cos θ, x = r sin θ. (A14)

The initial condition and the boundary condition of
Langevin’s diffusion equation are

ρ(�r, t |�r0, t0) = δ(�r − �r0) = 1

r
δ(y − y0)δ(r − r0)δ(θ − θ0),

(A15)

ρ(�r, t |�r0, t0)|r=0 < ∞,
∂

∂r
ρ(�r, t |�r0, t0)

∣∣∣∣
r=R

= 0. (A16)

Here, the solution of Eq. (A13) is defined as [36]

ρtotal = ρcρy. (A17)

The first part of Eq. (A17), denoted as ρc, corresponds to the
solution of the cylindrical component

ρc = 1

2πR2

∑
n,k

AnkJn

(xnk

R
r
)

Jn

(xnk

R
r0

)

× exp [in(θ − θ0)]F

(
x2

nkD

R2
, τ

)
, (A18)

where τ = |t − t0|, R is the radius of the cylindrical cell, xnk

is the zero of the first derivative of the Bessel function Jn(x),

and Ank has the form

Ank = R2∫ R
0 rJ2

nk (xnkr/R)dr
= 2x2

nk

J2
n (xnk )

(
x2

nk − n2
) . (A19)

The second part of Eq. (A17), denoted as ρy, corresponds to
the solution for the parallel plates component

ρy = 1

L
+ 2

L

∞∑
n=1,3,...

sin
nπy

L
sin

nπy0

L
F

(
n2π2D

L2
, τ

)

+ 2

L

∞∑
n=2,4,...

cos
nπy

L
cos

nπy0

L
F

(
n2π2D

L2
, τ

)
, (A20)

where L is the length of cell, and the function F (α, τ ) is
defined as

F (α, τ ) = exp
{ −α

[
τ + τD

(
e− τ

τD − 1
)]}

. (A21)

c. Transverse relaxation caused by a first-order
magnetic-field gradient

With the consideration of a first-order magnetic-field gra-
dient generated with the gradient coil, the magnetic-field
perturbation takes the form

B1z(x, y, z) = z
∂B1z

∂z
= r cos θ

∂B1z

∂z
. (A22)

Here, it is assumed that the gradient ∂B1z/∂z does not vary
with space. The corresponding autocorrelation function of the
magnetic-field perturbation is

〈B1z(t ) · B1z(t0)〉 = 1

πR2

∫∫ (
r cos θ

∂B1z

∂z

)

×
(

r0 cos θ0
∂B1z

∂z

)
ρcr r0dr dθ dr0dθ0.

(A23)

As for the angular integrals, only the terms with n = ±1
remain; Eq. (A23) can be written as

〈B1z(t ) · B1z(t0)〉 = R2

(
∂B1z

∂z

)2 ∑
k

A1kCkF

(
x2

1kD

R2
, τ

)
,

(A24)
where

Ck = 1

R6

[∫ R

0
r2J1

(x1k

R
r
)

dr

]2

= J2
1 (x1k )

x4
1k

. (A25)
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The transverse relaxation time T2 can be obtained from the
Redfield theory

1

T2
= γ 2

∫ +∞

0
〈B1z(t0 + τ ) · B1z(t0)〉dτ

= γ 2R2

(
∂B1z

∂z

)2 ∑
k

A1kCk

∫ +∞

0
F

(
x2

1kD

R2
, τ

)
dτ.

(A26)

The exact result of the above integral requires numerical cal-
culation. Here the impact of T1 on T2 is neglected with a large
bias magnetic field B0 [35].

d. Transverse relaxation caused by a second-order
magnetic-field gradient

With the consideration of the second-order magnetic-field
gradient, the magnetic field takes the form

B1z =
[

r2

4
(3 cos2 θ − 1) − y2

4

]
∂2B1z

∂z2
. (A27)

Similarly, the autocorrelation function of magnetic-field per-
turbation could be written as

〈B1z(t ) · B1z(t0)〉 =
(

∂2B1z

∂z2

)2
R4

2π2

∑
k

[
H0kF

(
x2

0kD

R2
, τ

)
+ 2H2kF

(
x2

2kD

R2
, τ

)]

+
(

∂2B1z

∂z2

)2
⎡
⎣ L4

2304
+

∞∑
ny=2,4,...

(
L4

2n4
yπ

4

)
F

(
n2

yπ
2D

L2
, τ

)⎤
⎦, (A28)

where H0k and H2k are given by

H0k =
(π

4

)2
A0k

1

R8

[∫ R

0
r3J0

(x0k

R
r
)

dr

]2

, (A29)

H2k =
(

3π

8

)2

A2k
1

R8

[∫ R

0
r3J2

(x2k

R
r
)

dr

]2

. (A30)

Neglecting the terms which are independent of time, the transverse relaxation time can be written as

1

T2
= γ 2

∫ +∞

0
〈B1z(t0 + τ ) · B1z(t0)〉dτ

= γ 2R4

2π2

(
∂2B1z

∂z2

)2 ∑
k

[
H0k

∫ +∞

0
F

(
x2

0kD

R2
, τ

)
dτ + 2H2k

∫ +∞

0
F

(
x2

2kD

R2
, τ

)
dτ

]

+ γ 2L4

2π4

(
∂2B1z

∂z2

)2 ∞∑
ny=2,4,...

n−4
y

∫ +∞

0
F

(
n2

yπ
2D

L2
, τ

)
dτ. (A31)

Combining the Redfield theory with Langevin’s diffusion equation, the transverse relaxation time T2 caused by first-order
magnetic-field gradient ∂B1z/∂z and second-order magnetic-field gradient ∂2B1z/∂z2 can be expressed as

1

πT2
= γ 2

π
W (R, L, D) ×

(
∂B1z

∂z

)2

, (A32)

1

πT2
= γ 2

π
P(R, L, D) ×

(
∂2B1z

∂z2

)2

. (A33)

The exact results of the quadratic coefficients, i.e., W (R, L, D) and P(R, L, D), require numerical calculations. The forms of the
corresponding quadratic coefficients are summarized as below:

W (R, L, D) = R2
∑

k

A1kCk

∫ +∞

0
F

(
x2

1kD

R2
, τ

)
dτ,

P(R, L, D) = R4

2π2

∑
k

[
H0k

∫ +∞

0
F

(
x2

0kD

R2
, τ

)
dτ + 2H2k

∫ +∞

0
F

(
x2

2kD

R2
, τ

)
dτ

]

+ L4

2π4

∞∑
ny=2,4,...

n−4
y

∫ +∞

0
F

(
n2

yπ
2D

L2
, τ

)
dτ. (A34)
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FIG. 5. Alignment and rotation of the cylindrical coated cell.
(a) Three-dimensional schematic diagram of the cylindrical cell. The
axis of symmetry of the cell extends along the y axis, perpendicular
to the direction of the bias magnetic field B0. (b) Schematic diagram
of the cross section of the cylindrical cell in the zOy plane. The
cylindrical coated cell rotates around the x axis by an angle α.

3. Impact of cell rotation on relaxation

In the experiment, the axis of symmetry of the cylin-
drical cell should be aligned with the y axis to ensure
accurate analysis of relaxation. As illustrated in Fig. 5(a),
due to the rotational symmetry around the y axis, the
rotational error around this axis does not impact the relax-
ation measurement. Additionally, since the magnetic fields
generated with the coils exhibit azimuthal symmetry (inde-
pendent of φ), rotational error around the z axis does not
impact the relaxation as well. Consequently, in an ideal sit-
uation, only the rotational error around the x axis tends
to affect the relaxation caused by magnetic-field gradients.
The following contents present a theoretical approach on
analyzing the systematic error caused by cell rotation or
misalignment.

As is shown in Fig. 5(b), it is assumed that the cylindri-
cal coated cell rotates around the x axis by a small angle
α, where O-xyz is the original laboratory coordinate system
and O-x′y′z′ represents the new coordinate system after the
rotation. The coordinates of point A in the two coordinate
systems satisfy the following relation:

⎡
⎣x′

y′
z′

⎤
⎦ =

⎡
⎣1 0 0

0 cos α − sin α

0 sin α cos α

⎤
⎦

⎡
⎣x

y
z

⎤
⎦. (A35)

It is possible to calculate the relaxation information af-
ter the cell rotation through the coordinate transformation
represented by Eq. (A35). For the first-order magnetic-field-
gradient-induced relaxation, it is necessary to analyze the
transformed autocorrelation function 〈z′z′

0〉 in the new coor-
dinate system, which can be calculated that

〈z′z′
0〉 = 〈(y sin α + z cos α)(y0 sin α + z0 cos α)〉

= cos2 α〈zz0〉 + sin2 α〈yy0〉, (A36)

which implies that 〈z′z′
0〉 in the new coordinate system can

be represented as a combination of 〈zz0〉 and 〈yy0〉 from the
original laboratory coordinate system, prior to the rotation.
Subsequently, the influence of rotational error on the relax-
ation can be deduced from the transformed autocorrelation
function and the corresponding quadratic coefficient after

rotational correction is

areal
1 = aideal

1 + sin2 α(a1y − a1z ). (A37)

The same method can also be applied to analyze the transverse
relaxation caused by the second-order magnetic-field gradient
and the corresponding quadratic coefficient after rotational
correction can be calculated as

areal
2 = aideal

2 + 9

16
(cos4 α − 1)a2r

+ 3 sin2 α

16
(3 sin2 α − 2)a2y + 9 sin2 2α

16
a2zy, (A38)

where the aideal
1 and aideal

2 are the coefficients calculated in
the ideal case (no rotational error), and the corresponding
parameters can be shown as

a1y = γ 2

π

∫ +∞

0
〈yy0〉dτ, a1z = γ 2

π

∫ +∞

0
〈zz0〉dτ, (A39)

a2y = γ 2

π

∫ +∞

0

〈
y2

0y2
〉
dτ, a2zy = γ 2

π

∫ +∞

0
〈yy0zz0〉dτ,

a2r = γ 2

π

∫ +∞

0

〈
r2r2

0cos2θ cos2θ0
〉
dτ, (A40)

where y, z, r, θ mean the position of an atom at moment t and
y0, z0, r0, θ0 represent the position of an atom at initial mo-
ment t0; 〈· · · 〉 represents the autocorrelation function defined
in Eq. (A12). Further detailed results can be derived through
numerical calculations.

APPENDIX B: EXPERIMENTAL PARAMETERS
AND DATA PROCESSING

1. Linewidth of magnetic resonance

In the experiment, the precession signal of atomic polariza-
tion is measured with a photodetector and demodulated with
a lock-in amplifier (Stanford Research Systems, SR865A).
The magnetic resonance is recorded as a function of modu-
lation frequency and then the signal linewidth [full width at
half maximum (FWHM)] is extracted through fitting with a
Lorentzian function, which has the form

f (	x) = a2
1a2

4	x2 + a2
1

+ a3, (B1)

where 	x is the frequency detuning, a1 means the linewidth of
the Lorentzian function, a2 means the amplitude of the signal,
and a3 is the electric noise floor. Figure 6 shows an example
about the magnetic resonance signal and its corresponding
fitting curve.

2. Current-gradient coefficients of gradient coils

In the experiment, a fluxgate magnetometer is applied to
calibrate the current-gradient coefficients of the gradient coils.
The fluxgate magnetometer is positioned near the cell loca-
tion and moved axially. Concurrently, the corresponding axial
magnetic fields generated with the gradient coils, denoted as
Bz, are recorded.

Figure 7(a) shows an example about the measurement
of the first-order magnetic-field gradient generated with the
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FIG. 6. Example of the magnetic resonance of our coated cell. A
Lorentzian function (blue line) is used to fit the measured in-phase
signal from the lock-in amplifier (black points). The corresponding
linewidth of magnetic resonance is about 17.8 Hz.

first-order gradient coil. A certain current is applied to the
first-order gradient coil and the corresponding axial magnetic-
field distribution is measured with the fluxgate magnetometer.
First-order magnetic-field gradient is characterized by the
maximum slope corresponding to the center position. The
current-gradient coefficient of the first-order gradient coil in
our experiment is calibrated as 24.28 ± 0.06 (nT/cm)/mA.
Similarly, Fig. 7(b) shows an example about the measurement
of the second-order magnetic-field gradient generated with
the second-order gradient coil. Second-order magnetic-field
gradient at the center of the coil is characterized by the corre-
sponding quadratic coefficient

Bz = a × z2 → ∂2Bz

∂z2
= 2 × a, (B2)

where a means the fitting quadratic coefficient and z means
the axial position. Then, dividing the magnetic-field gradi-
ent by the coil current, the current-gradient coefficient of
the second-order gradient coil is obtained. Multiple similar
measurements are performed with different coil currents. The
mean value and the standard deviation representing the un-
certainty are recorded. The current-gradient coefficient of the
second-order gradient coil in our experiment is calibrated as
0.753 ± 0.006 (nT/cm2)/mA.

3. Data fitting with errors

In the experiment, it is necessary to fit a quadratic func-
tion to correlate the measured gradient with the magnetic
resonance linewidth and record the corresponding quadratic
coefficient. Due to the errors present in both the measured
magnetic-field gradients and the corresponding magnetic res-
onance linewidths, ordinary least squares fitting cannot be
directly applied. Here, the combination of total least squares
fitting with the Monte Carlo simulation is employed for the
fitting process [52,53].

The measured magnetic-field gradients can be represented
as [x1, x2, . . . , xi], where xi = x̄i ± σxi, and the measured
linewidths can be represented as [y1, y2, . . . , yi], where yi =
ȳi ± σyi. Here, σxi and σyi are the corresponding errors. The
proposed fitting method can be applied through the following
steps.

FIG. 7. Measurements of the magnetic-field gradients generated
with the gradient coils. (a) The relation between the axial position
and the axial magnetic field generated with the first-order gradient
coil (at 1 mA). First-order magnetic-field gradient is characterized
by the maximum slope corresponding to the center position. The
current-gradient coefficient of the gradient coil is obtained through
dividing the first-order magnetic-field gradient by the coil current.
(b) The relation between the axial position and the axial magnetic
field generated with the second-order gradient coil (at 32 mA).
Second-order magnetic-field gradient is characterized by fitting with
a quadratic function and recording the corresponding quadratic co-
efficient. The current-gradient coefficient of the gradient coil is
obtained through dividing the second-order magnetic-field gradient
by the coil current.

(1) For each data set in the Monte Carlo simulation, de-
noted as [x1, x2, . . . , xi]n and [y1, y2, . . . , yi]n, random errors
are added to the gradients and linewidths, i.e., xi = x̄i + δxi

and yi = ȳi + δyi. The random errors δxi and δyi follow the
corresponding normal distributions N (0, σxi ) and N (0, σyi ),
respectively.

(2) For each data set in the Monte Carlo simulation,
[x1, x2, . . . , xi]n and [y1, y2, . . . , yi]n, the fitting quadratic co-
efficient an is obtained by the total least squares method.

(3) Repeat the simulation 10 000 times.
(4) Record the mean value of an and use the standard

deviation to represent the uncertainty.
Through the above steps, the fitting quadratic coeffi-

cients along with uncertainties corresponding to the relaxation
caused by the first-order magnetic-field gradient and the
second-order magnetic-field gradient can be obtained as

a1 = (8.35 ± 0.12) × 10−2(Hz cm2/nT2),

a2 = (8.80 ± 0.15) × 10−3(Hz cm4/nT2). (B3)
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