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Bound-state stability of Coulomb three-body systems using numerical tensor methods
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In this paper we present a unified treatment of three-body atoms and molecules using numerical tensor
methods. The Schrödinger equation in perimetric coordinates is recast in a canonical tensor format. It is shown
that the Schrödinger equation can be solved in this full-tensor format but that by using a low-rank tensor
decomposition, in particular the tensor-train and quantized-tensor-train formats, energies accurate to at least
the nanohartree can be obtained for the He atom (in which the mass of the uniquely charged particle is much
greater than the other two particles), the positronium negative ion (Ps−, in which all the masses are equal), and
the non-Born-Oppenheimer H2

+ molecule (in which the mass of the uniquely charged particle is much smaller
than the other two particles).
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I. INTRODUCTION

Computational quantum chemistry (QC) has developed
into an indispensable and versatile tool, providing quantita-
tive data and new understanding of chemical systems and
processes in chemistry and large parts of physics. However,
as the many-particle Schrödinger equation (SE) cannot be
solved exactly, approximations are necessary. The standard
QC approach is to apply the Born-Oppenheimer (BO) approx-
imation and solve the electronic Schrödinger equation in the
field of the nuclei. Conventional QC methods build on the
Hartree-Fock (HF) description, which is then refined by intro-
ducing electronic excitations into a set of virtual (unoccupied)
molecular orbitals culminating in full-configuration interac-
tion (FCI). In the limit of a complete basis set and excitations
of all the electrons into all the virtual orbitals, the exact nu-
merical solution of the nonrelativistic time-independent SE is
obtained. However, FCI scales exponentially in floating-point
operations and memory with the size of the system.

An extremely powerful method that has emerged that tack-
les the exponentially greater cost in both computation and
memory with increasing excitations in coupled-cluster or CI
theory is the density-matrix renormalization-group (DMRG)
method which exploits the full power of tensors. It arose in
the physics community but has been successfully applied to
the field of QC. QC-DMRG allows the FCI wave function
to be approximated to a desired accuracy with a reasonable
cost by defining a matrix product state (MPS) as a low-rank
decomposition of the FCI tensor using a suitable finite single-
particle basis. Implementations of QC-DMRG build on the
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underlying tensor structure, in which both the MPS [known
as a tensor train (TT) in mathematics] representing the varia-
tional state, as well as the Hamiltonian operator converted to
a matrix product operator (MPO), are represented as tensor
networks. The accuracy of the DMRG method essentially
depends on the bond dimension (TT rank), which corresponds
to the number of renormalized states [1]. Without reduction
of the rank, DMRG scales exponentially, but with the choice
of a suitable bond dimension the computational complexity
is reduced to polynomial scaling. There are many excellent
reviews on DMRG (see, for example, [2–5] and references
therein).

An alternative approach to globally defined trial wave func-
tions is to solve the system using numerical methods on a
mesh. For example, in the finite-element method (FEM) the
wave function is approximated using piecewise, locally de-
fined interpolation functions. The domain is segmented into
the chosen elements (e.g., tetrahedra, cubes, etc.), and a ba-
sis of local functions, continuous over the whole domain, is
defined in each element. The quality of finite-element approx-
imations depends on the form and the density of the mesh
involved. In a series of papers, Levin, Ford, Shertzer, and
Ackermann [6–10] demonstrated that FEM can be used to cal-
culate accurate ground-state energies for three-body Coulomb
systems. Although the resulting matrices are sparse, the high
matrix dimensions needed for high accuracy presented a bot-
tleneck. However, over the past few decades, there has been
growth in electronic structure codes using real-space numeri-
cal methods on an adaptive mesh (see, for example, [11]). This
has facilitated massively parallel real-space code for large-
scale density-functional-theory calculations based on adaptive
finite-element discretization [12].

The motivation for and emphasis on the development of
numerical tensor methods (NTMs) within the mathematics
and scientific computing community result from the desire
to overcome the exponential growth in complexity with the
number of degrees of freedom, known as the “curse of di-
mensionality,” that plagues the computation of eigenvalues
in higher dimensions. Such high-dimensional problems arise
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in various applications in physics, chemistry, biology, and
engineering. Of note for the present work are the develop-
ments by Khoromskaia and Khoromskij which culminated
in their book Tensor Numerical Methods in Quantum Chem-
istry [13], in which they developed a NTM to solve the HF
equations using Gaussian-type basis functions discretized on
three-dimensional Cartesian grids and a Tucker tensor decom-
position. Later, this grid representation of the basis functions
was generalized to any well-separable function defined on a
grid. They were able to show that their NTMs, based on effi-
cient rank-structured tensor representations of the multivariate
functions and operators on a Cartesian grid, break the curse
of dimensionality. An alternative formulation was used by
Veit and Scott [14]. They used a finite-element approach in
combination with a low-rank TT approach when considering
the SE for two hydrogen atoms with a large separation within
the BO approximation.

The purpose of this paper is to solve the all-particle
time-independent Schrödinger equation for any three-body
Coulomb system using numerical tensor methods. Although
the cornerstone of QC and molecular physics is the BO
approximation, for few-particle systems it is possible to for-
mulate methods which treat the electrons and nuclei on
equal footing, and thus, the BO approximation is not in-
voked (see, for example, [15–18]). These fully correlated
all-particle methods, referred to as non-BO or pre-BO, can
provide high-accuracy energies and wave functions. In gen-
eral, in such non-BO calculations, the Hamiltonian matrix
must take all particles into account, which leads to an
exponential growth of its dimension with the number of
degrees of freedom and hence is limited to few-particle
systems. Here we show that for three-body systems, by us-
ing perimetric coordinates which are linear combinations of
the interparticle coordinates, we can write the wave func-
tion in terms of separable functions, allowing us to recast
the SE in canonical tensor format. Rather than discretizing
a globally analytical wave function or using globally de-
fined functions, we start instead by using a finite-element
approach. We choose our shape or basis functions to be
Lagrange interpolation functions, select nodes on a grid in
the three-dimensional space spanned by the perimetric co-
ordinates, and hence express the operators in the SE in
canonical tensor format. To reduce the computational com-
plexity we convert the SE to TT format and, subsequently,
a quantized-tensor-train (QTT) format and optimize a low-
rank representation using a DMRG-type algorithm known
as the alternating linear scheme (ALS) [19], which is im-
plemented within the TT toolbox written by Gelß et al.
[20,21]. It is shown that energies of at least nanohartree
accuracy can be obtained for an all-particle treatment of
an atomic system (where the mass of the uniquely charged
particle m3 is much greater than those of the other two
particles, m1 and m2, i.e., m3 � m1, m2), an exotic system
(Ps−, where m1 = m2 = m3), and a molecular system (where
m1, m2 � m3).

II. TENSORS

In this paper, tensors are simply multidimensional gener-
alizations of matrices, represented by arrays with d indices,

corresponding to an element of a tensor product of d vector
spaces. First-order tensors (that is, vectors) are usually de-
noted by lowercase boldface letters (a, b, c, . . .), second-order
tensors (matrices) are denoted by capital letters (A, B, C, . . .),
and higher-order tensors are denoted by calligraphic letters
(S,T ,U , . . .). The order of a tensor is the number of di-
mensions, also known as ways or modes. A dth-order tensor
T ∈ RN = Rn1×n2×···× nd , where ni ∈ N for i = 1, 2, . . . , d ,
d ∈ N, can be represented in its full format in terms of its
entries tx1,...,xd by

T = [T (x1, . . . , xd )] = [
tx1,...,xd

]
, xi ∈ {1, 2, . . . , ni},

i = 1, 2, . . . , d. (1)

We call N = (n1, . . . , nd )T ∈ Rd the mode set or index set.
Definition 1 [21]. A tensor T ∈ RN , RN = Rn1×···×nd , of

order d is called a rank-1 tensor if it can be written as the
tensor product of d vectors, i.e.,

T =
d⊗

i=1

T(i) = T(1) ⊗ · · · ⊗ T(d ), (2)

where T(i) ∈ Rni for i = 1, . . . , d .
If we consider linear operators G ∈ RM×N , with RM×N =

R(m1×n1 )×...×(md ×nd ), that can be expressed as rank-1 tensors,
the components G (i) are matrices, i.e.,

G =
d⊗

i=1

G (i) = G (1) ⊗ · · · ⊗ G (d ), (3)

with G (i) ∈ Rmi×ni for i = 1, . . . , d .

A. Canonical polyadic decomposition

The idea of the canonical (polyadic) format is to express
a tensor as the sum of a finite number of rank-1 tensors (see,
e.g., [22,23]). We give the definition for tensor operators (see,
e.g., Kolda and Bader [22] and Hackbusch [23]), and we use
the notation from Gelß [21]. When we fix certain indices,
colons are used to indicate the free modes (compare with
MATLAB [24] colon notation).

Definition 2. A tensor operator G ∈ RM×N , with RM×N =
R(m1×n1 )×···×(md ×nd ), is said to be in the canonical format if

G =
r∑

k=1

d⊗
i=1

G (i)
k,:,: =

r∑
k=1

G (1)
k,:,: ⊗ · · · ⊗ G (d )

k,:,:, (4)

with cores G (i) ∈ Rr×mi×ni and G (i)
k,:,: ∈ Rmi×ni for all k ∈

{1, . . . , r} and i ∈ {1, . . . , d}, where r is called the canonical
rank of the decomposition.

The canonical decomposition is the simplest and most
natural extension of the idea of the singular-value matrix
decomposition, and any tensor can be represented by a linear
combination of elementary tensors as in (2). However, the
number r of required rank-1 tensors play an important role,
and moreover, the set of canonical tensors with bounded rank
do not form a manifold, and as a consequence, optimization
problems can be ill posed [25]. Due to such drawbacks
many attempts have been made to find more stable, if
perhaps more complex, decompositions. Decompositions
that require O(d ) values to exactly recreate a dth-order
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n1 n2 n3

rtt rtt

T (1) T (2) T (3)

FIG. 1. Tensor-train representation for T ∈ RN , with TT ranks
r1 = r2 = rtt.

tensor are clearly desirable. One such decomposition is the
TT decomposition or, more commonly, TT format. The
TT format is similar to the singular-value decomposition
in that it uses products of matrices to approximate the full
tensor.

B. Tensor-train decomposition

A tensor in the TT format can be written as a matrix
product (compare with MPSs [26,27]). The mathematics was
formally developed by Hackbusch and Kühn [28] and Os-
eledets and Tyrtyshnikov [29] in 2009 as a useful tool for
numerical computations due to its stability from an algorith-
mic point of view and reasonable computational cost; we refer
to Oseledets [30] and Hackbusch [23], adopting again the
notation in the work of Gelß [21].

Definition 3. Given a tensor T ∈ RN = Rn1×···×nd , the TT
format for T has d third-order core (or factor) tensors T (k) ∈
Rrk−1×nk×rk , where (r1, . . . , rd−1) ∈ Nd−1 and r0 = rd = 1,
such that

T =
r0∑

k=0

· · ·
rd∑

kd =1

⊗
T (i)

ki−1,:,ki

=
r0∑

k=0

· · ·
rd∑

kd =1

T (1)
k0,:,k1

⊗ · · · ⊗ T (d )
kd−1,:,kd

, (5)

where the numbers rk are called TT ranks. Likewise, a ten-
sor operator G ∈ RM×N , with RM×N = R(m1×n1 )×···×(md ×nd ), is
said to be in the TT format if

G =
R0∑

k=0

· · ·
Rd∑

kd =1

d⊗
i=1

G (i)
ki−1,:,:,ki

=
R0∑

k=0

· · ·
Rd∑

kd =1

G (1)
k0,:,:,k1

⊗ · · · ⊗ G (d )
kd−1,:,:,kd

, (6)

m1

n1 n2 n3

m2 m3

Rtt RttG(1) G(2) G(3)

FIG. 2. Tensor-train operator representation for G ∈ RM×N , with
TT ranks R1 = R2 = Rtt.

with TT cores G (i) ∈ RRi−1×mi×ni×Ri for i = 1, . . . , d and R0 =
Rd = 1; the numbers Ri are called the TT ranks of the operator
cores.

Figure 1 shows the graphical representation of a tensor
train associated with a third-order tensor T ∈ RN with TT
ranks r1 = r2 = rtt, and the diagram in Fig. 2 illustrates a
tensor-train operator associated with a third-order tensor op-
erator G ∈ RM×N with TT ranks R1 = R2 = Rtt.

Throughout our calculations, the number of nodes n (for
each mode) proves to be a limiting factor within the full-tensor
format since each operator has elements of Rn3×n3

. To ensure
high accuracy, it is essential to have a sufficient number of
nodes. This is where the application of the TT format becomes
highly beneficial, as it dramatically reduces computational
complexity (storage, CPU time, memory, and processing).

C. Quantized tensor train

We can also quantize the TT format if the mode lengths ni

can be written as a product of many integers (prime integers,
for example). This quantization procedure is called a QTT
[31], and it proves to be advantageous, particularly in the
context of the ALS algorithm [19]. During each iteration of
ALS, the algorithm tackles microeigenvalue problems using
reduced matrix dimensions; as a result, computations become
faster even if they require higher ranks for the initial guess.

We briefly explain this concept for third-order tensors. Let
us assume

ni =
qi∏

j=1

ni, j,

where qi is the number of integers (different from 1) appearing
in the decomposition of ni. So if

N = M =
⎡
⎣ q1∏

j=1

n1, j,

q2∏
j=1

n2, j,

q3∏
j=1

n3, j

⎤
⎦,

then we can define the corresponding quantization

G′ ∈ R(n1,1×n1,1 )×···×(n1,q1 ×n1,q1 )×(n2,1×n2,1 )×···×(n2,q2 ×n2,q2 )×(n3,1×n3,1 )×···×(n3,q3 ×n3,q3 )

by

G′
x1,1,y1,1,...,x1,q1 ,y1,q1 ,x2,1,y2,1,...,x2,q2 ,y2,q2 ,x3,1,y3,1,...,x3,q3 ,y3,q3

= Gx1,y1,...,xd ,yd ,

where, using the little-endian convention [21], xi =
xi,1 . . . xi,qi and yi = yi,1 . . . yi,qi for i = 1, 2, 3. See Fig. 3,

where we illustrate the concept adapted to our particular
case (note that, in Fig. 3, p j := n1, j = n2, j = n3, j). The TT
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FIG. 3. Conversion from TT to QTT format of an operator: Each
core is divided into several cores with smaller mode sizes.

rank of the wave function is not affected by the quantization
procedure of the operators, and thus, the QTT rank is
that defined by the TT rank of the wave function (see
Sec. II B).

III. THREE-BODY SCHRÖDINGER
EIGENVALUE PROBLEM

We consider the motion of three charged point particles
with masses mi and charges Zi, i = 1, 2, 3. After separating
the center-of-mass motion and taking the origin to be the
location of particle 3, the time-independent Schrödinger equa-
tion for the system is given by

Hψ = Eψ, ψ �= 0, (7)

where the Hamiltonian (Schrödinger) operator takes the form
(see, e.g., [32,33])

H = − 1

2μ1
∇2

1 − 1

2μ2
∇2

2 − 1

m3
∇1 · ∇2

+ Z1Z3

r1
+ Z2Z3

r2
+ Z1Z2

r12
, (8)

with r1 and r2 being the interparticle distances with respect
to the third particle, r12 being the distance between parti-
cles 1 and 2, and μ−1

i = m−1
i + m−1

3 , i = 1, 2. Despite their
geometrical significance, being the sides of a triangle, the
domains of the variables are not independent due to the tri-
angular condition, which creates difficulties in the calculation
of the Hamiltonian matrix elements. For this reason, Coolidge
and James [34] introduced the perimetric coordinates zi, i =
1, 2, 3, which are linear combinations of the interparticle co-
ordinates:

z1 = r2 + r12 − r1, (9a)

z2 = r12 + r1 − r2, (9b)

z3 = r1 + r2 − r12. (9c)

The linear transformations in (9) facilitate our calculations
since each variable ranges from 0 to ∞. In the new coordinate
system, straightforward use of the chain rule of differentiation
yields the following form of the SE (7) in atomic units (see

[35,36]):

− 1

2

(
v11

∂2ψ

∂z2
1

+ v22
∂2ψ

∂z2
2

+ v33
∂2ψ

∂z2
3

+ v1
∂ψ

∂z1
+ v2

∂ψ

∂z2

+ v3
∂ψ

∂z3
+ v12

∂2ψ

∂z1∂z2
+ v23

∂2ψ

∂z2∂z3
+ v13

∂2ψ

∂z1∂z3

)

+ V ψ = Eψ, (10)

where

V = 2Z1Z2

z1 + z2
+ 2Z2Z3

z2 + z3
+ 2Z3Z1

z3 + z1
(11)

and

vi = 4

( −1

μi(z j + zk )
+ 1

μ j (zi + zk )
+ 1

μk (zi + z j )

)
,

vii = 1

μ1
+ 1

μ2
+ 1

μ3
− bi j

μi j
− bik

μik
+ b jk

μ jk
,

vi j = 2

(
− 1

μi
− 1

μ j
+ 1

μk
+ bi j

μi j

)
,

bi j = 2

(
x − 2ziz j (zi + z j )

x

)
,

x = (z1 + z2)(z2 + z3)(z3 + z1). (12)

Here x arises from the internal coordinate part of the Jacobian,
which is equal to x/8 for the transformation to perimetric
coordinates.

Definition 4. Strong solution. Let � = (0,∞)3. An
eigenpair (ψ, E ) ∈ C2(�) × R is a strong solution of the
Schrödinger eigenvalue problem (7) in perimetric coordinates
if (10) holds.

Next, we multiply both sides of Eq. (10) by a smooth, com-
pactly supported (test) function φ. Then we integrate over the
whole space on both sides, and subsequently, we perform an
integration by parts on the left-hand side, multiplying through
by the Jacobian, where x is defined in (12). After simplifying
the resulting expression, we obtain the weak formulation.

Definition 5. Weak solution. An eigenpair (ψ, E ) ∈
H1

0 (�) × R is said to be a weak solution of the Schrödinger
eigenvalue problem (10) if

∫ ∞

0
dz1

∫ ∞

0
dz2

∫ ∞

0
dz3

{
1

2

[
xv11

∂ψ

∂z1

∂φ

∂z1
+ xv22

∂ψ

∂z2

∂φ

∂z2

+ xv33
∂ψ

∂z3

∂φ

∂z3
+ xv12

2

(
∂ψ

∂z2

∂φ

∂z1
+ ∂ψ

∂z1

∂φ

∂z2

)

+ xv23

2

(
∂ψ

∂z2

∂φ

∂z3
+ ∂ψ

∂z3

∂φ

∂z2

)

+ xv31

2

(
∂ψ

∂z3

∂φ

∂z1
+ ∂ψ

∂z1

∂φ

∂z3

)]
+ x(V − E )ψφ

}
= 0

(13)

for all test functions φ ∈ H1
0 (�), the Sobolev space of order

1. The space arises by taking the completion of C∞
0 (�) with

respect to the H1(�) norm.
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The variational form of the eigenvalue problem (13) is as
follows: find an eigenpair (ψ, E ) ∈ H1

0 (�) × R such that (13)
holds for all φ ∈ H1

0 (�).

IV. DISCRETIZATION AND NUMERICAL
TENSOR METHOD

We wish to solve the eigenvalue problem (13) using nu-
merical tensor methods, so we need to express the problem in
tensor format.

A. Galerkin problem: Choice of grid and basis functions

To derive the eigenvalue problem (13) in tensor format,
we use the Galerkin finite-element scheme. For this purpose,
we begin by constructing a grid on the truncated domain
� = (0, zc)3 ⊂ �, where the finite number zc will be referred
to as the cutoff parameter. As the perimetric coordinates are
linearly independent, we first define a grid on the interval
(0, zc) ⊂ R, consisting of the points

ζi = ih, h = zc/(n + 1), (14)

where n ∈ N is the number of nodes in one dimension (i.e.,
n is the mode length). Associated with this uniform grid is
the vector space of piecewise linear polynomials. However,
this choice of basis functions leads to poor results. Therefore,
Lagrange interpolation functions were chosen. For a given set
of uniform points ζi in an interval (0, zc) defined as in (14), at
each node we associate a Lagrange polynomial Li of degree
n − 1 defined by

Li(z) =
n∏

m=1,m �=i

z − ζm

ζi − ζm
. (15)

For all 1 � i � n, we have Li ∈ Pn−1, the space of polyno-
mials of degree less than or equal to n − 1, and in order to
take into account the Dirichlet conditions at the boundary of
(0, zc), we set

Vh := Pn−1 ∩ H1
0 ((0, zc)),

which is a finite-dimensional subspace of H1
0 (R+). We then

approximate the Sobolev space H1
0 (�) by

Vh :=
3⊗

k=1

Vh.

The accuracy using these basis functions becomes much better
than the standard linear hat functions first tried. However,
there is a chaotic behavior when n � 12. This phenomenon is
called the “Runge phenomenon” [37], caused by the uniform
discretization of (0, zc). To overcome this problem a nonuni-
form grid was implemented, in which ζi are defined using the
Chebyshev node formula [37]

ζi = zc

2
+ zc

2
cos

[
2i − 1

2n
π

]
, i ∈ {1, . . . , n}. (16)

We define the index set I := {1, 2, . . . , n}3 and use bold-
face letters for elements in this set, e.g., I � i = (i1, i2, i3).

Analogous to the one-dimensional case, basis functions for
the three-dimensional space Vh are given by

Li(z) =
3∏

k=1

Lik (zk ), (17)

where z = (z1, z2, z3) are the perimetric coordinates in (9). To
solve the variational problem (13) numerically, we seek an
approximate solution, or ansatz ψh, that belongs to the (trial)
space Vh, i.e., an ansatz with the form

ψh(z1, z2, z3) =
∑
i∈I

CiLi(z) =
∑
i∈I

CiLi1 (z1)Li2 (z2)Li3 (z3),

(18)

where the coefficients Ci are to be determined. To determine
the coefficients Ci of the trial function, we impose a finite-
dimensional version for the variational problem (13). We
demand that (13) holds for ψh chosen as in (18) and for all
φ ∈ Vh. The resulting equations are the Galerkin equations.
Since Vh is finite dimensional, it suffices to impose (13) for
φ ranging over the elements of a basis for Vh. Therefore, the
Galerkin equations reduce to (a linear system of) the form

HC = ESC, (19)

where

H = 〈HLi, Lk〉, S = 〈Li, Lk〉, ∀ i, k ∈ {1, . . . , n}3,

(20)

and H = T + V , where T is the kinetic energy and V is the
potential-energy operator in the perimetric coordinates. Our
task is to find E ∈ R and C ∈ Rn×n×n such that the tensor
eigenvalue equation (19) holds true.

B. Generalized eigenvalue problem in specific tensor formats

We represent the generalized eigenvalue problem in the
canonical format, the TT format, and the QTT format.

1. Generalized eigenvalue problem in canonical format

In our application, M = N (see Definition 2), and there-
fore, n1 = n2 = n3 = n is the number of nodes per mode.
To derive the canonical representation, exploiting the sepa-
ration of variables, we expand the terms in Eqs. (20) into
the sum of products of integrals. We give an example. Let
i = (i1, i2, i3) and k = (k1, k2, k3) ∈ {1, . . . , n}3. Among the
terms in Eq. (13), we need to compute〈

xv j j
∂Li

∂z j
,
∂Lk

∂z j

〉
, j ∈ {1, 2, 3}.

As an example, for j = 2,

xv22 = 4

(
1

m1
+ 1

m3

)(
z2

1z2 + z1z2
2

)

+ 4

(
1

m1
+ 1

m2

)(
z2

2z3 + z2z2
3

) + 8z1z2z3

m1
,
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and we obtain〈
xv22Li1 L′

i2 Li3 , Lk1 L′
k2

Lk3

〉 = 4

(
1

m1
+ 1

m3

)(〈
z2

1Li1 , Lk1

〉〈
z2L′

i2 , L′
k2

〉〈
Li3 , Lk3

〉

+ 〈
z1Li1 , Lk1

〉〈
z2

2L′
i2 , L′

k2

〉〈
Li3 , Lk3

〉) + 4

(
1

m1
+ 1

m2

)(〈
Li1 , Lk1

〉〈
z2

2L′
i2 , L′

k2

〉〈
z3Li3 , Lk3

〉)
+ 〈

Li1 , Lk1

〉〈
z2L′

i2 , L′
k2

〉〈
z2

3Li3 , Lk3

〉 + 8

m1

〈
z1Li1 , Lk1

〉〈
z2L′

i2 , L′
k2

〉〈
z3Li3 , Lk3

〉
. (21)

See the Supplemental Material [38] for the full derivation. By introducing the matrices

A1 = [〈Li, Lj〉]n
i, j=1, A2 = [〈zLi, Lj〉]n

i, j=1, A3 = [〈z2Li, Lj〉]n
i, j=1,

B1 = [〈L′
i, L′

j〉]n
i, j=1, B2 = [〈zL′

i, L′
j〉]n

i, j=1, B3 = [〈z2L′
i, L′

j〉]n
i, j=1,

C1 = [〈L′
i, Lj〉]n

i, j=1, C2 = [〈zL′
i, Lj〉]n

i, j=1, C3 = [〈z2L′
i, Lj〉]n

i, j=1,

D1 = [〈Li, L′
j〉]n

i, j=1, D2 = [〈zLi, L′
j〉]n

i, j=1, D3 = [〈z2Li, L′
j〉]n

i, j=1, (22)

where z is equal to z1, z2, or z3 and A j, B j, C j, D j ∈ Rn×n, j ∈ {1, 2, 3}, we can write the canonical representation of each tensor
operator involved in the eigenvalue problem (19).

The canonical representation arising from the kinetic-energy operator can be expressed as

T = 2

(
1

m3
+ 1

m2

)
B3 ⊗ A2 ⊗ A1 + 2

(
1

m2
+ 1

m1

)
B3 ⊗ A1 ⊗ A2

+ 2

(
1

m3
+ 1

m2

)
B2 ⊗ A3 ⊗ A1 + 2

(
1

m2
+ 1

m1

)
B2 ⊗ A1 ⊗ A3

+ 2

(
1

m3
+ 1

m1

)
A3 ⊗ B2 ⊗ A1 + 2

(
1

m3
+ 1

m1

)
A2 ⊗ B3 ⊗ A1

+ 2

(
1

m1
+ 1

m2

)
A1 ⊗ B3 ⊗ A2 + 2

(
1

m1
+ 1

m2

)
A1 ⊗ B2 ⊗ A3

+ 2

(
1

m3
+ 1

m1

)
A3 ⊗ A1 ⊗ B2 + 2

(
1

m3
+ 1

m1

)
A2 ⊗ A1 ⊗ B3

+ 2

(
1

m3
+ 1

m2

)
A1 ⊗ A3 ⊗ B2 + 2

(
1

m3
+ 1

m2

)
A1 ⊗ A2 ⊗ B3

+ 4

m2
B2 ⊗ A2 ⊗ A2 + 4

m1
A2 ⊗ B2 ⊗ A2 + 4

m3
A2 ⊗ A2 ⊗ B2

− 2

m3
C3 ⊗ D2 ⊗ A1 − 2

m3
C2 ⊗ D3 ⊗ A1 − 2

m3
D3 ⊗ C2 ⊗ A1

− 2

m3
D2 ⊗ C3 ⊗ A1 − 2

m2
A1 ⊗ C3 ⊗ D2 − 2

m2
A1 ⊗ C2 ⊗ D3

− 2

m2
A1 ⊗ D3 ⊗ C2 − 2

m2
A1 ⊗ D2 ⊗ C3 − 2

m1
C3 ⊗ A1 ⊗ D2

− 2

m1
C2 ⊗ A1 ⊗ D3 − 2

m1
D3 ⊗ A1 ⊗ C2 − 2

m1
D2 ⊗ A1 ⊗ C3. (23)

It has a canonical rank of 27. The representation arising from the potential-energy operator is given by

V = 2(Z1Z2 + Z2Z3 + Z3Z1)(A1 ⊗ A2 ⊗ A2 + A2 ⊗ A1 ⊗ A2 + A2 ⊗ A2 ⊗ A1)

+ 2Z1Z2A1 ⊗ A1 ⊗ A3 + 2Z3Z1A3 ⊗ A1 ⊗ A1 + 2Z2Z3A1 ⊗ A3 ⊗ A1. (24)

It has a canonical rank of 6 (as the prefactor is a constant for a given system). Finally, the representation of the overlap operator
is of canonical rank 7:

S = A1 ⊗ A2 ⊗ A3 + A1 ⊗ A3 ⊗ A2 + A2 ⊗ A1 ⊗ A3 + A2 ⊗ A3 ⊗ A1

+ 2A2 ⊗ A2 ⊗ A2 + A3 ⊗ A1 ⊗ A2 + A3 ⊗ A2 ⊗ A1. (25)
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Here ⊗ denotes the Kronecker product for matrices, so from
the canonical format of an operator we can derive its full
representation belonging to Rn3×n3

, where n is the number of
nodes per mode.

2. Generalized eigenvalue problem in TT format

To transform our canonical representation to the TT
representation, we refer to Sec. 3.1 in Oseledets [30].
In our application, M = N , and therefore, RN×N =
R(n×n)×(n×n)×(n×n) because each factor is an element of
Rn×n. For example, from the canonical format of the
overlap operator in Eq. (25) and by choosing the TT
rank to be the canonical rank of the operator, we can
write (6) as

S = S (1) ⊗ S (2) ⊗ S (3), (26)

where

S (1) = [A1 A1 A2 A2 2A2 A3 A3], (27)

S (2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A2 0 0 0 0 0 0
0 A3 0 0 0 0 0
0 0 A1 0 0 0 0
0 0 0 A3 0 0 0
0 0 0 0 A2 0 0
0 0 0 0 0 A1 0
0 0 0 0 0 0 A2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

S (3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A3

A2

A3

A1

A2

A2

A1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (28)

The TT operator cores for T and V are provided in the
Supplemental Material [38].

3. QTT format

If, as in our case, n1 = n2 = n3 = n (the number of nodes)
for a third-order tensor operator, then we can express n as the
product of several smaller numbers, viz.,

n = p1 × p2 × · · · × pq, (29)

which provides us with the opportunity to subdivide each core
into multiple smaller cores (see Fig. 3). In this work we choose
(29) to be a prime decomposition.

In Table I the complexities of the TT format and the QTT
format for the operators T , V , and S are compared to the
complexity of the same tensor operators in the full format
[21,31].

4. ALS algorithm

There are different ways to approach the eigenvalue prob-
lem in the TT format. We rely on the ALS algorithm, which
can be regarded as a one-site DMRG-type algorithm. The

TABLE I. The complexity of the third-order tensor operators H
and S, for which the maximum TT rank is 33, arising from H, p =
max1�i�q pi, where q and pi are defined in (29).

Format Storage complexity

Full O(n6)
TT O(3 × 332 × n2)
QTT O(3 × 332 × logp n2)

ALS algorithm developed by Holtz et al. [19] to treat op-
timization problems in the TT format was inspired by the
relaxation idea in alternating least squares, wherein all indices
except one is fixed. In doing so, the multilinear parametriza-
tion in the TT form reduces to a linear parametrization in the
free index. In conjunction with a stabilization technique (QR
decomposition), a stable algorithm is obtained. ALS operates
only on a TT manifold with fixed ranks, and as a consequence,
it does not involve the truncation of TT decompositions. The
complexity of the ALS algorithm for eigenvalue problems is
O(bγ dr3R2n2) [21], where d denotes the order of the involved
tensors, n is the maximum of all mode lengths, r and R are the
maximum TT ranks of tensor trains in RN and of TT operators
in RN×N , respectively, γ is the number of iterations of the
iterative solvers for the microeigenvalue problems, and b is
the number of eigenvalues and eigenvectors to be computed;
in particular, in our work, the complexity is O(3γ 332r3n2), as
3 is the order of the tensors, 33 is the maximum TT rank of
the tensor operators involved, b is set to 1, and n, r, and γ are
chosen in the calculation.

C. Implementation

All calculations (canonical-derived full format, TT, and
QTT) require as input the tensor format of the operators,
which are expressed in terms of the factor matrices ∈ Rn×n

defined in (22). The numerical integration required for the
factor matrices was performed using the vpaintegral com-
mand in MATLAB [24] because it allows for variable-precision
arithmetic. For each calculation, the number of nodes n for
each mode and the cutoff parameter zc need to be defined.
To obtain accurate energies it was necessary to decrease the
default integration tolerances of vpaintegral (AbsTol = 10−10

and Reltol = 10−6) for the numerical integration of the factor
matrices to prevent large fluctuations in the energy calcula-
tions. Figure 4 shows the energy convergence obtained using
three different integration schemes for helium, with the num-
ber of nodes n equal to the cutoff zc corresponding to a
density of n/zc = 1 and using the QTT method with a fixed
rank. Using helium with an infinite nucleus mass gave sim-
ilar results, and the data are provided in the Supplemental
Material [38]. It is shown that the large fluctuations using the
default precision tolerances for vpaintegral were minimized
by increasing the integration tolerance to 10−32, indicating
that the errors were numerical in nature. However, as the
energies converged towards higher numerical accuracy, small
fluctuations in the energy calculations were again observed.
Although MATLAB is able to perform high-precision numeri-
cal integration, the software uses double-precision arithmetic,
and it appeared that precision was lost when using other
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FIG. 4. The energy convergence for 4He using different integra-
tion methods to calculate the factors required for the tensor format.
Energies are calculated using QTT with rank 20, convergence thresh-
old ε = 10−16, and node density n/zc = 1.

functions. This was addressed somewhat (see Fig. 4) by cal-
culating the integrals using the int command of MAPLE [39]
with the _Gquad command and the precision set to 32 digits;
_Gquad is an adaptive Gaussian quadrature method suitable
for one-dimensional numerical integration which can be used
in MAPLE’s arbitrary-precision software floating-point mode.
MATLAB or MAPLE was chosen for ease of computation, but
calculations using arbitrary precision could be implemented
using, for example, PYTHON or C if greater precision is re-
quired in the future. The calculation of the factor matrices
is the most time-consuming process and scales poorly with
increasing n. Given that our code used to calculate the energy
using TT or QTT is implemented in double precision and
given that the MATLAB calculations were considerably faster
than the MAPLE calculations, the results presented here use
integrals calculated using vpaintegral with integration toler-
ances set to 10−32. The Supplemental Material [38] shows
that the energies presented in Sec. V converge monotonically
to an upper bound of the energy and were not subject to
fluctuations at that level of accuracy. The time taken to cal-
culate the factor matrices ranges from 5696 s for n = 42 and
zc = 24 to 114 793 s for n = 72 and zc = 30. However, the
time taken to calculate the factor matrices is not included in
the CPU time comparison presented in the next section as this
step is required for all calculations and is thus independent of
the tensor format chosen to solve the generalized eigenvalue
problem (19).

Once the factors have been calculated, they are used
to solve (19). From the canonical format of the operators,
Eqs. (23), (24), and (25), the full representation can be derived
by executing the tensor multiplication, where ⊗ denotes the
Kronecker product for matrices and each operator in the full
representation belongs to Rn3×n3

. The resulting generalized
eigenvalue problem is solved using the built-in eig command
in MATLAB. The calculations are defined by the cutoff zc and
the number of nodes n per mode. Thus, the total number of
nodes per calculation in the truncated domain � is n3, and the
density of nodes for each mode is given by n/zc. The limiting
factor in the calculations using the full format is n; in this
work, using MATLAB, the maximum value of n is 42. The code
was subsequently rewritten in PYTHON, and the generalized

TABLE II. Mass values (in a.u.) used in this work and previous
work. Here “n/a” means not applicable.

Reference Mass of 1H Mass of 4He2+

This work, CODATA
(2018) [40]

1836.152 673 43 7294.299 541 42

King et al. (2015) [41] 1836.152 672 45 7294.299 536 1
Frolov (2007) [42] n/a 7294.299 536 3
Frolov (2002, 1998)

[43,44]
1836.152 701 n/a

Ackermann and Shertzer
(1996) [10]

1836.152 701 7294.299 62

eigenvalue problem was solved using the eigs command, but
it was still not possible to extend n significantly, given that the
full representation for an operator belongs to Rn3×n3

. There-
fore, we use the PYTHON implementation with n = 42 as the
benchmark when comparing the full format with the low-rank
decompositions.

To perform TT and QTT calculations a PYTHON code was
written which uses the tensor train toolbox SCIKIT_TT de-
veloped by Gelß et al. [20]. First, the tensor-train cores are
derived from the canonical form for each operator. An exam-
ple of the tensor-train cores for the identity operator is shown
in Eqs. (27) and (28). SCIKIT_TT provides the ALS algorithm
(see Sec. IV B 4). This algorithm is a variant of the one-site
DMRG algorithm; therefore, for a specified rank it optimizes
the tensor train. A series of calculations with varying tensor
ranks r was performed to optimize the performance in terms
of accuracy and computational cost. The convergence thresh-
old ε was set to 10−16, and the maximum number of iterations
(sometimes referred to as sweeps) was set to 100.

The SCIKIT_TT toolbox also has the functionality to convert
from the TT format to the QTT format. For this a prime
decomposition of the number of nodes per mode was used to
construct the “quantized” tensors in smaller cores (see Fig. 3).
For each calculation, a suitable rank for the initial guess was
chosen to ensure accurate results. Due to the effective low-
rank decomposition of the tensor format using TT and QTT,
which reduces the computational complexity, no restriction on
the number of nodes was necessary.

All numerical computations were performed using PYTHON

version 3.10.9 on a Precision 5820 Tower DELL computer
with 256 GB RAM and an Intel Xeon Processor W-2295 (18
cores at 3 GHz).

V. RESULTS AND DISCUSSION

Calculations were performed on the helium atom (with
finite and infinite nuclear masses), the positronium negative
ion, and the H2

+ molecule to demonstrate the applicability
and versatility of this numerical-tensor-method approach to
solving fully correlated all-particle Coulomb systems. The
mass of the proton and that of the helium nucleus, relative
to the electron mass, used in the present work are provided
in Table II, along with the masses used in previous work.
Energy convergence was established by comparing with lit-
erature values and data obtained using the method detailed
in [15] with the latest committee on data for science and
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TABLE III. The CPU time taken to calculate the ground-state
energies for the all-particle systems He, Ps−, and H2

+ using the full,
TT, and QTT tensor formats with the optimum node density n/zc

determined using the full representation. Energies are accurate to the
number of digits reported.

Format Energy (hartree) n zc (bohr) Rank CPU time (s)

He Full −2.903 304 557 7 42 24 9627
TT −2.903 304 557 7 42 24 8 6862

QTT −2.903 304 557 7 42 24 13 260

Ps− Full −0.262 005 070 42 155 25 849
TT −0.262 005 070 42 155 7 2349

QTT −0.262 005 070 42 155 14 245

H2
+ Full −0.597 139 0 42 17 100 682

TT −0.597 139 0 42 17 11 34 020
QTT −0.597 139 0 42 17 20 2425

technology (CODATA) values [40], which are capable of pi-
cohartree accuracy and use quadruple precision.

Initially, we focus on the results obtained using the
canonical-derived full format. For each calculation, the cutoff
value zc and the number of nodes n for each mode are defined.
For each value of zc, the impact of increasing the density of
nodes per mode n/zc on the accuracy of the computed energy
and the rate of convergence was investigated. We found that
increasing the density of nodes increases the accuracy of
the energy, and for a fixed density, the accuracy increases
with increasing zc values. However, initial tests on atomic
systems revealed that for small values of zc with a large den-
sity of nodes the energies obtained were nonvariational; i.e.,
they were lower than the exact value. A similar dependence
on the cutoff parameter was found by Ackermann [9,10],
who reported that eigenvalues were artificially lowered when
the cutoff values were small. The zc value required to prevent
the appearance of spurious energies is system dependent; see
the Supplemental Material [38] for further details. Therefore,
it was important to ensure that zc was sufficiently large for the
given system.

The number of nodes n per mode that was feasible using
the full canonical-derived format was 42. Therefore, the best
results for each system with n = 42 are provided in Table III.
There are subtle differences in the three types of systems. For
the helium atom (with or without an infinite nuclear mass),
the node density was the most influential factor affecting
accuracy. The calculations converged quickly, and an energy
accurate to greater than a nanohartree was obtained with
n = 42 and a cutoff value of 24 bohrs, which corresponds
to a node density of 1.75. For the positronium negative ion
(like the hydride ion, not shown) a much greater cutoff value
was required to achieve accuracy comparable to that of the
helium atom. This is not unsurprising as Ps− has a loosely
bound electron and the system is more diffuse and thus has
a greater radial extent; therefore, a larger domain is required
to capture the physics of this system. As the value of n
is capped at 42, this results in a very low node density of
0.27, yet an impressive nanohartree accuracy is still obtain-
able. For the non-BO molecular system, H2

+, convergence is
slower, and significantly greater CPU time is required (see

TABLE IV. QTT energies for He, Ps−, and H2
+, accurate to the

number of digits reported.

Format Energy (hartree) n zc (bohr) Rank CPU time (s)

He QTT −2.903 304 557 72 54 45 15 555
Ps− QTT −0.262 005 070 23 54 190 15 895
H2

+ QTT −0.597 139 063 0 72 30 18 1484

Table III). This slower convergence for molecular systems
compared to atomic systems was reported before [45], and
the increase in numerical work required to reach a certain
precision as the masses of the two heavy particles increases
was also noted [10]; these features are attributed to the use
of interparticle distances. The Hamiltonian contains operators
of the nuclear coordinates as well as the electron coordinates;
however, a benefit is that the solution automatically includes
nuclear motions such as molecular vibrations together with
the electron motions. For reasonable accuracy a high node
density is required. With n fixed at 42 it was possible to obtain
submicrohartree accuracy.

Next, we focus on demonstrating the utility of low-rank
tensor decompositions for solving a fully correlated Coulomb
system. Table III shows the best energies obtained using the
tensor-train format with the same number of nodes and cutoff
as in the full representation to give a direct comparison. The
TT rank was varied until the same accuracy as that obtained
in the full representation was achieved. It is shown that for
all three types of systems (atomic, exotic, and molecular) the
TT significantly reduces the CPU times required to solve the
generalized eigenvalue problem (19) without compromising
the accuracy. This is achieved with a TT rank of 8 for the
He calculation, a rank of 7 for the Ps− calculation, and a
slightly higher rank of 11 for the H2

+ calculation. However,
given that the maximum of the TT rank of the initial guess
is bounded by n, as a consequence of the TT singular-value
decomposition [30] and Theorem 1 of [46], this is a sur-
prisingly small rank and demonstrates the effectiveness of
the ALS algorithm in constructing the microsystems (cores)
and solving the low-dimensional eigenvalue problems. The
same approach was taken to determine the effectiveness of
the QTT approach; i.e., n and zc were fixed at the optimum
values for the full representation. The QTT rank was varied
to determine whether it was possible to obtain the same ac-
curacy as in the full representation. It was found that, with a
slightly higher rank than that needed for the TT calculation,
energies with the same accuracy as in the full representation
were gained. Furthermore, the CPU time was reduced by
an order of magnitude in all cases. This result is perhaps
quite surprising because information is necessarily lost when
performing such low-rank decompositions, but these results
demonstrate that, with a suitably chosen rank and using the
efficient ALS algorithm, it is possible to obtain high-accuracy
results.

For TT and QTT there is no restriction on the number
of nodes permissible due to the reduction in computational
complexity, and Table IV shows that the accuracy can be
pushed further, if desired, by increasing the number of nodes
and/or the cutoff parameter. The prime decomposition of n
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TABLE V. Expectation values 〈Xi〉 (in a.u.), of some bound-state
properties for the ground states of He, Ps−, and H2

+ using the QTT
format, accurate to the number of digits reported. A subscript 1 desig-
nates the nucleus-electron interaction, and 12 denotes the interaction
between the like-charged particles.

Property He Ps− H2
+

〈r1〉 0.929 607 915 01 5.489 633 25 1.692 966 208
〈r12〉 1.422 247 512 6 8.548 580 65 2.063 913 86
〈r−1

1 〉 1.688 076 584 6 0.339 821 023 0.842 492 96
〈r−1

12 〉 0.945 697 223 2 0.155 631 9 0.490 707 79
〈r2

1 〉 1.193 834 894 48.418 937 3.558 797 930
〈r2

12〉 2.517 061 842 93.178 633 8 4.313 285 94
〈δ(r1)〉 1.809 672 0.020 733 1 0.206 736
〈δ(r12)〉 0.106 (300)a 0.000 170 99 3.37 × 10−9b

η 2.89 × 10−10 8.7 × 10−10 3.2 × 10−9

ν1
c −1.999 725 −0.500 000 −0.9994

ν12
d 0.500 00 0.500 00 −106.759b

aThe digits in parentheses do not agree with the literature, which we
attribute to the difference in masses used.
bThis value does not agree with literature values; see text for details.
cThe exact value of ν1 for 4He to nine decimal places is −1.999 725
851, for Ps− it is −0.5, and for H2

+ it is −0.999 455 679.
dThe exact value of ν12 for 4He and Ps− is 0.5, and for H2

+ it is
918.076 336.

used to construct the QTT cores plays a key role in reduc-
ing the CPU time. For example choosing n = 55 = 5 × 11
takes 3 times longer than n = 54 = 2 × 33 when zc = 45 (for
He) and 13 times longer when zc = 190 (for Ps−). Similarly,
choosing n = 75 = 3 × 52 takes nearly 2.5 times longer than
n = 72 = 23 × 32 when zc = 30 (for H2

+).
Furthermore, our numerical tensor method determines not

only the ground-state energy but also excited-state energies.
The higher roots after diagonalization correspond to the ex-
cited states. For example, for the H2

+ system reported in
Table IV, the second and third eigenvalues are equal to
−0.587 155 679 0 Ha and −0.577 751 904 Ha, respectively, in
good agreement with other high-level calculations (see, for
example, [47]). An advantage of these non-BO calculations is
that the difference between eigenvalues captures the effects of
nuclear motion. For example, the difference between the first
and second eigenvalues and the difference between the second
and third eigenvalues correspond to the frequency for H2

+
between v = 0 and 1 and v = 1 and 2, respectively. The calcu-
lated frequencies are 2191.0995 and 2063.8900 cm−1, which
are in excellent agreement with the experimental values of
2191.2 ± 0.2 and 2064.2 ± 0.2 cm−1, respectively [48]. The
slightly smaller value for the latter reflects the anharmonicity
of the vibrational motions.

A key consideration regarding the applicability of a new
method is the quality of the wave function obtained. This is
because many applications involve the calculation of expecta-
tion values and/or matrix elements, for example, relativistic
and quantum electrodynamics (QED) corrections. Table V
provides expectation values calculated using the QTT wave
functions corresponding to the energies and parameters (n, zc,
and rank) reported in Table IV. The data reported in Ta-

ble V are accurate to the number of digits presented. The
4He results are compared with results from [41,42]. The older
masses used in [41,42] agree with the latest mass values [40]
to eight significant figures (see Table II). The H2

+ results
are compared with those from [43,44]; the 1H masses used
in [43,44] agree to seven significant figures compared with
the values used in this work. To further check, calculations
were also performed using the series-solution method de-
scribed in [15] with the latest CODATA mass values [40].
The Ps− results were compared with the results of Frolov
[49]. All of the expectation values of the interparticle dis-
tances are accurate to at least seven significant figures, and
those for He are accurate to �10 significant figures. How-
ever, the two-particle delta functions δ(ri ) (where a subscript
1 refers to the nucleus-electron interaction and a subscript
12 refers to the interaction between like-charged particles,
i.e., the electron-electron interaction in He and Ps− and the
nucleus-nucleus interaction in H2

+) are less accurate. In
general, the δ functions are accurate to approximately six
significant figures, but the nucleus-nucleus δ function is at
least an order of magnitude less than the values reported by
Frolov of 4.44 ×10−10 [44] and 1.405 × 10−13 [43]. Also pro-
vided in Table V are two-body cusp ratios, determined using
[44,50]

νi j = 〈ν̂i j〉 =
〈
δ(ri j ) ∂

∂ri j

〉
〈δ(ri j )〉 (30)

and compared to the exact value given by ZiZ j
mimj

mi+mj
. The

nucleus-electron cusps ν1 and the electron-electron cusps ν12

for He and Ps− are accurate to at least five significant figures.
However, the nuclear-nuclear cusp ν12 for H2

+ is significantly
less accurate than other bound-state properties and does not
agree with the exact value. This was noted in previous work on
adiabatic three-body systems [43,51,52], where the computed
nuclear-nuclear cusps and nuclear-nuclear δ functions differed
significantly from the predicted values. An explanation was
provided in [43,51], namely, that the expansion of the wave
function in interparticle coordinates cannot successfully re-
produce the nuclear-nuclear cusp property corresponding to
the very short internuclear distances. Finally, the extent to
which the virial condition 〈V̂ 〉 = −2〈T̂ 〉 is satisfied provides
a measure of the quality of the solution. It was found that for
all systems, the virial factor η, defined as

η =
∣∣∣∣∣ 〈V̂ 〉
〈T̂ 〉 + 2

∣∣∣∣∣, (31)

where 〈V̂ 〉 and 〈T̂ 〉 are the expectation values of the potential
and kinetic energies, respectively, was less than ∼10−9, which
is close to the exact value of zero.

VI. CONCLUSION

In this paper we have used a finite-element approach in
combination with a low-rank tensor-decomposition ansatz to
derive canonical, TT, and QTT tensor formats for all-particle
three-body Coulomb systems. We showed that the derived
tensor formats reduce the CPU time taken to perform
the calculation without compromising the accuracy of the
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energies obtained and that the QTT tensor method is the
most computationally efficient and can provide reasonable
expectation values, demonstrating the quality of the wave
function. For all three types of systems considered (atomic,
exotic, and molecular) energies converged to an accuracy
greater than a nanohartree in less than 30 min on a standard
PC. However, a computational bottleneck is the calculation of
the factor matrices (which are not included in the CPU time
presented for solving the generalized eigenvalue problem in
tensor format because they are required for all formulations),
and they require high precision in order to achieve results
accurate to the nanohartree or better. This work demonstrates
the utility of numerical tensor methods for all-particle
treatments that go beyond the standard orbital and BO
approximations used in conventional QC. Future work will fo-
cus on alternative formulations that address the factor-matrix

bottleneck and further improve the reduction in computational
complexity.
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