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Model description of the transit-time problem for fast particles crossing a laser beam
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The model description of the spectral line broadening for atoms crossing the laser beams is presented.
The combined effect of the transit-time broadening, natural broadening, and transverse Doppler broadening
is considered. This is done by introducing one-parametric adiabatic damping of atom-laser interaction where
the particles interact with the laser during a finite time interval. The simplest rectangle distribution of the light
intensity inside the laser beam is employed. The dependence of absorption probability on the transit time for
different detunings is calculated and compared with earlier results. The limits for using the Lorentz line profile
for describing the interaction of fast particles with laser beams are established.
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I. INTRODUCTION

It is well known that the finite interaction time between the
particles in atomic (molecular) beams and laser beams leads to
the broadening of atomic spectroscopic lines. This broadening
is called transit-time broadening and the corresponding width
is called transit width. In many experiments, where the atomic
resonant spectroscopy is used the transit width becomes larger
than the natural (radiative) width. This happens in the case of
very fast particles or when the upper or lower resonant atomic
(molecular) state is metastable. As a particular example we
may refer to the recent experiment on the observation (no
observation is yet recorded) of the electron electric dipole
moment in the resonant transition in molecule ThO where
the lower resonant state is metastable [1]. Another version of
such experiment with ThO for the transition with the upper
metastable state was proposed recently in Ref. [2], and see
also Ref. [3].

There are several books and papers where the transit-time
problem was discussed from different points of view. We may
refer to the books [4,5] and to Refs. [6–11] and the references
therein. In these books and papers various methods (density
matrix approach [9,10], relativistic field-theoretical perturba-
tion theory [11]) were applied. As a rule the electromagnetic
field created by a laser beam is considered as classical but the
interaction of this field with atoms (molecules) is treated in
frames of quantum mechanics. Thus, the problem is solved
within some model (classical electromagnetic potential) but
with the proper choice of this model all the necessary de-
tails of the process, i.e., characteristics of the absorption line
profile, can be accounted for, including the transit broaden-
ing. This broadening (transit width �T ) can be introduced in
different ways: either simply via the Heisenberg inequalities
�T τ � 1 (here τ is the transit time) [4], or in a more com-
plicated way solving the equations of motion for the particle
(atom) moving in the laser field [9,10].

However, as far as we know, there were no attempts
to justify the application of the Lorentz line profile theory

for description of atoms (molecules) interacting with laser
beams during finite time intervals. This becomes especially
important when the natural broadening (natural width �N ) is
negligible, as in the case that the ThO molecule and transit
broadening (transit width �T ) begin to determine the Lorentz
profile of the resonant spectroscopic line, taking the place of
�N in the Lorentz denominator. To justify this replacement
and to fix the experimental parameters, allowing this replace-
ment, is the main goal of the present paper. In our theory both
broadenings, �N and �T , arrive in the energy denominators as
a result of evaluation of interaction between atomic electron
and classical potential, presenting the laser field.

In the subsequent sections we will consider one by one the
transit width �T , natural width �N , and transverse Doppler
width �D for atomic beams and their combination.

II. TRANSIT BROADENING

For description of the resonant laser light absorption by
the bound electron in an atomic beam we evaluate the am-
plitude for the elastic photon scattering on the bound atomic
electron. The imaginary part of this amplitude will represent
the absorption; the square modulus of this part will give the
probability of absorption. Dependence of this probability on
the frequency detuning and on all types of broadening will
represent the absorption resonant spectral line—the main in-
strument in our paper.

Using standard perturbation theory we begin with an ex-
pression for the amplitude, corresponding to the Feynman
graph Fig. 1. We should stress that we are working in the
Furry picture, which has become standard for relativistic
calculations of atoms and molecules. This picture is espe-
cially adjusted for calculations of bound particle systems (see
Refs. [12–14]). In the case of atoms it employs the complete
set of one-electron wave functions which are the solutions
of the Dirac equation for the electron in the Coulomb field
of the nucleus or the complete set of solutions of the Dirac-
Hartree-Fock equations for many-electron atoms. Unlike the
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FIG. 1. The first-order Feynman diagram for the resonant inter-
action between laser light (dashed line) and bound electron (solid
line). Here A denotes the initial state of an electron, A′ is the final
state of the electron, in case of elastic scattering A′ = A, and n is the
resonant state. The wavy line denotes an emitted photon, ωL is the
laser frequency, and ω is the frequency of the emitted photon.

ordinary description where the incident photon interacts with
the atomic electron during the time interval from t = −∞
to ∞ we assume that the atom (molecule) interacts with the
electromagnetic classical potential created by the laser beam
during the transit time τ . This interaction is resonant; the atom
becomes excited and then decays. We consider both the cases
when an atom decays inside and outside the laser beam, i.e.,
an arbitrary relation between the natural width �N and transit
width �T . In both cases the decay is influenced by the transit
time τ . Therefore in both vertices in Fig. 1 the time integration
is limited by the τ value. The excitation and the decay should
be considered as unique processes. The fast decay will corre-
spond to the case �N � �T and will automatically reproduce
the results with τ = ∞.

The S-matrix element for the process, depicted in Fig. 1
within the ordinary description, is

S(2) = (−ie)2
∫

dxdx′ψA(x)γ μÃμ(x)S(x, x′)γ μ′

× A∗
μ′ (x′)ψA′ (x′), (1)

where x ≡ (r, t ), r is the space coordinate vector, t is time, γ μ

(μ = 0, 1, 2, 3) are Dirac matrices, e is the electron charge,
ψ is the bound electron wave function, ψ is the Dirac conju-
gation of ψ , Ãμ(x) is the laser harmonic classical potential
Ãμ(x) = Ãμ(r)eiωLt , ωL is the laser frequency, A∗

μ(x) is the
complex conjugated photon wave function Aμ(x) = Aμ(r)eiωt ,
and ω is the emitted after decay photon frequency. S(x, x′) is
the electron propagator:

S(x, x′) = 1

2π i

∫
dω′eiω′(t−t ′ )

∑
n

ψn(r)ψn(r′)
En(1 − i0) + ω′ . (2)

Summation in Eq. (2) runs over entire Dirac spectrum for the
atomic electron:

ψn(x) = ψn(r)e−iEnt , (3)

where En are the energies of bound electrons. The resonance
condition is ωL = En − EA, and the resonant state n is a state
with positive energy. Throughout the paper we use the rela-
tivistic units h̄ = c = 1 (h̄ is the Planck constant, and c is the
speed of the light) and pseudo-Euclidean metric with metric
tensor gμν = (−1,−1,−1,+1). After substitution of Eqs. (2)
and (3) in Eq. (1) and integrating over the time variables we

get

S(2) = − e2

2π i
(2π )2

∫
drdr′ψA(r)γ μÃμ(r)

×
∑

n

ψn(r)ψn(r′)
En − EA − ωL

γ μ′
A∗

μ′ (r)ψA(r′)δ(ωL − ω). (4)

In the resonance approximation only one term in the sum
over n in Eq. (4) remains. Usually, in experiments with in-
teraction of atomic and laser beams and, in particular, in
experiments of the type of Refs. [1–3], the main quantity of
interest is the absorption probability for the photon within an
atomic beam. The standard theory for absorption (emission)
of the photon by an atomic electron is following Ref. [15].
Instead of absolute probability, the transition rate is introduced
by definition

Wi f = 1

T
|Si f |2, (5)

where T is the observation time. Here i and f denote the
initial and final states. The |Si f |2 contains squared δ(Ei − E f ),
where Ei and E f are the initial and final energies of the whole
system of particles. This expression is infinite. Then one of
the δ functions is presented as the Fourier integral

δ(Ei − E f ) = 1

2π

∫ ∞

−∞
ei(Ei−E f )t dt (6)

and replaced by

δT (Ei − E f ) = 1

2π

∫ T/2

−T/2
ei(Ei−E f )t dt, (7)

so that

δ(Ei − E f )δT (Ei − E f ) = δ(Ei − E f )δT (0)

= T

2π
δ(Ei − E f ). (8)

The transition rate Wi f defined by Eq. (5) becomes now finite.
However, with introduction of transit time τ this procedure
becomes uncertain. The existence of two different time inter-
vals T and τ makes the definition of transition rate nonunique.
Below we will demonstrate how it is possible to avoid it using
the adiabatic damping of interaction between the photons and
electrons.

Unlike the nonrelativistic quantum mechanics, where tran-
sit time can be introduced via dependence of absorption on
gauge invariant electric field, we have to deal with electric-
field potentials [see Eq. (1)] and the gauge invariance problem
should be discussed from the beginning. The classical laser
potential in Eq. (4) is a pure vector potential. The scalar
potential is absent due to the absence of electric charges in
the laser beam. The vector potential A(r, t ) we can choose,
for example, as

A(r, t ) = eLeiωLt e−iωLνLr, (9)

where νL and eL are the laser beam direction and polariza-
tion vectors, respectively, and ωL is frequency. In the case
when the scalar potential is absent, the gauge invariance
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condition is

divA = 0. (10)

The potential Eq. (9) satisfies this condition, since vectors
νL and eL are orthogonal:

divA = −i(νLeL )ωL = 0. (11)

Equation (9) corresponds to the rectangular distribution of the
light intensity within the laser beam. Moreover, the real laser
is not pure monochromatic as in Eq. (9). The generalization
is straightforward but we remain with these simplifications
because they do not influence our main goal—investigation
of the transit-time problem.

The standard definition of the amplitude of any process is

Si f = −2π iUi f δ(Ei − E f ). (12)

Below we will use another definition:

Si f = −Ui f . (13)

The absolute probability of the process we define as

Wi f = |Ui f |2. (14)

According to the discussion above an expression for the am-
plitude of the process of the laser light scattering on an atom
can be written down in the form [see Eq. (4)]

U = e2(2π )2
∑

n

〈A|γμÃμ|n〉〈n|γμ′A∗
μ′ |A〉

En − EA − ωL
δ(ω − ωL ),

(15)
where

〈i|γμAμ| f 〉 =
∫

drψA(r)γμAμ(r)| f 〉. (16)

In the resonance approximation the amplitude is proportional
to the resonant energy denominator:

U = (2π )2AI (ω,ωL )δ(ω − ωL ) = (2π )2A
1


ω
δ(ω − ωL ),

(17)
where

A = e2〈A|γμÃμ|n〉〈n|γμ′A∗
μ′ |A〉, (18)

and 
ω = En − EA − ωL is the detuning. In principle, A
depends also on ωL via dependence of the potential Eq. (9).
However, this dependence is nonresonant (NR) and we can
set ωL = En − EA everywhere but in the resonant energy de-
nominator. This assumption is common for the resonance
spectroscopy studies. In Eq. (12) the most important is the
factor I (ω,ωL ) which determines the dependence of the ab-
sorption (emission) intensity on the frequency (detuning) and
on the various types of broadening. This factor, which may be
called “reduced amplitude,” will be the main subject of our
further studies. In the case of the absence of any broadening
the reduced amplitude is I (ω,ωL ) = 1


ω
.

To introduce the transit time τ we will apply the adia-
batic S-matrix approach employed earlier for the evaluation
of the energy levels for bound electrons in relativistic theory
of atoms [16–18]. This approach consists of multiplying the

operator Ĥint(t ) (interaction of electromagnetic and electron-
positron fields in the interaction representation) which enters
the S-matrix element and corresponds to each interaction ver-
tex in the related Feynman graph, by adiabatic exponent e−λ|t |.
At the end of evaluation λ → 0, which makes the process of
introducing the interaction “adiabatic.” We introduce the adi-
abatic exponent in both vertices in the Feynman graph Fig. 1,
describing the interaction of an atomic electron with the clas-
sical laser potential not to make it adiabatic but to make it
finite in time. For this purpose we do not set λ → 0, but set it
equal to λ = 1

τ
, where τ is transit time. The τ value remains

as a parameter in the theory which depends on the particular
experimental conditions. It is natural to define τ via particle
velocity v and the laser beam diameter d . Presenting v as the
sum of two components v = v|| + v⊥ where indices || and
⊥ correspond to the parallel and orthogonal directions with
respect to the direction of the atomic beam, and assuming that
the atomic and laser beams are orthogonal, we may set τ = d

v||
,

where v|| = |v|||. The component v⊥ will define the transverse
Doppler broadening (see Sec. IV). Below it will be shown that
with introduction of the adiabatic exponent both expressions
for the amplitude Eq. (17) and for the probability Eq. (14)
will become finite (dependent on transit time τ ). It should
be noted that the introduction of the time-dependent damping
factor violates the Lorentz invariance of the expression for the
absorption probability. However, Lorentz invariance is of mi-
nor importance for the process with bound electrons since in
this case there always exists one preferable frame of reference
connected with the atomic nucleus for atoms or with center of
mass for molecules.

A question about the choice of damping factor also might
arise. The answer is that there is no reason for the dependence
of the results on this choice, at least in the case when the
damping effect is not too strong. What “too strong” means
for the problem of interest we will discuss at the end of
this section. Regardless, the adiabatic exponential form of the
damping factor is, to our mind, most plausible.

For our purposes it will be enough to consider further only
time- and frequency-dependent parts of the amplitude, i.e.,
to set

Uλ = AJλ(ω,ωL ), (19)

where

Jλ(ω,ωL ) = 1

2π i

∫
dtdt ′dω′ 1

En(1 − i0) + ω′

× eiEnt e−iωLt e−λ|t |eiω′(t−t ′ )e−iEAt ′
eiωt ′

e−λ|t ′|.
(20)

For performing the integration over time variable t in Eq. (20)
we employ the following formula (known as the Poisson
kernel):∫ +∞

−∞
dte−λ|t |+iat = i

2π

[
1

a + iλ
+ 1

−a + iλ

]
= 1

π

λ

λ2 + a2
≡ δλ(a), (21)
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which approaches δ(a) as λ → 0. Then for the integral
Eq. (20) we will have

Jλ = 1

2π i

1

π2

∫ ∞

−∞
dω′ 1

En − iδ + ω′
λ

(EA + ωL + ω′)2 + λ2

× λ

(EA + ω + ω′)2 + λ2
, (22)

where δ > 0 is the infinitesimal shift indicating that the reso-
nant state is the positive-energy one. To connect Eq. (19) with
Eq. (12) which after introduction of the adiabatic exponent
should look like

Uλ = AIλ(ω,ωL )δλ(ω − ωL ) (23)

we need to separate out from Jλ(ω,ωL ) the factor

δλ(ω − ωL ) = 1

π

λ

(ω − ωL )2 + λ2
, (24)

which tends to δ(ω − ωL ) as λ → 0.

The expression for the amplitude U Eq. (17) is diver-
gent twice: first, for the elastic scattering when ω = ωL,
and second, at the point of resonance, when 
ω → 0.
Both divergences can be avoided by introduction of the
adiabatic exponent: evaluation of the integral Jλ(ω,ωL ) per-
formed in the Appendix for arbitrary values of λ results in
a finite expression for Jλ(ω = ωL ). So expression (22) for
Jλ(ω = ωL ) can be used for determination of the amplitude
Uλ(ω = ωL ) via

Uλ(ω = ωL ) = AIλ(ω = ωL )δλ(ω − ωL ), (25)

for the determination of reduced amplitude

Iλ(ω = ωL ) = Jλ(ω = ωL )δ−1
λ (ω = ωL ), (26)

and for regularization of Eq. (17) for ω = ωL:

U (ω = ωL ) = lim
λ→0

Uλ(ω = ωL ). (27)

The general expression for Jλ(ω,ωL ) is (see the Appendix)

Jλ(ω = ωL ) = λ2

π2

(
1

2

1(
En − EA − ω2

L

)2 + λ2

1

(En − EA − ω)2 + λ2
− 1

2iλ

1

ω − ωL

[
1

En − EA − ωL − iλ

1

ω − ωL − 2iλ

− 1

En − EA − ω − iλ

1

ωL − ω − 2iλ

])
. (28)

Keeping λ �= 0, using Eq. (25) and expanding Eq. (28) in
terms of ω−ωL

λ
in the limit ω → ωL we find (see the Appendix)

Jλ(ω = ωL ) = 1

2π2

(
λ2

[(En − EA − ωL )2 + λ2]2

− 1

λ

1

En − EA − ωL − iλ

)
, (29)

Iλ(ω = ωL ) =
(

− 1


ω − iλ
+ λ3

[
ω2 + λ2]2

)
. (30)

Now we can set also λ = 0 and find that for the infinite transit
time τ = ∞ we return to the value I = 1


ω
in Eq. (17). For

large detuning, 
ω � λ (as, for example, is required in the
experiment proposed in Refs. [2,3]), the standard form of the
Lorentz spectral line profile, i.e.,

Iλ ∼ 1


ω − i
2�T

, (31)

is restored, where �T = 2λ. Transit width �T replaces here
the natural width �N . This proof is the main result of our
paper. From Eq. (30) we can see that for small detuning (very
close to the point of resonance) the dependence of the line pro-
file on the transit time becomes complicated and the Lorentz
profile is not valid anymore. The critical relation between 
ω

and τ is


ωτ > 1. (32)

Formally, Eq. (32) coincides with the uncertainty relation, but
its sense is different: the uncertainty relation determines the
limit for the accuracy of measuring frequency, but Eq. (32)
sets the limit for using the Lorentz form for description of the
line profile.

III. NATURAL BROADENING

In fact, it can be shown that the transit-time width and
radiative width can be taken into account simultaneously.
The theory of a spectral line profile dependent on the natural
broadening within quantum electrodynamics was first formu-
lated by Low [19] (see further development in Ref. [20]).

In particular, for the process described by the Feynman
graph Fig. 1 we need to take into account the infinite chain
of the electron self-energy insertions into the internal electron
line. The first term of this chain is given by the Feynman
diagram Fig. 2. The corresponding S-matrix element can be
written as (in case of elastic scattering)

S(4) = (−ie)4
∫

dx1dx2dx3dx4ψA(x1)γ μ1 Ãμ1 (x1)S(x1, x2)

× γ μ2 S(x2, x3)γ μ3 S(x3, x4)γ μ4 A∗
μ4

(x4)ψA(x4)

× Dμ2μ3 (x2, x3), (33)

FIG. 2. The Feynman diagram Fig. 1 with one electron self-
energy insertion. The internal wavy line denotes the photon
propagator, and other notions are the same as used in Fig. 1.
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where Dμν (x2, x3) is the photon propagator in the Feynman
gauge,

Dμν (x2, x3) = δμν

2π ir23

∫
d�ei|�|r23−i�(t2−t3 ), (34)

r23 = |r2 − r3|, � is the frequency of the vacuum photon, and
δμν is the Kronecker delta.

After insertion in Eq. (33) adiabatic exponents we
get

S(4)
λ = (−ie)4

(2π i)4

∫
dx1dx2dx3dx4dω′dω′′dω′′′d� × ψA(r1)γ μ1 Ãμ1 (r1)

∑
n1

ψn1 (r1)ψn1
(r2)

En1 (1 − i0) + ω′
∑

n2

ψn2 (r2)ψn2
(r3)

En2 (1 − i0) + ω′′

×
∑

n3

ψn3 (r3)ψn3
(r4)

En3 (1 − i0) + ω′′′ × γ μ4 A∗
μ4

(r4)ψA(r4)γ μ2γ μ3
δμ2μ3

r23
ei|�|r23 × eiEAt1 eiωLt1 e−λ|t1|eiω′(t1−t2 )eiω′′(t2−t3 )eiω′′′(t3−t4 )e−iωt4

× e−λ|t4|e−iEAt4 e−i�(t2−t3 ). (35)

The adiabatic exponents are inserted only in the x1 and x4

vertices and not in the vertices x2 and x3, corresponding to the
interaction of the atomic electron with the vacuum photon,
since this kind of interaction always takes place in the infinite
time interval. In the resonance approximation only one term
in the sum over n1 with n1 = n remains. Similarly, only one
term n3 = n in the sum over n3 remains. Here it may be worth
it to mention the validity of the resonance approximation
which is used throughout this paper. The NR correction to the
energy levels in atoms was considered by many authors, in-
cluding, for example, in Ref. [20]. In the hydrogen atom these
corrections may reach the level of a few kHz and influence
the accuracy of determination of the transition frequencies
in hydrogen [21]. Still in such systems as the ThO molecule
which are of most interest for us, the NR corrections are of
the order 
NR = �2

N/ω0. With �N ≈ 1 Hz for the metastable
state and ω0 = EN − EA ≈ 1016 Hz these corrections become
negligible. After integration over time and frequency vari-
ables in Eq. (35) in the resonance approximation a diagonal
matrix element of the electron self-energy can be separated
out. This matrix element in the general case can be presented
as [20]

〈u|̂(ξ )|d〉 = e2
∑

m

i

2π

∫
dω

Iummd (ω)

ξ − ω − En(1 − i0)
, (36)

Iu1u2d1d2 (ω) =
∫

dr1dr2ψu1
(r1)ψu2

(r2)γ μ1γ μ2
δμ1μ2

r12

× ei|ω|r12ψd1 (r1)ψd2 (r2). (37)

Then in the resonance approximation in case λ = 0 Eq. (35)
can be written as

S(4)
AA = S(2)

AA

〈n|̂(En)|n〉

ω

, (38)

where 
ω is detuning 
ω = En − EA − ωL, and n is the
resonant state.

Similarly, the contributions of many electron self-energy
insertions in the resonance approximation can be introduced.
As a result, the following consequence will arise [19,20]:

U ∼ S(2)

(
1 + nn


ω
+

(
nn


ω

)2

+ . . .

)
, (39)

where nn ≡ 〈n|̂(En)|n〉. This consequence represents the
geometric progression and can be converted to

U ∼ 1


ω

1

1 + nn

ω

= 1


ω + nn
. (40)

In Eq. (40) the matrix element nn can be presented tradition-
ally as nn = Ln − i

2�n, where Ln is the Lamb shift of the
resonant level n and �n = �N is the radiative (natural) width.

Replacing S(2) in Eq. (38) by S(2)
λ and using again Eqs. (31)

and (40) for the case of large detuning (
ω � λ) we obtain
for the reduced amplitude

Iλ ≈ 1


ω − i
2�T − i

2�N
. (41)

Here we neglect the Lamb shift, since we are interested only
in broadening.

IV. TRANSVERSE DOPPLER BROADENING

Having the absorption amplitude for the atomic (molecu-
lar) beam crossing the laser beam in the form Eq. (41) it is
easy to take into account the transverse Doppler width �D.
This broadening arises due to the chaotic (thermal) motion
of atoms within the beam in the direction orthogonal to the
direction of the beam. For this purpose we have to introduce
the Doppler effect, replacing the frequency ω in Eq. (41)
by ω(1 − v⊥

c ) and the velocity v⊥ by the average velocity
of chaotic motion of atoms. This averaging is commonly
performed by convolution of amplitude with the Maxwell
distribution of atomic velocities. Also commonly the natural
broadening is incorporated in the process of this averaging.
It is important that in our approach the dependence of the
amplitude on �T is exactly the same as the dependence on
�N and that �T did arrive in the energy denominator.

Then the result of averaging we can present in the form
(see, for example, Ref. [22])〈

1

ω
(
1 − v⊥

c

) − ω0 − i
2 (�N + �T )

〉
AV

= 1

ω − ω0
[g(u, v) − i f (u, v)], (42)
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where ω0 = En − EA, ω − ω0 = 
ω, and variables u and v

are defined as

u = ω − ω0

�D
, (43)

v = �N + �T

2�D
, (44)

�D = ω0
v⊥
c

, (45)

v⊥ =
√

2kT

M
, (46)

where k is the Boltzmann constant, T is the absolute tempera-
ture, and M is the mass of an atom (molecule). The functions
g(u, v) and f (u, v) are

g(u, v) = Im
√

πe−w2
[1 − �(−iw)], (47)

f (u, v) = Re
√

πe−w2
[1 − �(−iw)], (48)

where w = u + iv, �(z) is the error function [23]. In case of
u � 1 and v � 1 the asymptotic expressions are valid:

g(u, v) ≈ 1

u
, (49)

f (u, v) ≈
√

πe−u2 v

u2
. (50)

With Eqs. (42)–(50) we come to the final expression for the
reduced absorption amplitude dependent on the parameters

ω, �N , �T , and �D:

Iλ = 1

ω − ω0
[g(u, v) − i f (u, v)]. (51)

Absorption corresponds to the imaginary part of Eq. (51). The
real part is corresponding to the dispersion. Note that Eq. (51)
is valid only when Eq. (31) is valid, i.e., when �T � 
ω.
For the very fast particles close to the resonance (λ � 
ω)
the dependence on the transit time becomes more complicated
[see Eq. (30)].

V. RESULTS AND DISCUSSION

As the results of our paper in this section we present the
numeric dependence of absorption probability in the experi-
ments with crossing the atomic (molecular) beam and laser
beams on the transit time τ = �−1

T and on the frequency
detuning 
ω. This probability is represented by the ratio
f (u, v)/(ω − ω0) [see Eq. (42)] and is depicted in Fig. 3.
As a particular example we employ the proposed experiment
[2,3] for observation of space- and time-parity odd Faraday
rotation on the ThO molecule. In this experiment the tran-
sition from the ground state to the metastable excited state
is chosen for the observation of the resonant optical rotation
in an external electric field. The natural width �N ≈ 1 s−1 is
considered to be negligible compared to �T . The velocities
of the molecules in the beam are assumed to be about v|| ≈
104 cm s−1. The transverse Doppler width is �D ≈ 108 s−1 and
detuning is of the order of several �D. In this experiment
the absorption represents the parasite effect and should be
made as small as possible compared to the dispersion respon-
sible for the optical rotation. The dispersion is represented

FIG. 3. The absorption probability vs transit time for different
detunings 
ω = ω − ω0.

by the ratio g(u, v)/(ω − ω0) in Eq. (42). In Fig. 4 the ratio
f (u, v)/g(u, v) is plotted as a function of τ for different 
ω =
ω − ω0 values. Qualitatively the dependencies in Figs. 3 and
4 correlate with the corresponding dependencies obtained in
Ref. [10] on the basis of nonrelativistic quantum-mechanical
calculations. The behavior of f (u, v)/g(u, v) in Fig. 4 con-
firms the choice of the parameters in the experiment [3].

VI. CONCLUSIONS

Now we can state once more that the main goal of our
paper is achieved: this is the proof that in the description
of the process of photon absorption by atoms within cross-
ing of atomic and laser beams the transit width plays the
same role as the natural width and may be inserted in the
Lorentz energy denominator for the resonant absorption. Our
aim was to find out whether this insertion is always justified.
In particular, it was important for the proposed experiment
on the search for the electric dipole moment of the electron
by observation of the Faraday optical rotation in an electric
field.

The resolution of this problem is given by Eq. (30).
Conditions necessary for the experiment to remain within
the Lorentz picture of the spectral line profile look like

ωτ > 1. Fortunately, these conditions are compatible with
the detuning value 
ω ≈ 5�D considered as optimal in
Refs. [2,3].

FIG. 4. Ratio absorption and dispersion as a function of transit
time for different detunings.

062811-6



MODEL DESCRIPTION OF THE TRANSIT-TIME PROBLEM … PHYSICAL REVIEW A 109, 062811 (2024)

ACKNOWLEDGMENTS

This work was supported by a Foundation for the Advance-
ment of Theoretical Physics and Mathematics BASIS grant
under “PhD Student” Research Project No. 22-1-5-137-1. The
idea of this work and some details of the calculations were
formulated with the help of Russian Science Foundation Grant
No. 22-12-00043.

APPENDIX: EVALUATION OF THE INTEGRAL EQ. (22)

For evaluating the integral Eq. (22) we apply the Cauchy
theorem, closing the contour of integration in the lower half
plane of the complex variable ω′ (see Fig. 5). Our scheme
for calculating the integral is the following. First, we set
δ = 0, and then pole 1 is located on the real axis. Second, we
integrate in the complex plane using the contour depicted in
Fig. 5. This contour runs along the real axis surrounding pole
1 by a semicircle. This explains the arrival of the factor 1/2 in
the contribution of pole 1. Then

J = 2π i
[

1
2 Res1 + Res2 + Res3

]
, (A1)

where Resi (i = 1, 2, 3) are the residues in the corresponding
poles. The integral over the large half circle vanishes since it
behaves like 1

R4 , where R = |ω′|, when R → ∞. The poles are
ω′

1 = −En + iδ, ω′
2 = −EA − ωL − iλ, and ω′

3 = −EA − ω −
iλ. The corresponding residues are

Res1 = λ2

π2

1

(En − EA − ωL )2 + λ2

1

(En − Ea − ω)2 + λ2
,

(A2)

Res2 = λ2

π2

1

En − EA − ωL − iλ

×
(

− 1

2iλ

)
1

ω − ωL − 2iλ

1

ω − ωL
, (A3)

FIG. 5. Integration of Eq. (22) in the complex plane ω′. The poles
are denoted by numbers 1, 2, and 3. The residue for pole 1 is located
in the upper half plane, since the energy En of the resonant level n is
positive.

Res3 = λ2

π2

1

En − EA − ω − iλ

×
(

− 1

2iλ

)
1

ωL − ω − 2iλ

1

ωL − ω
. (A4)

From Eqs. (A1)–(A4) follows Eq. (29) in the main text.
Next we expand Eq. (29) in terms of the parameter ω−ωL

λ

by a finite value of λ and ω → ωL up to the first-order terms
in ω−ωL

λ
. Then using Eq. (26) we find

Iλ =
(

λ3

[(En − EA − ωL )2 + λ2]2
− 1

En − EA − ωL − iλ

)
,

(A5)

which coincides with Eq. (30) in the main text.

[1] V. Andreev, D. G. Ang, D. DeMille, J. M. Doyle, G. Gabrielse,
J. Haefner, N. R. Hutzler, Z. Lasner, C. Meisenhelder, B. R.
O’Leary et al. (ACME collaboration), Nature (London) 562,
355 (2018).

[2] V. N. Kutuzov, D. V. Chubukov, L. V. Skripnikov, A. N. Petrov,
and L. N. Labzowsky, Ann. Phys. (NY) 434, 168591 (2021).

[3] S. D. Chekhovskoi, D. V. Chubukov, L. V. Skripnikov, A. N.
Petrov, and L. N. Labzowsky, Phys. Rev. A 108, 052819 (2023).

[4] D. Budker, D. F. Kimball, and D. P. DeMille, Atomic Physics,
An Exploration through Problems and Solutions, 2nd ed.
(Oxford University, New York, 2008).

[5] W. Demtröder, Laser Spectroscopy, Vol. 1: Basic Principles, 4th
ed. (Springer-Verlag, Berlin, 2008).

[6] V. S. Letokhov, Zh. Eksp. Teor. Fiz. 56, 1748 (1969) [Sov. Phys.
JETP 29, 937 (1969)].

[7] S. G. Rautian and A. M. Shalagin, Zh. Eksp. Teor. Fiz. Pis’ma
Red. 9, 686 (1969) [JETP Lett. 9, 427 (1969)]; Zh. Eksp. Teor.
Fiz. 58, 962 (1970) [Sov. Phys. JETP 31, 518 (1970)].

[8] J. L. Hall, in Lectures in Theoretical Physics, edited by W. E.
Brittin and K. T. Mahanthappa (Gordon and Breach, New York,
1973), p. 161.

[9] C. J. Bordé and J. L. Hall, in Laser Spectroscopy, edited by
R. G. Brewer and A. Mooradian (Plenum, New York,
1974).

[10] C. J. Bordé, J. L. Hall, C. V. Kunasz, and D. G. Hummer, Phys.
Rev. A 14, 236 (1976).

[11] D. V. Chubukov, I. A. Aleksandrov, L. V. Skripnikov, and A. N.
Petrov, Phys. Rev. A 108, 053103 (2023).

[12] W. H. Furry, Phys. Rev. 81, 115 (1951).
[13] S. Schweber, An Introduction to Relativistic Quantum Field

Theory (Row, Peterson, Evanston, 1961).
[14] P. J. Mohr, G. Plunien, and G. Soff, Phys. Rep. 293, 227

(1998).
[15] A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics

(Wiley, New York, 1965).
[16] M. Gell-Mann and F. Low, Phys. Rev. 84, 350 (1951).

062811-7

https://doi.org/10.1038/s41586-018-0599-8
https://doi.org/10.1016/j.aop.2021.168591
https://doi.org/10.1103/PhysRevA.108.052819
https://doi.org/10.1103/PhysRevA.14.236
https://doi.org/10.1103/PhysRevA.108.053103
https://doi.org/10.1103/PhysRev.81.115
https://doi.org/10.1016/S0370-1573(97)00046-X
https://doi.org/10.1103/PhysRev.84.350


S. D. CHEKHOVSKOI AND L. N. LABZOWSKY PHYSICAL REVIEW A 109, 062811 (2024)

[17] J. Sucher, Phys. Rev. 107, 1448 (1957).
[18] L. N. Labzowsky, G. L. Klimchirskaya, and Yu. Yu. Dmitriev,

Relativistic Effects in the Spectra of Atomic Systems, 1st ed.
(CRC, Boca Raton, FL, 1993).

[19] F. Low, Phys. Rev. 88, 53 (1952).
[20] O. Yu. Andreev, L. N. Labzowsky, G. Plunien, and D. A.

Solovyev, Phys. Rep. 455, 135 (2007).

[21] A. Grinin, A. Matveev, D. C. Yost, L. Maisenbacher, V. Wirthl,
R. Pohl, T. W. Hänsch, and T. Udem, Science 370, 1061 (2020).

[22] I. B. Khriplovich, Parity Nonconservation in Atomic Phenom-
ena (Gordon and Breach, New York, 1991).

[23] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions: With Formulas, Graphs, and Mathematical Tables
(NBS, USA, 1964).

062811-8

https://doi.org/10.1103/PhysRev.107.1448
https://doi.org/10.1103/PhysRev.88.53
https://doi.org/10.1016/j.physrep.2007.10.003
https://doi.org/10.1126/science.abc7776

