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Correlated Coulomb-Volkov approach and its application to the angular distributions
of two-photon double ionization of helium
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We investigate the double-ionization process of helium in brief and intense laser fields of 10, 16, and 40
optical cycles, linearly polarized with an intensity of 5 × 1012 W cm−2. We calculate the total two-photon
double-ionization cross section for photon energies ranging from 39.5 to 54 eV and the triple-differential cross
sections at a photon energy of 42 eV, using the correlated Coulomb-Volkov approach, which takes into account
the interaction of the laser field with each electron (Volkov phase) and interactions of Coulombian nature between
electrons and between electrons and the nucleus. The proposed wave function has the advantage of being much
less time consuming due to the fact that it does not require a numerical propagation of the wave packet. The
results of our calculations obtained for the nonsequential double photoionization are compared with previously
reported data and good agreement is found with approaches using projections onto uncorrelated continuum
states. This indicates that the disagreements that remain between some theoretical models for the process studied
cannot simply be attributed to the electronic correlation in the continuum states.
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I. INTRODUCTION

Understanding and characterizing the correlation between
two active electrons is the basis for understanding the dynam-
ics of a multielectron systems in intense laser fields. Double
photon ionization (DPI) is the most fundamental multiphoton
process which provides a new opportunity for exploring the
electron correlation effects. As the simplest and the most
fundamental multielectron system, helium atoms have showed
great advantages in the exploration of electron correlation
dynamics. The most detailed description of this process, also
known as the (γ , 2e) reaction, can be obtained in the form
of the fully resolved triply differential cross section (TDCS),
which gives the probability of detecting the two photoelec-
trons with fully determined kinematics.

In the long-pulse-duration limit, DPI processes are clas-
sified into two types, namely, sequential and nonsequential
processes. The sequential mechanism dominates when one
photon ionizes the ground-state He into He+(step 1) and then
the other photon ionizes He+ to He2+(step 2). This sequen-
tial process is possible and dominant if the photon energy is
higher than the ionization potential of He+. In contrast, the
nonsequential or direct double-ionization process dominates
when the photon energy is lower than the second ionization
potential but still higher than half of the sum of the first-
and second-ionization potentials. The second electron could
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not be liberated independently by absorbing one photon and
thus requires the reassignment of excess energy through the
electron correlation.

More precisely, since the ground-state energies of He and
He+ are −79.0 and −54.4 eV, the first- and second-ionization
potentials will be 24.6 and 54.4 eV, respectively. If the photon
energy is higher than 54.4 eV, DPI of helium can be treated
as a sequential process, in which the first electron can be
ionized by absorbing one photon and the second electron can
be ionized by absorbing another photon. If the photon energy
is lower than 54.4 eV but higher than 39.5 eV, the energy of
one photon is no longer high enough to induce the ionization
of He+, which means the sequential picture is inapplicable;
however, the total energy of two photons is high enough to
induce the double ionization of helium. That is the case in this
work, where the photon energy is chosen to be 42 eV, which
is higher than 39.5 eV but lower than 54.4 eV; our study falls
then into the nonsequential regime.

Concerning the specific aspect of the nonsequential mech-
anism involving the electron correlation, it should be noted
that intense theoretical activities have been developed to de-
scribe the atomic structure of helium, in particular through
the development of well-formulated wave functions for the
ground state [1–6]. For instance, one well-understood process
is the one-photon double ionization (1PDI) of helium, for
which theoretical predication and experimental measurements
have achieved excellent agreement on the total and differen-
tial double-ionization cross sections [7–9]. However, a more
complex process, such as the two-photon double ionization of
helium, has continued to attract great interest.

Given the intensities and lengths of the laser pulses in-
volved, the numerical approaches used to tackle this problem
are all essentially attempting to solve the time-dependent
Schrödinger equation, beginning with a well-defined initial
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state before the laser strikes and then propagating this state
in the presence of the laser field by one of a number of
numerical approaches. Once the laser is switched off, various
probabilities and, in some cases, generalized cross sections
can be extracted. Among them, in terms of the most recent
works, Zhang et al. [10] employed spherical coordinates and
the close-coupling scheme to treat the angular coordinates
analytically. The Coulomb repulsion between two electrons
was treated by solving a Poisson equation. The final state was
made by projecting the wave function onto the product of
two Coulomb waves after propagating for a long time until
reaching the supposed asymptotic region. Simonsen et al.
[11] employed spherical coordinates and the time-dependent
wave function expanded in a basis of B splines. The double
continuum is approximated by the product of one-electron
Coulomb He+(r) and with Z = 2 projected onto different
angular channels of the final wave function at t = τ .

However, two-photon double ionization (2PDI) remains
a wide open subject because of disagreements between the
different theoretical results and even between the two existing
experimental results [12–15]. In particular, there has been
speculation that the representation of the double continuum
might be responsible for the existing differences. Neverthe-
less, even for methods that take correlation into account in
the final states, the cross sections obtained still disagree, and a
systematic change in the results due to the improved treatment
of electronic correlation has not yet been observed [16].

Compared to the total cross section, the present knowl-
edge of the differential cross sections of the 2PDI of He
also remains limited [17]. It is well known that the fully
resolved TDCS contains the most detailed information on the
two-electron breakup process. In this case, we are aware of,
for example, potential convergence problems due to TDCS
sensitivity to the choice of angular momentum, especially for
kinematic situations where the cross section is small, e.g.,
at θ1 = 90◦. Kheifets et al. [17–19] obtained results for this
situation by using the convergent close-coupling approach to
describe the final two-electron continuum state. The results
in their two works differ significantly, both from each other
and from those presented by authors such as Guan et al. [20],
Zhang et al. [10], Hu et al. [21], and Feist et al. [16]. In
addition, experimental angular distribution results are not yet
available.

Considering the issue thus important, our present work
aims to know to what extent a correlated Coulomb-Volkov
approach (CCVA) could be situated in this new field of study.
Thus, from the expression of the transition amplitude estab-
lished in our CCVA, we propose to deduce the probability
density and use it in the angular distributions when the two
ejected outgoing electrons share equally the photon’s excess
energy. This approach, which takes into account the electron
correlation in the initial and final states, has the advantage of
being a much less time consuming method due to the fact that
it does not require numerical propagation of the wave packet.
Such a method was employed in [22], where the authors
used uncorrelated initial and final states and then improved
them progressively. This increased their workload in terms
of analytical developments and numerical calculations as a
consequence. We have extended the approach to describe the
final state of our system, composed of the product of two

Volkov phases (which takes into account the interaction of the
laser field with each electron) and a function expanded into the
Sturmian basis (which describes the interaction of the nucleus
with each electron and the electron-electron correlation). For
the initial state, aware of the important role electronic corre-
lation plays, we used a fully correlated wave function with
all Coulomb interactions taken into account as described and
developed in details in [23,24].

The paper is organized as follows. In Sec. II we briefly
describe our theoretical method for the numerical solution
of the full-dimensional time-dependent Schrödinger equa-
tion (TDSE) for the two electrons of a helium atom interacting
with brief and intense laser pulses. In Sec. III we present
our results. The total two-photon double-ionization cross
section is presented, followed by the results of the triple-
differential cross sections. Our results are then compared with
those available in some previous works in order to demon-
strate the accuracy of our numerical scheme. We provide a
brief summary in Sec. IV. Atomic units are used throughout.

II. THEORETICAL CALCULATIONS

In order to investigate the dynamics of helium in three
dimensions, for the two-electron quantum systems interacting
with brief and intense laser pulses, we consider the time-
dependent Schrödinger equation

i
∂

∂t
|�(r1, r2, t )〉 = [H0 + Hint(t )]|�(r1, r2, t )〉, (1)

where H0 is the Hamiltonian of the nonperturbative system,
given by

H0 = −1

2
∇2

1 − 1

2
∇2

2 − Z

r1
− Z

r2
+ 1

r12
, (2)

and r1 and r2 are the position vectors of electrons 1 and 2,
respectively, with r12 = |r1 − r2| the interelectronic distance.
Here Z = 2 is the charge of the infinitely massive nucleus, the
position of which coincides with the origin of the laboratory
system.

In the following, Hint(t ) represents the interaction between
the laser field and the atomic system, written in the length
gauge as

Hint(t ) = −(r1 + r2) · E(t ), (3)

where E(t ) is the time-dependent laser field. Studies of the
gauge invariance of the strong-field-approximation model in-
cluding the Volkov phase can be found in [25–27]. In this
work, the laser pulse is assumed to be linearly polarized and
the two electrons are assumed to be initially in their ground
state. The linearly polarized laser pulse is modeled with a
sine-squared carrier envelope and given by

E(t ) = E0 sin(ωt + ϕ) sin2

(
πt

τ

)
ez, t ∈ [0, τ ], (4)

where E0 denotes the peak strength of the electric field. The
pulse duration is τ = 2πnc/ω, where nc is the number of
optical cycles and ω the laser frequency (referred to as the
photon energy). The pulse is made symmetric with respect
to t = τ/2 by setting the phase ϕ = (ωt − π )/2. We stress
that the phase ϕ matters little when many oscillations are
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performed during the pulse. Here A(t ), the time-dependent
classical vector potential describing the laser pulse, is linked
to E(t ) by

E(t ) = −∂A(t )

∂t
. (5)

To evaluate the physical observables and extract the phys-
ical information from the ionization process, we employ a
correlated double continuum wave function. Suppose the two
electrons are emitted into the continuum with momenta ki

(i = 1, 2), with energies denoted by E1 and E2 (E = E1 + E2).
The transition amplitude for such a process deduced from
Eq. (1) is

T −
f i = − i

∫
dt

∫
dr1dr2�

−∗
f (r1, r2; t )(r1 + r2)

× E(t )�i(r1, r2; t ), (6)

where �−
f ∗ (r1, r2; t ) is the correlated Coulomb-Volkov dou-

ble continuum wave function and �i(r1, r2; t ) our initial-state
wave function detailed in [23],

�−∗
f (r1, r2; t ) = ψ−∗(k1, k2; r1, r2; t )L−∗(k1, k2; r1, r2; t ),

(7)

with L−∗(k1, k2; r1, r2; t ) the product of two Volkov phases
[28] which take into account the interaction of the laser field
with each electron

L−∗(k1, k2; r1, r2; t ) = exp[−iA(t ) · r1] exp[−iA(t ) · r2]

× exp

(
ik1

∫ t

τ

dt ′A(t ′)
)

× exp

(
ik2

∫ t

τ

dt ′A(t ′)
)

. (8)

In Eq. (7), ψ−∗(k1, k2; r1, r2; t ) is a function describing the
interaction of the nucleus with each electron and which takes
into account the electron-electron correlation. It could be ex-
pressed as

ψ−∗(k1, k2; r1, r2; t )

= Aψ−∗(k1, k2; r1, r2) exp(iεk1t ) exp(iεk2t ). (9)

In addition, ψ−(k1, k2; r1, r2) is an ingoing wave and the
solution of the Schrödinger equation(

E + 1

2
∇2

1 + 1

2
∇2

2 + Z

r1
+ Z

r2
− 1

r12

)
ψ−(k1, k2; r1, r2) = 0.

(10)

Since both electrons are identical particles, we can intro-
duce the new functions [29] ψ−

i (k1, k2; r1, r2)(i = 1, 2) such
that ψ− = (ψ−

1 + ψ−
2 )/

√
2. Taking into account the exchange

symmetry of the solution of Eq. (10), ψ−(k1, k2; r1, r2) =
gψ−(k1, k2; r2, r1), where g = (−1)S with S = 0 (singlet
state) or S = 1 (triplet state), we have ψ−

2 (k1, k2; r1, r2) =
gP̂12ψ

−
1 (k1, k2; r1, r2), where P̂12 is the permutation operator

of particle indices 1 and 2. The helium singlet ground state is
space symmetric and the spin quantum number S is conserved

in the dipole approximation. Throughout this work g = 1, so

ψ−(k1, k2; r1, r2) = 1√
2

(1 + P̂12)ψ−
1 (k1, k2; r1, r2). (11)

Equation (10) can be rewritten as(
E + 1

2
∇2

1 + 1

2
∇2

2 + Z

r1
+ Z

r2

)
ψ−

1 = V (r1, r2)ψ−
1 , (12)

where

V (r1, r2) = 1

r12
. (13)

Note that the operator on the left-hand side of Eq. (12) acts
in the two independent subspaces r1 and r2. Its free solution
is a symmetrized product of two Coulomb wave functions
ϕ−(k1, r1) × ϕ−(k2, r2). Solving Eq. (12) in its more conve-
nient integral form leads to writing it as

ψ−
1 (k1, k2; r1, r2) = ψ−

0 (k1, k2; r1, r2)

+
∫

dr′
1

∫
dr′

2G−(r1, r2; r′
1, r′

2; E )

× V (r′
1, r′

2)ψ−
1 (k1, k2; r′

1, r′
2), (14)

with

ψ−
0 (k1, k2; r1, r2) = ϕ−(k1, r1)ϕ−(k2, r2)θ (k1 − k2)

+ gϕ−(k1, r2)ϕ−(k2, r1)θ (k2 − k1),

(15)

where θ is the modified step function with θ (0) = 1/2 and G−
is the Green’s function calculated in [23].

We now perform a partial wave decomposition of the func-
tion ψ−

1 and write

ψ−
1 (k1, k2; r1, r2)

= 2

πk1k2

∑
LM

∑
λl

[
ψλl (k1, k2; r1, r2)LM

λl (k̂1, k̂2)θ (k1 − k2)

+ gψλl (k2, k1; r1, r2)LM
λl (k̂2, k̂1)θ (k2 − k1)

]
, (16)

where L is the total angular momentum and M its projection
on the quantization axis; LM

λl ( p̂, q̂) is the bipolar harmonic.
The expansion of the partial wave function ψλl (r1, r2; k1, k2)
in a basis of Coulomb-Sturmian functions [23,24] and bipolar
harmonics gives

ψλl (k1, k2; r1, r2) =
∑

λ,l,n,ν

CL(lλ)
nν (E )PλlLM

κκνn (r1, r2), (17)

where the coefficients CL(lλ)
nν (E ) are calculated in Ref. [29] and

PλlLM
κκνn (r1, r2) = Sκ

νλ(r1)

r1

Sκ
nl (r2)

r2
LM

λl (r̂1, r̂2). (18)

The initial wave function used in this work is expanded in
the Sturmian basis as [23]

�i(r1, r2, t ) =
∑

LM=0

∑
λ,l

∑
ν,n

αλl
νnψ

λlLM
κκ (t )APλlLM

κκνn (r1, r2),

(19)

where A = (1 + P̂12)/
√

2, αλl
νn controls the redundancies that,

from the exchange of the electrons, may occur in the basis, and
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ψλlLM
κκ (t ) is the time-dependent expansion coefficient given by

ψλlLM
κκ (t ) = ψλlLM

κκ exp(−iεHet ). (20)

To reduce and simplify �i(r1, r2, t ) we write

BλlLM
κκνn = αλl

νnψ
λlLM
κκ , (21)

so

�i(r1, r2, t ) =
∑

LM=0

∑
λ,l

∑
ν,n

BλlLM
κκνn exp(−iεHet )APλlLM

κκνn (r1, r2). (22)

The transition amplitude then becomes

T cv
(1s)2 = −i

2

k1k2

1

π

∑
(L′M ′ )(LM )

∑
(λ′l ′ )(λl )

∑
(ν ′n′ )(νn)

BλlLM
κκνn C∗λ′l ′L′M ′

ν ′n′

∫
dt E (t ) exp

(
i(εk1 + εk2 − εHe )t + (k1 + k2)

∫ t

τ

dt ′A(t ′)
)

×
∫

dr1dr2 exp[−iA(t ) · (r1 + r2)](r1 cos θ1 + r2 cos θ2)A′P∗λ′l ′L′M ′
κ ′κ ′ν ′n′ (r1, r2)APλlLM

κκνn (r1, r2). (23)

From Eq. (23) we write the temporal term in the form (see the Appendix)

Qk1k2 (t ) =
∫ τ

0
dt A(t )E (t ) exp

(
i(εk1 + εk2 − εHe )t + (k1 + k2)

∫ t

τ

dt ′A(t ′)
)

. (24)

The multipolar development allows us to transform the transition amplitude and apply it to either 1PDI or 2PDI using the
Taylor expansion of exp[iA(t ) · r] responsible for the transition [22,28]. Then we write radial terms for 2PDI as

R(r1, r2) =
∫

dr1dr2A′P∗λ′l ′L′M ′
κ ′κ ′ν ′n′ (r1, r2)r1 cos θ1(r1 cos θ1 + r2 cos θ2)APλlLM

κκνn (r1, r2). (25)

The transition amplitude expression can be reduced to the numerically implementable form as

T cv
(1s)2 = −i

2

k1k2

1

π
Qk1k2 (t )

∑
(L′M ′ )(LM )

∑
(λ′l ′ )(λl )

∑
(ν ′n′ )(νn)

BλlLM
κκνn Cλ′l ′L′M ′∗

ν ′n′ R(r1, r2). (26)

The density of probability is then calculated using the transi-
tion amplitude as

D(1s)2 (k1, k2,�1,�2) = ∣∣T cv
(1s)2

∣∣2
(27)

or as a function of ejected electrons energies as

D(1s)2 (E1, E2,�1,�2) = k1k2

∣∣T cv
(1s)2

∣∣2
. (28)

The triply differential cross section for emitting one electron
with energy E1 into the solid angle �1 while the second one
is emitted into �2 is given by

d3σ

dE1d�1d�2
=

(
ω

I0

)2 1

Teff,2

∫
dE2D(1s)2 (E1, E2,�1,�2)

(29)

where Teff,2 = 35τ/128.
Note that the TDCSs presented in this paper are all calcu-

lated in coplanar geometry where the electric-field vector of
the linearly polarized laser field and the momentum vectors of
the two escaping electrons all lie in the same plane.

III. RESULTS AND DISCUSSION

In this section we present the results of our simulation
of nonsequential 2PDI of helium by the theoretical approach
described above (the CCVA). The result for the total two-
photon double-ionization cross section is first presented and
compared to other approaches followed by the TDCSs for
different angular configurations.

The initial condition of the time-dependent Schrödinger
equation is the helium ground state, obtained by partial di-
agonalization of the field-free Hamiltonian of helium. The
calculations were performed using the initial-state wave func-
tion expanded in the Sturmian basis. Note that the efficiency
of this spectral method has been confirmed by calculating
the helium ground-state energy. In our expansion basis, with
nonlinear parameters κ1 = κ2 = 2 and lmax = 7 (maximum
value for the individual angular momenta), we obtained E0 =
−2.903 552 646 632 a.u. for the ground-state energy, which
represents 99.98% of the best theoretical value reported by
Drake [30]. This result validated our spectral method as an
appropriate approach to evaluate the cross sections of the
helium ionization processes.

The final state chosen is the correlated Coulomb-Volkov
wave function to take into account the interaction of the laser
field with each electron (Volkov phase) and interactions of
Coulombian nature between electrons and between electrons
with the nucleus (correlated Coulomb waves) as described in
Sec. II. This function was also expanded in the Sturmian basis.
The maximum angular momentum values are Lmax = 3 for the
total angular momentum and l1,max = l2,max = 7 for the indi-
vidual angular momenta. We found, as in the previous works
[10–12,16,20], that these values are sufficient to obtain con-
verged results. We noticed just a slight negligible difference
of the cross sections between Lmax = 2 and Lmax = 3, in term
of amplitudes, which means convergence has been reached
with even Lmax = 2. The convergence observed confirmed that
when the total angular momentum L is conserved for the
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FIG. 1. Total two-photon double-ionization cross section as a function of the photon energy. The laser pulse has a sine-squared shape with
a total duration of 1 fs (ten cycles). Our result shown by the red solid line, obtained with Lmax = 3 and l1,max = l2,max = 7, is compared to the
results obtained using various other theoretical approaches (see the legend) and to the experimental results of Hasegawa et al. [14] and Sorokin
et al. [15]. In (a), for the results of Foumouo et al. [13], NC labels the results obtained by projecting onto uncorrelated Coulomb waves, while
FC labels the results obtained using the J-matrix method. For the results of Guan et al. [20] (5 × 1015 W/cm2) labels the results obtained with
a peak intensity of 5 × 1015 W/cm2 and (3 × 1015 W/cm2) labels the results obtained with a peak intensity of 3 × 1015 W/cm2. (b) Selection
of closely matching results between our approach and those presented in (a). (c) Same closely matching results as in (b), but in a log-linear
scale. Note that the results of Hu et al. [21] were rescaled by a factor of 128/70 in order to include the correct Teff.

field-free Hamiltonian (because of spherical symmetry), the
expansion does not require much higher values for Lmax than
the minimum number of photons absorbed by the system [16].
These values of angular momenta were used for the calcula-
tions of both the total cross section and the TDCS. The laser
pulse applied in our calculations has a 5 × 1012 W/cm2 peak
intensity and is shaped by a sine-squared envelope function
defined as

f (t ) =
{

sin2( πt
τ

) for 0 < t < τ

0 otherwise.
(30)

A. Total cross section

Figure 1 shows the total two-photon double-ionization
cross section as a function of the photon energy. The pho-
ton energy varies from 39.5 eV to 54 eV. The experimental
results of Hasegawa et al. [14] and Sorokin et al. [15] and the
theoretical results of Feist et al. [16], Hu et al. [21] Laulan
and Bachau [31], Foumouo et al. [13], Guan et al. [20], Feng
and van der Hart [32], and Kheifets and Ivanov [18,33] are
also presented in the figure. As shown in the legend, the red
solid line is the result obtained with our approach. All results
presented in Fig. 1 are obtained after ten cycles (1 fs) of laser
pulse duration.

The total cross section shown in Fig. 1 is described as either
explicitly or implicitly including correlation in the initial and
final states. Without providing a detailed description of the
various approaches used, we indicate each method employed
in the calculations to which we compare ours.

Feist et al. [16] and Hu et al. [21] employed time-dependent
close coupling to obtain ionizing wave packets. For the
solution of the TDSE, the authors extracted transition ampli-
tudes by projection onto uncorrelated products of Coulomb
continuum functions for each electron. Laulan and Bachau
[31] solved the TDSE by means of a B-spline method and
an explicit Runge-Kutta propagation scheme. The dynamic
calculations include electronic correlation. The final double
continuum states are calculated by treating the electronic
term within the zeroth- and first-order perturbation theory.

Guan et al. [20] employed a nonperturbative time-dependent
approach based on the finite-element discrete-variable repre-
sentation and an uncorrelated double continuum wave func-
tion. Feng and van der Hart [32] used correlated treatments
including the R-matrix Floquet calculations in combination
with B-spline basis sets. Foumouo et al. [13] employed a
spectral method of configuration-interaction type (involving
Coulomb-Sturmian functions) and an explicit Runge-Kutta
time propagation to solve the TDSE and then performed
projection onto the uncorrelated product of Coulomb waves,
taking into account correlation by using the J-matrix method.
Kheifets and Ivanov’s [18,33] approach is based on the time-
dependent convergent close-coupling (CCC) method, taking
into account correlation in the final state to some degree.

From a general observation, most of the curves obtained
with ten optical cycles have a similar shape, except the corre-
lated calculations of Foumouo et al., which we will return to
later in our comparison. Most curves increase as a function of
photon energy.

For photon energies between 39.5 and 46 eV, the total cross
sections show an approximately linear increase with photon
energy. All different theoretical approaches present practically
the same shape. Above 46 eV, for those calculations with
results up to 52 eV, the cross sections tend to increase a bit
faster with photon energy and finally from 52 eV to 54 eV the
behavior depends on the approach employed, showing a faster
increase in some cases and a relatively constant tendency or
slight decrease for others. In Figs. 1(b) and 1(c) the agreement
of the present results with all of other presented calculations is
generally within a factor of 1.2 except very near threshold. In
Fig. 1(a) there is also satisfactory agreement with the results of
Feng and van der Hart, though not perfect, due to the fact that
these results are quite lower than ours. The correlated result
reported by Kheifets and Ivanov agrees fairly well from 40 eV
to 45 eV with our result and other calculations, but is much
higher above 45 eV.

At a photon energy of 41.8 eV, we determine the gen-
eralized cross section for two-photon double ionization to
be approximately 3.4 × 10−53 cm4 s, which is very close
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FIG. 2. Triple-differential cross section for two-photon double ionization of helium at 42 eV photon energy, for 10 cycles (black solid
line), 16 cycles (red solid line), and 40 cycles (blue solid line) of a sine-squared laser pulse, at equal energy sharing and a laser peak intensity
of 5 × 1012 W cm−2. The TDCS is given as a function of θ2, the angle of one of the ejected electrons. Six values of θ1, the angle of the other
ejected electrons, are considered: 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦. Our results are compared to the results obtained using other theoretical
approaches (see the legend). They include the CCC TDSE and the CCC closure results of [18,19], the results of Feist et al. [16], and the results
of Zhang et al. [10].

to the experimental cross section of 3.63 × 10−53 cm4 s of
Hasegawa et al. [14]. Let us finally mention that the result
of Foumouo et al. remains higher than experimental results
and all other theoretical calculations presented here. Hamido
and co-workers [34] do not attribute this disagreement to
the correlation that the authors accounted for. Instead, they
argue that this overestimation has a highly probable cause
in the reflection of the ionized wave packet and precisely of
the fast electrons coming from the first channels of single
ionization, at the artificial boundaries imposed by the basis
functions.

B. Triple-differential cross sections

Ten, 16, and 40 optical cycles, corresponding to total pulse
durations of τ = 1, 1.6, and 4, respectively, were used to
generate TDCSs curves. All plots are for the case where both

electrons share equally the excess energy of 5 eV at a photon
energy of ω = 42 eV. Our TDCSs represented in Fig. 2 are
angular distributions in the cases where electron 1 has fixed
angles θ1 of 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦ relative to the
direction of polarization and plot the probability for the other
electron to escape with any angular range.

In general, Fig. 2 displays various shapes of the TDCS,
showing that the probability of detecting the second electron
when the first one is ejected with a fixed known direction
depends on the first electron ejection angle. We can also see
that the extracted TDCS shows some degree of pulse-duration
dependence for not long enough pulses. Calculations in all
the approaches presented in Fig. 2 were done in a coplanar
geometry. The TDCSs obtained with the different approaches
have a similar shape, except those obtained with the CCC
TDSE of Refs. [18,19]. It is useful to specify that CCC TDSE
refers to the time-dependent Schrödinger equation calculation
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FIG. 3. Polar plots of the TDCS at 42 eV photon energy, for 16 and 40 optical cycles. The TDCS is given as a function of θ2, the angle of
one of the ejected electrons. Six values of θ1, the angle of the other ejected electrons, are considered: 0◦, 30◦, 60◦, 90◦, 120◦, and 150◦. The
results for the present work (red solid line for 16 cycles and blue solid line for 40 cycles) are compared with those obtained by Zhang et al.
[10] (green dashed line) and Feist et al. [16] (purple dash-dotted line).

projected on the convergent close-coupling correlated final
state, while CCC closure refers to the convergent close-
coupling correlated final state using closure approximation.

Observing these plots, we notice minima, materialized by
dips for the angle θ1 = θ2, indicating that the two electrons
try to avoid escaping in the same direction due to Coulombian
repulsion. It was reported in Ref. [35] that these minima
(practically zero) appear only in a completely converged
calculation. This behavior is the consequence of electron
correlation during the interaction of the electrons with the
laser pulse. It is clear that the Coulomb repulsive correlation
between the two electrons will always force them to depart
from each other and not in the same direction. All theoretical
approaches presented in Fig. 2 reproduce these minima except
the CCC calculations.

Figure 3 shows the polar plots of the TDCS at a photon
energy of 42 eV for 16 and 40 optical cycles. The TDCS
is given as a function of θ2, the angle of one of the ejected
electrons. The present work is compared to those of Zhang
et al. [10] and Feist et al. [16]. Zhang et al. employed spher-
ical coordinates and the close-coupling scheme to treat the

angular coordinates analytically. The final state was made
by projection of the wave function onto the product of two
Coulomb waves after propagating for a long time until reach-
ing the supposed asymptotic region. Feist et al. employed
time-dependent ab initio calculations with the wave function
projected onto uncorrelated final states at the end of the field
interaction.

For the two numbers of optical cycles considered, the
present results are close to all the results of Zhang et al. and
those of Feist et al. (see also Fig. 2) including the reported
most unfavored emission direction case θ1 = 90◦. However,
for this reported most challenging case, a little shift is ob-
served and our result also shows a little more pronounced peak
at θ2 	 270◦. This suggests that at this angle, back-to-back
ejection might be more likely. For θ1 = 60◦, the result of Feist
et al. for 40 cycles slightly overestimates ours at θ2 	 310◦.
Overall, the agreement between the approaches is between a
factor of 1.1 and 1.2.

With an arrow indicating on these polar representations
the fixed ejection axis of electron 1 relative to the direction of
polarization, we better see that the two electrons are mainly
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ejected along the laser polarization axis. This is more clearly
demonstrated in the cases where TDCSs have only one lobe
as θ1 = 0◦. For other angles of θ1 such as θ1 = 60◦ and 120◦
there are two peaks appearing at specific θ2 angles. Hu et al.
[21], after analysis, attributed dips in this particular case
to destructive interference between the L = 0 and L = 2
components.

IV. CONCLUSION

In this paper we have proposed a nonpropagate wave func-
tion based on a correlated Coulomb-Volkov approach to solve
the TDSE of an atomic two-electron system. We applied it
to the angular distributions of the nonsequential two-photon
double ionization of helium. The total two-photon double-
ionization cross section was presented for photon energies
ranging from 39.5 to 54 eV and also the triple-differential
cross sections at a photon energy of 42 eV.

Concerning the results obtained, we found good agreement
when comparing our results for the total two-photon double-
ionization cross section with the results obtained in previous
calculations, in which the cross sections were extracted by
projecting the time-propagated wave function onto the uncor-
related product of Coulomb functions [13,16,20,21,31]. Fairly
good agreement was also found with approaches including
correlation in the final states [18,32], except for the result
presented in [13]. The same trend was observed with the
results of the triple-differential cross section for two-photon
double ionization where our result is closer in shape and in
magnitude to those in Refs. [10,11,16] than (in shape) to those
in Ref. [19].

In this work we used a correlated wave function to describe
the continuum states and in the end we found good agreement
with approaches using projections onto uncorrelated contin-
uum states. The comparative assessment carried out showed
that the disagreements that remain between some theoretical
models for the process studied cannot simply be attributed
to the role of electronic correlation in the continuum states.
As reported in [34], one of the sources of disagreements
encountered by some theoretical models has a highly prob-
able cause in the reflection of the ionized wave packet and
precisely of the fast electrons coming from the first channels
of single ionization, at the artificial boundaries imposed by the
basis functions. The subject remains open and experimental
results are welcome. We are of the opinion that the proposed
approach in this work, which does not require propagation of
the wave packet, could be applied to several other ionization
processes involving XUV laser pulses.
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APPENDIX: TEMPORAL PART OF THE TRANSITION AMPLITUDE

According to (24) for the temporal part of the transition amplitude, the time integration over the pulse duration is of the form

Qk1k2 (t ) =
∫ τ

0
dt A(t )E (t ) exp

(
i(εk1 + εk2 − εHe )t + (k1 + k2)

∫ t

τ

dt ′A(t ′)
)

. (A1)

According to [28], (k1 + k2)
∫ t
τ

dt ′A(t ′) is considered as a correction and can be neglected compared to the term to its left.
Therefore, Eq. (A1) becomes

Qk1k2 (t ) =
∫ τ

0
dt A(t )E (t ) exp[i(εk1 + εk2 − εHe )t]. (A2)

Knowing that A(t ) = −∫ τ

0 dt ′E (t ′) and using (4), we can write

E (t ) = E0

[
sin(ωt + ϕ)

(
1 − cos

(
2 πt

τ

)
2

)]
= −E0

4

{
sin

[(
ω + 2π

τ

)
t + ϕ

]
+ sin

[(
ω − 2π

τ

)
t + ϕ

]}
+ E0

2
sin(ωt + ϕ)t

and

A(t ) = B + C cos(ωt + ϕ) + D cos(ωpt + ϕ) + H cos(ωmt + ϕ),

where

B =
(

2π
τ

)2
E0

2ω(ωpωm)
cos ϕ, C = E0

2ω
, D = − E0

4ωp
, H = − E0

4ωm
,

with ωp = ω + 2π
τ

and ωm = ω − 2π
τ

.
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By writing α = εk1 + εk2 − εHe , Qk1k2 (t ) becomes

Qk1k2 (t ) = B
∫ τ

0
dt E (t ) exp(iαt ) + C

∫ τ

0
dt E (t ) exp(iαt ) cos(ωt + ϕ)

+ D
∫ τ

0
dt E (t ) exp(iαt ) cos(ωpt + ϕ) + H

∫ τ

0
dt E (t ) exp(iαt ) cos(ωmt + ϕ)

= Q1(t ) + Q2(t ) + Q3(t ) + Q4(t ). (A3)

Equation (A3) is a sum of four integrals that can be easily solved. For example, let us take the second integral and write it as

Q2(t ) = C
∫ τ

0
dt E (t ) exp(iαt ) cos(ωt + ϕ). (A4)

By using the exponential form of the cosine function, Q2(t ) becomes

Q2(t ) = C

(
exp(iϕ)

2

∫ τ

0
dt E (t ) exp[i(α + ω)t] + exp(−iϕ)

2

∫ τ

0
dt E (t ) exp[i(α − ω)t]

)

= C

(
v

∫ τ

0
dt E (t ) exp(iε2t ) + s

∫ τ

0
dt E (t ) exp(iε3t )

)
, (A5)

where ε2 = α + ω, ε3 = α − ω, v = exp(iϕ)
2 , and s = exp(−iϕ)

2 . In (A5)∫ τ

0
dtE (t ) exp(iε2t ) = C1

(
eiμ1t

μ1
+ eiμ3t

μ3
− 2

eiμ5t

μ5

)
+ D1

(
−eiμ2t

μ2
+ e−iμ4t

μ4
+ 2

eiμ6t

μ6

)
+ G2,

∫ τ

0
dtE (t ) exp(iε3t ) = C1

(
eiρ1t

ρ1
+ eiρ3t

ρ3
− 2

eiρ5t

ρ5

)
+ D1

(
−eiρ2t

ρ2
+ e−iρ4t

ρ4
+ 2

eiρ6t

ρ6

)
+ G3,

where G2 = C1(− 1
μ1

− 1
μ3

+ 2
μ5

) + D1( 1
μ2

− 1
μ4

− 2
μ6

), G3 = C1(− 1
ρ1

− 1
ρ3

+ 2
ρ5

) + D1( 1
ρ2

− 1
ρ4

− 2
ρ6

), C1 = 1
8 [E0 cos ϕ +

iE0 sin(ϕ)], D1 = 1
8 [E0 cos ϕ − iE0 sin(ϕ)], μ6 = ε2 − ω, μ5 = ε2 + ω, μ4 = 2β − μ6, μ3 = −2β − μ5, μ2 = 2β + μ6,

μ1 = 2β + μ5, ρ6 = ε3 − ω, ρ5 = ε3 + ω, ρ4 = 2β − ρ6, ρ3 = −2β − ρ5, μ2 = 2β + ρ6, and μ1 = 2β + ρ5, with β = π/τ .
By substituting all these expressions in (A5), Q2(t ) can finally be written as

Q2(t ) =C

{
v

[
C1

(
eiμ1t

μ1
+ eiμ3t

μ3
− 2

eiμ5t

μ5

)
+ D1

(
−eiμ2t

μ2
+ e−iμ4t

μ4
+ 2

eiμ6t

μ6

)
+ G2

]

+ s

[
C1

(
eiρ1t

ρ1
+ eiρ3t

ρ3
− 2

eiρ5t

ρ5

)
+ D1

(
−eiρ2t

ρ2
+ e−iρ4t

ρ4
+ 2

eiρ6t

ρ6

)
+ G3

]}
. (A6)
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