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We report measurements of the ratio of the scalar polarizability α to the vector polarizability β for the
6s 2S1/2 → 7s 2S1/2 transition in atomic cesium. These measurements are motivated by a discrepancy between
the values of the vector transition polarizability as determined using two separate methods. In the present
measurement, we use a two-pathway, coherent-control technique in which we observe the interference between
a two-photon interaction driven by infrared light at 1079 nm and a linear Stark-induced interaction driven by
the mutually coherent second harmonic of this infrared beam at 540 nm. The result of our measurements is
α/β = −9.902 (9), in good agreement with the previous determination of this ratio. This measurement, critical
to the study of atomic parity violation in cesium, does not reduce the discrepancy between the two methods for
the determination of the vector polarizability β for this transition.
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I. INTRODUCTION

In atomic parity violation (APV) investigations, re-
searchers carry out precise measurements of the strength of
optical interactions that are allowed only because of the weak
force interaction between the nucleons and the electrons, as
mediated by the exchange of the neutral Z0 vector boson.
Measurements of the strength of these extremely weak tran-
sitions, combined with precise atomic structure calculations,
allow for a precise determination of the weak charge Qw, as
well as sin2 θw, where θw is the Weinberg mixing angle. Any
discrepancy between the measured value of Qw or sin2 θw and
the standard model values can be an indication of physics
beyond the standard model. It is therefore of great interest to
push the accuracy of these measurements to new limits.

Due to the minute oscillator strength of these weak-force-
induced optical transitions, direct APV measurements are not
feasible. To enable detection, all APV measurements to date
are based upon an interference between the amplitude APNC

of the weak transition and the amplitude of a stronger optical
interaction, such as a Stark-induced interaction (ASt) or a
magnetic dipole interaction (AM1). For example, in their APV
measurement on the 6s 2S1/2 → 7s 2S1/2 transition in cesium,
which is to date the most precise APV measurement in any
element, Wood et al. [1] reported their measurement results
in terms of EPNC/β, where EPNC is the weak-force-induced
electric dipole moment for the transition, and β is the vector
transition polarizability. A proper evaluation of EPNC therefore
requires a precise value for the vector polarizability β.

Until 2019, the most precise value of β was based upon
a theoretical value for the hyperfine-changing component of
the magnetic dipole matrix element M1hf [2], and a labora-
tory determination of the ratio M1hf/β [3]. The value of β

determined in this way is βM1 = 26.957 (51) a3
0, with a pre-

cision of 0.19%. The subscript “M1” (or later “α”) on β

indicates the method of determination.
The alternative method to determine β uses a sum-over-

states calculation of the scalar transition polarizability α

[4–8], combined with a measurement of the ratio α/β [9].
This approach requires precise measurements of or theoretical
values for the reduced electric dipole (E1) matrix elements
〈npJ ||r||ms〉 with m = 6 or 7, n � 6, and J = 1

2 or 3
2 . (We

will use this abbreviated state notation ms for ms 2S1/2 and
npJ for np 2PJ .) Many of these matrix elements have been
measured to great precision over the past 30 years [6,10–
24], and in the last 6 years, our group has undertaken and
completed high-precision measurements for six of the eight
most significant E1 matrix elements [25–28]. Prior to 2023,
the discrepancy between the two methods for determining
β was 0.67%, greater than the sum of their uncertainties
[29]. Recent exhaustive theoretical calculations of reduced E1
matrix elements 〈npJ ||r||ms〉 by Tran Tan et al. [30] along
with our recent measurement of the Stark shift of the 7s state
[28] reduced the discrepancy between βM1 [2,3] and βα [28]
to 0.32%, slightly larger than either uncertainty. This deter-
mination utilized a mix of high-precision measurements of
reduced E1 matrix elements along with some theoretical cal-
culations where experimental results are missing or imprecise
to determine α. This result combined with the measurement of
α/β [9] yields βα = 27.043 (36) a3

0 [28]. Tran Tan et al. also
report a determination of βα = 26.887 (38) a3

0 [8] utilizing
only theoretical calculations of reduced E1 matrix elements
for the determination of α and the measured ratio α/β [9].

To investigate a possible cause for this 0.32% discrep-
ancy between values of β, we have carried out a precision
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measurement of the ratio α/β for the cesium 6s → 7s tran-
sition, which we report in this work. Our technique is based
upon two-color, two-pathway coherent control, in which we
excite the transition via two coherent optical interactions:
two-photon absorption of a laser field at a wavelength of
1079 nm and Stark-induced single-photon absorption of the
second-harmonic light at a wavelength of 540 nm. We de-
scribe the coherent control process in Sec. II. In Sec. III, we
outline the experimental technique, followed by a discussion
of the pumping efficiency measurement of the atomic beam. In
Sec. V, we describe possible systematic effects and methods
for reducing them below 0.1% of β. We discuss our results in
Sec. VI and conclusions in Sec. VII.

II. TWO-PATHWAY COHERENT CONTROL

In two-pathway coherent control, one exploits the inter-
ference between optical interactions that are driven by two
distinct, but mutually coherent, laser fields. We have used this
technique previously to measure M1/β of the 6s → 7s tran-
sition in cesium [31,32], where M1 is the transition magnetic
dipole moment. In this work, we interfere a strong two-photon
allowed E1 excitation, driven by an infrared (IR) laser at
1079 nm, with a weaker Stark-induced one-photon excitation
driven by the second-harmonic radiation at 540 nm. The net
excitation rate W of the 7s state is governed by the square of
the sum of the transition amplitudes A2p for the former and ASt

for the latter. Then by Fermi’s golden rule, the transition rate
is

W = 2π

h̄
|A2p + ASt|2ρ̃7s(E ),

where ρ̃7s(E ) is the density of states of the 7s state. When
the laser is tuned to line center and the linewidth is lifetime
limited, the transition rate simplifies to

W = 4

h̄2�
|A2p + ASt|2,

where � is the decay rate of the 7s state. Expanding the sum,
the transition rate W becomes

W = 4

h̄2�
{|A2p|2 + (A2pA∗

St + A∗
2pASt ) + |ASt|2}. (1)

The excitation rate consists of dc terms due to A2p and ASt by
themselves, plus a beat term resulting from the interference
between the two amplitudes A2p and ASt. The beat signal can
be modulated by varying the phase difference between the
amplitudes A2p and ASt.

The two-photon amplitude for the 6s → 7s transition
driven by a single-frequency field scales as the square of the
field amplitude εω of the 1079-nm laser field,

A2p = α̃εω · εωδF,F ′δm,m′e−2iφω

, (2)

where we define φω to be the phase of the 1079-nm beam and
α̃ is the scalar polarizability for the two-photon excitation. The
phase factor must be included here, as it becomes relevant in
the interference effect. The Kronecker δ functions represent
the selection rules that only �F = 0, �m = 0 transitions are
allowed [33]. F and m (F ′ and m′) are the quantum num-
bers indicating the total angular momentum, electronic plus

nuclear spin, of the ground 6s state (excited 7s state) and its
projection on the z axis, respectively.

The Stark amplitude ASt is linear in the applied static elec-
tric field E and the field amplitude of the 540-nm beam ε2ω,
and depends upon the relative orientation between E and ε2ω.
The amplitude for the Stark-induced transition can be written
[34]

ASt = {[
αE · ε2ωδF,F ′ + iβ(E × ε2ω )zC

F ′,m′
F,m

]
δm,m′

+ [±iβ(E × ε2ω )x−β(E × ε2ω )y]CF ′,m′
F,m δm,m′±1

}
e−iφ2ω

.

(3)

α (β) is the scalar (vector) transition polarizability, which
parametrizes the transition amplitude when E and ε2ω are
parallel (perpendicular) to one another. We define φ2ω to be
the phase of the 540-nm beam, and the coefficients CF ′,m′

F,m are
derived from Clebsch-Gordon coefficients and tabulated for
this transition in Ref. [34]. The relevant coefficients for this
study are C3,m

3,m = −m/4, which for m = ±3 is ∓ 3
4 .

In our measurements, the two-color (1079- and 540-nm)
laser field intersects an atomic cesium beam perpendicularly
inside a vacuum chamber. Both frequency components of the
optical field are linearly polarized. We apply a static magnetic
field B ≈ 8.8 G that is closely aligned with k̂, the direction
of propagation of both laser fields, which we use to define
the z axis of our coordinate system. With the laser tuned to a
�F = 0, �m = 0 transition, the Stark amplitude simplifies to

ASt = Eε2ω
[
α cos θ + iβCF ′,m′

F,m sin θ
]
e−iφ2ω

, (4)

where θ is the angle between the static field E and the
polarization direction of the green beam ε2ω. We scan the
relative phase of the two-photon and Stark laser fields, �φ =
φ2ω − 2φω, and measure the modulation amplitude when the
polarization is parallel and perpendicular to the static electric
field. The ratio of these measurements yields

R = α

βCF ′,m′
F,m

(5)

when the polarization is perfectly parallel or perpendicular
to the electric field and the population is fully prepared in
a single angular momentum substate m. When the atomic
preparation is not complete, the ratio of amplitudes can be
shown to be

R = 4

〈m〉
α

β
, (6)

where 〈m〉 is the average value of m for ground-state atoms in
the interaction region.

We write the imperfect polarization of the 540-nm beam
as ε2ω = ŷεy + x̂(ε′

x + iε′′
x ), where εy represents the primary

component of the green (ε2ω) beam, ε′
x a slight rotation of

the polarization from the intended direction, and ε′′
x the slight

amount of circular polarization remaining in the ε2ω beam.
The measured ratio R is modified to

R± = 4

|〈m〉|
α

β

(
1 ∓ 4

|〈m〉|
α

β

ε′′
x

εy
+

(
4

|〈m〉|
α

β

)2

×
[(

ε′′
x

εy

)2

− 1

2

(
ε′

x

εy

)2
])

. (7)
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FIG. 1. An experimental diagram of the α/β measurement. The 1079-nm ECDL is stabilized to a Fabry-Perot cavity (F-P cavity) and
amplified in a fiber amplifier. This amplified 1079-nm beam is frequency doubled in a periodically poled lithium niobate crystal (PPLN). The
relative phase of the second harmonic at 540 nm and the fundamental at 1079 nm is varied in a Mach-Zehnder interferometer where one arm
contains a galvanometer mounted window (W). The 540- and 1079-nm beams are recombined and polarized with a Glan-laser polarizer (GLP)
before being focused and directed into the vacuum chamber. The following elements are labeled as 2 PS (two-photon stabilization), ECDL
(external-cavity diode laser), PDH (Pound-Drever-Hall) locking system, BD (beam dump), BS (beam splitter), PBS (polarizing beam splitter),
DET (detection laser), Z (Zeeman laser), HF (hyperfine laser), LP (long pass filter), PD (photodetector), and EOM (electro-optic modulator).

Here the ± in R± refers to whether the atoms are initially
pumped into the m = +3 or −3 Zeeman sublevel. Under
an “m” reversal, the second term in Eq. (7) changes sign.
Although the higher-order terms do not change sign and α/β

is ∼9.9, we can we adjust ε′
x/εy and ε′′

x /εy to be less than
1 × 10−3 and 5 × 10−4, respectively, making these correc-
tions negligibly small. To extract α/β, we carry out successive
measurements of R+ and R−, and average these results. This
is the basis of the measurement reported in this work.

III. EXPERIMENTAL CONFIGURATION
AND MEASUREMENT PROCEDURE

An illustration of the experimental configuration is de-
picted in Fig. 1. The primary laser source for these
measurements is a commercial external-cavity diode laser
(ECDL) tuned to the frequency of the two-photon 6s, F =
3 → 7s, F = 3 transition in cesium. This laser generates 70
mW of infrared light at a wavelength of 1079 nm and its
frequency is locked, using the Pound-Drever-Hall technique
[35], to a resonance of an invar-mounted, 15-cm-long, Fabry-
Perot cavity to minimize short-term drifts. The cavity length is
locked to the Doppler-free two-photon absorption resonance
signal produced with a cesium vapor cell and photomultiplier
using FM spectroscopy at 600 Hz. We amplify the output of
the 1079-nm laser in a fiber amplifier to a power of 10 W with
a power stability of 0.5%/8 h, and frequency double this beam
in a periodically poled lithium niobate (PPLN) frequency-
doubling crystal. The output power at 540 nm is 1150 mW,
with a peak-to-peak variation of <0.4 %/h. We separate the
1079- and 540-nm beams with a dichroic beam splitter, phase
delay the green beam in a galvanometer-mounted optical win-
dow, and recombine the beams on a second dielectric beam
splitter. After recombination, we carefully overlap the two
beams, and weakly focus them onto the atomic cesium beam
inside a vacuum chamber, crossing at nearly a right angle. The
waist diameter of the 540-nm beam as it intersects the atomic
beam is 2w ≈ 700 µm and the waist diameter of the 1079-nm
beam is ≈ 920 µm. These waist diameters equate to maximum
beam intensities of 150 W/cm2 for the 540-nm beam and
225 W/cm2 for the 1079-nm beam. We estimate that the

lateral displacement of the 540-nm beam as the galvomounted
window scans is 6 µm. This displacement causes an angular
shift of the focused beam of 17 µr, which is much less than
λ/2w ∼ 0.4 mr, the angular change which would diminish the
interference fringe visibility.

The atom beam is generated by an effusive oven, and colli-
mated using a packed array of 0.8-mm inner diameter, 1-cm-
long stainless steel capillary tubes. These tubes are packed
into the nozzle opening, 8 mm high and 12 mm wide. We
optically pump the atoms into a single hyperfine component of
the ground state, F = 3 and m = ±3, by tuning two prepara-
tion laser beams to various hyperfine components of the 6s →
6p3/2 transition. This technique is well described in [36,37].

The interaction region for this measurement is defined by
the intersection of the atomic beam and the two-color laser
field. We apply a static electric field to the atoms in the inter-
action region using an assembly of eight parallel copper rod
electrodes that is coaxial with the 1079- and 540-nm beams,
as illustrated in Fig. 2. The rods are arranged in a ring configu-
ration, with each rod parallel to the laser propagation direction
k̂. Each rod has a diameter of 4.8 mm, and the radius of the
ring pattern is 18 mm. Careful choice of the bias voltages
applied to each rod allows us to create a uniform electric
field in the center of the configuration, which coincides with
the interaction region. To rotate the direction of E, we have
constructed a switching circuit consisting of solid-state relays
which rotates the bias voltages applied to each of the elec-
trodes. We show color plots of the electric potential for three
configurations of potentials applied to the rods in Fig. 2. We
have modeled the electric potential in the region bounded by
the electrodes, and find that the electric field, with magnitude
429.7 V/cm, is uniform in direction and magnitude to within
20 mV/cm over the 2-mm-diameter volume surrounding the
interaction region. We chose this method to vary the angle θ

between the laser field ε2ω and the static field E in order to
avoid slight changes in the spatial overlap of the two laser
beams and/or variations in the optical power or polarization
quality of the green beam that might accompany rotation of
the laser polarization ε2ω.

Atoms that participate in the 6s, F = 3 → 7s, F = 3 tran-
sition may decay down to the 6s, F = 4 level. When these
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FIG. 2. (a) Diagram illustrating the interaction region geometry and (b)–(d) modeled electric potentials generated by the circular arrange-
ment of eight biased conducting rods. In (a) the large, orange arrow depicts the cesium beam and the small, black arrow depicts the laser
polarization. The laser propagates into the page in each illustration (a)–(d). The rod assembly allows for rapid, reproducible rotation of the
static electric field (E) while the polarization (ε2ω) remains fixed. The angle labeled in the figures (∠E) is specified relative to vertical

atoms reach the detection region, 20 cm downstream from the
interaction region, they are excited through a cycling transi-
tion via a detection laser tuned to the 6s, F = 4 → 6p3/2, F =
5 transition. This process scatters many photons which we
collect on a large area photodetector. The photocurrent from
this photodetector is amplified with a transimpedance am-
plifier (TIA) of gain 20 M�. To vary the phase difference
�φ, we linearly ramp (12 s period) while slightly modulat-
ing (150 Hz) the phase of the single-photon beam using the
galvanometer mounted window. This linear ramp causes the
relative phase �φ to scan at a rate of � = 3.8 Hz. We use the
150-Hz modulation as the reference for the lock-in-amplifier
to mix down this low-frequency modulation �. The TIA
output is sent to the input of the lock-in amplifier and the
output of the lock-in amplifier is digitally bandpass filtered
and recorded. The bandpass filter is centered on the phase
scanning frequency � and reduces low-frequency drifts and
higher-frequency noise that is near the modulation frequency,
150 Hz. We scan through >36 cycles, reset the galvanometer,
rotate the orientation of the static electric field, and then scan
through >36 more cycles. We show sample phase scans of
the output of the lock-in-amplifier with E ‖ ε2ω (α, blue) and
E ⊥ ε2ω (β, orange) in Fig. 3.

The first 2.6 s of the scan are removed to allow the band-
pass filter time to stabilize. We cut the resultant 36-cycle scan
into 12 sections to avoid the effects of small phase variations
present during long scans. Each section is fit to a sinusoid to
determine its amplitude. The average amplitude of each fit
in a single scan is recorded as well as the standard error of
the fitted amplitudes. The α and β (i.e., the blue and orange
traces, respectively, in Fig. 3) interference amplitudes and
their respective uncertainties are combined to obtain a ratio
and an uncertainty. This process is repeated while reversing
the Zeeman pumping to change the sign of the CF ′,m′

F,m co-
efficient and cancel out systematic errors due to the small
circular polarization contribution to the β signal. We make
≈160 ratio measurements and combine these ratios weighted
by the inverse of their uncertainties squared (1/σ 2) to attain a
final ratio and uncertainty.

IV. DETERMINATION OF 〈m〉
As introduced in the previous section, the ground-state

cesium atoms are optically prepared prior to entering the

interaction region. We find that typically ≈99% of the ground-
state population is in the selected initial state (F, m) =
(3,±3). Since preparation into a single m level is not perfect,
careful determination of the average value of the m, denoted
〈m〉, is critical [see Eqs. (6) or (7)]. We discuss the measure-
ment of 〈m〉 and evaluate its uncertainty here.

We use Raman spectra like those shown in Fig. 4 to deter-
mine the fractional population, denoted fm, in each m level.
We collect these spectra using a pair of 852-nm beams tuned
to the Raman transition that couples the two hyperfine lines
of the ground state. For the purposes of this discussion, we
illustrate the process for the case in which we prepare the
ground-state atoms in the state (F, m) = (3, 3), but the tech-
nique is applicable to other initial states as well. The two
lasers driving the Raman interaction are tuned to 852 nm,
detuned from the 6s → 6p3/2 transition by � ∼ 2π × 1 GHz.
The two lasers are phase locked to one another and frequency
stabilized to a saturated absorption resonance in a cesium
vapor cell. The beams are combined in a polarization main-
taining fiber patchcord and are collimated, linearly polarized,

FIG. 3. Representative examples of the bandpass-filtered output
of the lock-in amplifier, showing the sinusoidal modulation vs time,
as the optical phase difference �φ is scanned. Here atoms are pre-
pared into the m = +3 Zeeman sublevel, so CF ′m′

F,m = − 3
4 . The larger

(thin blue) trace demonstrates the α interference with an electric
field parallel to the static polarization and smaller (thick orange
trace) illustrates β interference. The inset plot (dotted red section) is
horizontally stretched to highlight the phase difference between the
α and β interference. This shift is consistent with a negative value
for the ratio of α/β.
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FIG. 4. Raman spectra illustrating the effect of optical pumping
of the cesium atoms to the most extreme magnetic Zeeman sublevel.
Here we plot the detected population in the previously emptied hy-
perfine level versus the difference in frequency between the Raman
lasers, centered on the 9.192 GHz ground state frequency. Atoms
are pumped into the (a) m = −3 or (b) m = +3 Zeeman sublevel by
driving a �m = −1 transition using the Zeeman laser for (a) or a
�m = +1 transition for (b). This reversal is facilitated by inserting
or removing a half-wave plate to change the handedness of the Zee-
man beam from right to left circularly polarized. The inset plot has
been vertically stretched to better illustrate the less extreme Zeeman
sublevels.

and then circularly polarized. This polarization state drives
�m = 0 transitions (F, m) = (3, m) → (4, m). The Raman
and 540-nm beams are aligned such that they are spatially
overlapped on the atomic beam, but with the Raman lasers
blocked during ratio measurements and with the 540- and
1079-nm beams blocked during pumping efficiency measure-
ments. This allows direct detection of the population at the
location of the intended interaction. We drive the individual
transitions by scanning the frequency difference between the
Raman lasers and observe population that has been driven to
the F = 4 hyperfine level. We average 15 scans across the
transition. We show sample Raman spectra collected during
the measurements in Fig. 4.

Due to the requirement for a precise determination
of 〈m〉, our measurements of α/β are restricted to the

F = 3 → F ′ = 3 hyperfine line. When pumping atoms to the
(F, m) = (4,±4) ground state, a �m = ±2 Raman transition
is necessary to determine 〈m〉. The transition strength of the
�m = ±2 transitions are around 50–300 times weaker than
that of the �m = 0 transition. To determine 〈m〉 with better
than 0.1% uncertainty, the polarization extinction ratio of
the two Raman beams has to be beyond feasible to avoid
driving �m = 0 transitions. Since the primary contribution
of uncertainty in this measurement of α/β comes from the
determination of 〈m〉 and �m = 0 transitions would introduce
a large systematic error, we chose to limit our measurements
of the ratio α/β to the 6s, F = 3 → 7s, F ′ = 3 transition.
In light of recent work by Xiao et al. [38], who evaluated
corrections to the scalar and vector polarizabilities, as well
as the magnitude of a tensor term, due to hyperfine coupling,
and determined that these corrections are not observable at
the current level of measurement sensitivities, the value of
α/β is expected to be independent of which hyperfine line is
used in the measurements.

The fractional population fm is proportional to Am/Sm,
where Am is the peak area and Sm is the calculated Raman
line strength. We have determined that the weak �m = 0
transitions are well below saturation levels, such that the peak
area grows linearly with the square of the Rabi frequency for
the transition, around 1%–1.5% of the atoms are excited. We
observe reasonable agreement, <7% disagreement, between
the calculated line strengths Sm and the observed non-Zeeman
pumped spectra. Here the atoms are only prepared into a
single hyperfine level and are not deliberately pushed into the
extreme Zeeman levels. Disagreement between calculated line
strengths and the observed peak areas either originate due to
the calculation of line strengths, from an uneven distribution
of atoms in the Zeeman sublevels originating from the oven,
and/or a weak Zeeman pumping effect due to the hyperfine
pumping. It is not critical to know the individual line strengths
to 0.1% if the pumping quality is sufficiently high such that
the contribution of adjacent Zeeman levels is small. We quan-
tify 〈m〉 as

〈m〉 =
3∑

m=−3

m fm =
3∑

m=−3

m
Am

Sm
, (8)

where Am/Sm are normalized to achieve a total fraction of
one. We measure 〈m〉 = 2.981(2), where 〈m〉 = 3.000 would
indicate perfect preparation in the m = 3 state. The deviation
in 〈m〉 between preparation into the m = +3 or m = −3 is
below 0.09%.

V. SYSTEMATIC CONTRIBUTIONS

It is critical to identify and reduce systematic effects in
precision measurements of weak transitions. The largest sys-
tematic effect is that of the alignment of the polarization along
the static electric field, discussed in Sec. II. To mitigate this
effect, we measure and compare the modulation amplitudes
with the electric field rotated ±45◦ from the vertical. If the
polarization alignment is slightly rotated toward the +45◦ di-
rection, for example, then the signal amplitude will be slightly
larger when E is rotated to +45◦ than −45◦. We rotate the
polarization ε2ω of the green beam to equalize the signal
modulation with E rotated to +45◦ or −45◦ to reduce ε′

x/εy
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to less than 10−3, where ε′
x represents the real portion of the

laser field perpendicular to the static electric field and εy is
the laser field parallel to the static electric field. This reduces
the systematic uncertainty to below 90 ppm [see Eq. (7)].
An unwanted imaginary portion of the laser polarization ε′′

x
produces a systematic error that is first order in ε′′

x /εy, but
changes sign under an m reversal. Using a crossed polarizer,
we measure an extinction ratio of 2.5 × 10−7, indicating that
ε′′

x < 0.5 × 10−3εy. The effect of this circular polarization
component ε′′

x causes a ±0.8% deviation in the ratio measure-
ments under 〈m〉 reversal. This deviation is consistent with the
measured circular polarization of the beam. We reduce this
systematic effect by changing m and averaging the ratios.

Other high-order optical transitions must be minimized
through careful alignment of static magnetic and electric fields
along with polarization. The ratio of moments for the mag-
netic dipole (M1) transition to the Stark vector transition is
M1/β ≈ 29.5 V/cm [3,31]. We apply a static electric field
of 430 V/cm and align the static electric and magnetic field
such that the magnetic dipole transition drives a �m = ±1
transition while the vector Stark and two-photon transitions
each drive a �m = 0 transition. Perfect alignment of B along
k would eliminate all two-photon/M1 interference and would
not contribute to the systematic uncertainty. We measure the
transverse magnetic field components Bx and By, by observing
the Raman spectra, to be less than 10 mG, compared to Bz ≈
8.8 G. This factor, along with the applied electric field and
the ratio M1/β ≈ 29.5 V/cm, reduces the M1 contribution
to below 80 ppm of the vector Stark amplitude. The electric
quadrupole (E2) transition is ≈230 times smaller than the
M1 transition [39] and could potentially produce a 0.03%
contribution. In addition to being so small, this contribution
is further reduced by averaging the results determined from
m = +3 and −3. The β contribution for m = ±3 reverses
sign, while the E2 contribution does not. Since we measure
the modulation amplitude, this relative sign change allows
cancellation of the E2 moment. Therefore, the E2 transition,
like the circular polarization error, averages out to zero under
an 〈m〉 reversal.

To search for and eliminate systematic contributions due to
the applied electric field, we perform reversals of the applied
static electric field as well as a rotation of the laser polarization
by 90◦. We see no variation with reversal of the electric
field by 180◦, and report the average of these results. We
also make measurements of the signal amplitude ratio upon
reversal of the electric field 0◦ → 180◦ from vertical. A
ratio of one is expected in the absence of any stray fields. We
see no significant deviation among the electric field reversals.
The measurements with the laser polarization rotated by 90◦
tests for any small ellipticity of the electrode ring pattern
and resulted in a 0.15% deviation, as discussed in the next
section.

VI. RESULTS

The relative uncertainty in the measurement of the ratio
R after 160 scans (1 h) is typically 0.15%–0.2% and the
average value among the different data sets for the reduced chi
squared, χ2

red, is 1.18. For any data set for which χ2
red > 1, we

multiply the uncertainty by the square root of χ2
red [40]. The

FIG. 5. Ratio measurements plotted vs the IR laser power ex-
citing the two-photon transition. The ratios are fitted to a straight
line to determine the zero-intensity ratio. The red error bars in each
plot show the average uncertainty of the measured ratios (blue dia-
monds). (a) Shows the fitted ratio when the polarization is vertical
and (b) shows the fitted ratio when the polarization is horizontal.

primary contribution to this uncertainty is due to shot noise
in the measurement and relative phase fluctuations between
the 540- and 1079-nm beams. To search for any possible ac
Stark shifts that affect the ratio of α/β, we collect scans at
several different powers of the 1079 and 540 nm, and ex-
trapolate to zero intensity. We observe a slight dependence
in the ratio of α/β on the 1079-nm beam intensity (see
Fig. 5) and no deviation from the 540-nm beam intensity.
We also carry out measurements with the polarization of the
laser beams rotated from vertical to horizontal and see a
minimal deviation α/β = −9.894 (9) for vertical polarization

TABLE I. Sources and magnitudes of uncertainty for the de-
termination of the ratio α/β. The primary sources of uncertainty
originate from the fit and the determination of 〈m〉. We add the errors
in quadrature to obtain the total uncertainty.

Source of uncertainty σ (ppm)

〈m〉 670
Fit 610
ε′

x/εy (polarization alignment) 90
ε′′

x /εy (circular polarization) 44
M1 80
Electric field 50
Total 920
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FIG. 6. Previous theoretical (left, blue) [4,8] and experimental
(right, green) [9,41–43] results of the ratio α/β. Theoretical results
are a sum-over-states calculations of α and β. (a) Includes all previ-
ous results and (b) shows the two highest precision measurements on
a finer scale. The pink horizontal line indicates the weighted average
of the present result and that of Cho et al. [9], which we suggest
as the recommended value, and the blue shaded region indicates the
recommended uncertainty.

and α/β = −9.909 (7) for horizontal. This difference could
originate from a slightly elliptical shape of the electrode pat-
tern, as discussed in Sec. V, or from statistical variations
in the measurement of R. Due to the similar uncertainties
and the reasons above, we report the unweighted average of
these ratios, α/β = −9.902 (6)stat(7)sys, as our final result,
where the subscript “stat” indicates the uncertainty due to sta-
tistical fluctuations and the subscript “sys” indicates the sys-
tematic uncertainty, primarily due to the 〈m〉 determination.

The primary sources of uncertainty for these measurements
result from statistical uncertainties of the least-squares fits to
the sinusoidally varying data, and from the determination of
the average value of the magnetic sublevel 〈m〉. We tabulate
these uncertainties and their magnitudes, as well as other less
significant uncertainties, in Table I.

We show past theoretical and experimental determinations
of α/β in Fig. 6. The theoretical calculations use a sum-
over-states approach to determine α and β independently, and
divide the results. Due to a large cancellation between terms of
opposite sign in the calculation of β, the relative uncertainty
in β is much larger than in α. For this reason, the theoretical
calculations have difficulty attaining the same precision as
experimental determinations, and a measurement of α/β is
critical for the determination of β. Figure 6(b) shows the
present result and the previously accepted value of α/β by
Cho et al. [9] on an expanded scale. Our measurement tech-
nique differs in several regards from that of Ref. [9], including
smaller influence of ac Stark shifts, our use of two-color
coherent control, and our use of much lower optical intensi-
ties and strictly linear field polarization. The two measured

FIG. 7. Illustrated here are previous determinations of β [2,3,5–
8,29,44,45] using the sum-over-state calculation of α and a measured
ratio of α/β (left, blue) and calculations of M1hf with a measured
ratio of M1hf/β (right, green). These determinations are identified
by the first three letters of the first author’s name and the abbreviated
publication year. The values to the left of “This Work” use the Cho
et al. [9] value for α/β. This result uses a weighted average of the
Cho et al. value and the measured value in this work to determine β.
The two values with an asterisk are the most precise determinations
of β from each technique.

values are in excellent agreement. The pink line in Fig. 6(b)
shows the weighted average of these two results, which we
suggest as the recommended value, α/β = −9.903(6), and
the shaded blue region indicates this recommended value’s
uncertainty. Using this recommended value of α/β and the
sum-over-states calculation of α [28], we arrive at a different
value for βα = 27.048 (26) a3

0. We show a plot of past and
present values of the vector polarizability β in Fig. 7.

VII. CONCLUSION

In this paper, we have described our measurement of the
ratio of the scalar to vector transition polarizability α/β.
This precision measurement reaffirms the previously accepted
value [9] and indicates a need to search along other av-
enues for the cause of the discrepancy between the two
techniques that determine β. This discrepancy, βα − βM1 =
0.091 (57) a3

0, must be resolved since β is the moment to
which the weak-force-induced electric dipole moment is
scaled.
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