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Spin symmetry in thermally-assisted-occupation density-functional theory
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For electronic systems with multireference (MR) character, Kohn-Sham density-functional theory (KS-DFT)
with the conventional exchange-correlation (xc) energy functionals can lead to incorrect spin densities and
related properties. For example, for H2 dissociation, the spin-restricted and spin-unrestricted solutions obtained
with the same xc energy functional in KS-DFT can be distinctly different, yielding the unphysical spin-symmetry
breaking effects in the spin-unrestricted solutions. Recently, thermally-assisted-occupation density-functional
theory (TAO-DFT) has been shown to resolve the aforementioned spin-symmetry breaking, when the fictitious
temperature is properly chosen. In this work, a response theory based on TAO-DFT is developed to demonstrate
that TAO-DFT with a sufficiently large fictitious temperature can always resolve the unphysical spin-symmetry
breaking in MR systems. To further support this, TAO-DFT calculations with various fictitious temperatures are
performed for the dissociation of H2, N2, He2, and Ne2 as well as the twisted ethylene.
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I. INTRODUCTION

In condensed-matter physics and quantum chemistry, the
challenge of accurately predicting the properties of electronic
systems at affordable computational cost has led to the devel-
opment of numerous electronic structure methods [1]. Among
all the competitors, Kohn-Sham density-functional theory
(KS-DFT) [2,3] has become the most popular electronic struc-
ture method. By introducing a noninteracting auxiliary system
at absolute zero, KS-DFT successfully bypasses the challenge
of expressing the exact form of the kinetic energy functional,
resulting in the successful predictions of the ground-state
properties of electronic systems at relatively low computa-
tional cost [4,5].

Nevertheless, KS-DFT with the conventional exchange-
correlation (xc) energy functionals can yield erroneous results
when dealing with electronic systems with multireference
(MR) character (also called MR systems or strongly correlated
electron systems) [6]. Recognizing this limitation, thermally-
assisted-occupation density-functional theory (TAO-DFT) [7]
has recently emerged as an alternative. Instead of utilizing the
ground-state density of a noninteracting auxiliary system at
absolute zero as in KS-DFT, TAO-DFT adopts the thermal
equilibrium density of a noninteracting auxiliary system at
a nonzero temperature (the so-called fictitious temperature)
θ in its formulation. This allows the ground-state density
of an electronic system to be represented with the orbitals
and their occupations in TAO-DFT. The introduction of frac-
tional orbital occupations enables TAO-DFT to effectively
correct some of the unphysical results of KS-DFT in MR
systems [7–9].

*Contact author: jdchai@phys.ntu.edu.tw

One of the well-known challenges in KS-DFT is the dis-
sociation of H2 in the spin-unrestricted calculations, where
the results deviate from the spin-restricted results due to the
emergence of unphysical spin-symmetry breaking. In the ex-
act theory, due to spin symmetry, the spatial distribution of
the two spin densities should be identical in the electronic
ground state [10]. When the H2 bond is stretched beyond the
Coulson-Fischer (CF) point [11], the solutions obtained with
spin-unrestricted calculations differ from those obtained with
spin-restricted calculations. In other words, the up-spin and
down-spin densities become unequal and the degeneracy of
KS orbitals breaks down beyond the CF point. This unphysical
spin-symmetry-breaking feature stems from the MR character
of H2 at the dissociation limit. Being incapable of dealing
with MR character, KS-DFT with the conventional xc energy
functionals fails to obtain the correct spin-unrestricted predic-
tions, although the KS-DFT solutions are more stable than
the Hartree-Fock (HF) solutions, as discovered by the stability
analysis of Bauernschmitt and Ahlrichs [12]. Ensemble DFT
is one way to solve this symmetry-breaking problem [13].
In TAO-DFT, previous numerical investigations have shown
that the spin symmetry of H2 dissociation can be restored in
TAO-DFT with a sufficiently large fictitious temperature θ [7].
What remains unknown is whether this restoration of spin
symmetry is a system-independent behavior in TAO-DFT.
This underscores the need for a theory capable of characteriz-
ing the impact of fictitious temperature on the spin symmetry
in TAO-DFT.

In this work, our theory is introduced in Sec. II, which
is divided into four parts. In Sec. II A, we develop a re-
sponse theory within the TAO-DFT framework. This response
theory provides a more straightforward way to observe
the fictitious-temperature dependence of the spin-symmetry
breaking. Based on the response theory, in Sec. II B, we
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establish a criterion to determine whether the spin symmetry is
restored. The explicit forms of the response theory are derived
in Secs. II C and II D. In Sec. II E, we study the asymptotic
behavior in the high-fictitious-temperature limit. Numerical
investigations of our theory are provided in Sec. III. Our
conclusions are provided in Sec. IV.

II. THEORY

A. Iteration of KS equations

In TAO-DFT, the spin densities of the electronic ground
state are determined by the following self-consistent equa-
tions [7]:

vσ
S (r) = v(r) + δ(EH + Excθ )

δρσ (r)
, (1)[

−∇2

2
+ vσ

S (r)

]
ψσ

i (r) = εσ
i ψσ

i (r), (2)

f σ
i = 1

1 + exp
[(

εσ
i − μσ

)
/θ

] , (3)

Nσ =
∑

i

f σ
i , (4)

ρσ (r) =
∑

i

f σ
i

∣∣ψσ
i (r)

∣∣2
. (5)

Here, σ = α or β denotes the up-spin or down-spin, vσ
S is

the σ -spin effective one-electron potential, v is the external
potential, EH is the Hartree energy, Excθ is the exchange-
correlation-θ (xcθ ) energy (conventional Exc plus Eθ ) [7], and
μσ is the σ -spin chemical potential used to adjust the Fermi-
Dirac occupation numbers { f σ

i } to satisfy the sum rule given
by Eq. (4). Each cycle of self-consistent equations [Eqs. (1)–
(5)] maps the input spin densities (ρα, ρβ ) to the output spin
densities (ρα

out, ρ
β
out ). We can obtain the damped output spin

densities (ρα
damped, ρ

β

damped) by mixing the input and output
spin densities,

ρσ
damped(r) = tρσ

out(r) + (1 − t )ρσ (r), (6)

where 0 < t � 1. This also serves as the input spin den-
sities in the next cycle. Repeat iterating the self-consistent
equations [Eqs. (1)–(5)] where Eq. (6) with small enough t
is used, then we obtain a sequence of spin densities whose
convergence is guaranteed [14]. Although several options of
self-consistent field (SCF) algorithms can be adopted in actual
calculations, it is sufficient for us to consider the damping
given by Eq. (6) only, since the criterion of spin symmetry
[Eq. (20)] derived in the follows does not depend on the SCF
algorithm we use.

A pair of converged spin densities is a fixed point of
the mapping given by Eq. (6) since the input spin den-
sities (ρα, ρβ ) equals the damped output spin densities
(ρα

damped, ρ
β

damped). For a system possessing a singlet ground
state, the converged spin-restricted density is a fixed point of
the mapping, since an input with ρα = ρβ cannot result in
an output with ρα

damped �= ρ
β

damped by the symmetry argument.
In fact, the input with equal up-spin and down-spin densities
gives the same KS potential [Eq. (1)], which is responsible for
the same {ψσ

i } and {εσ
i } for up-spin and down-spin [Eq. (2)].

By Eqs. (3) and (4), the degenerate KS orbitals should be

equally filled, so the equality ρα
out = ρ

β
out as well as ρα

damped =
ρ

β

damped should be maintained. To detect the stability of the

fixed point, we add a perturbation {δρα, δρβ} to the converged
spin-restricted density to break the spin symmetry and observe
the response in the output spin densities. It can be obtained by
the chain rule and Eqs. (1)–(6):

δρσ
out(r) =

∑
σ ′

∫
Kσσ ′

(r, r′)δρσ ′
(r′) dr′, (7)

δρσ
damped(r) = t

∑
σ ′

∫
Kσσ ′

(r, r′)δρσ ′
(r′) dr′

+ (1 − t )δρσ (r), (8)

where the kernel of undamped iteration is

Kσσ ′
(r, r′) =

∫ [∑
i

∫
δρσ

out(r)

δψσ
i (r′′′)

δψσ
i (r′′′)

δvσ
S (r′′)

dr′′′

+
∑

i

∫
δρσ

out(r)

δψσ∗
i (r′′′)

δψσ∗
i (r′′′)

δvσ
S (r′′)

dr′′′

+
∑

i j

δρσ
out(r)

δ f σ
i

δ f σ
i

δεσ
j

δεσ
j

δvσ
S (r′′)

⎤
⎦ δvσ

S (r′′)
δρσ ′ (r′)

dr′′.

(9)

We derive and analyze the expression of Eq. (9) to explain
the reason why the spin-symmetry breaking can be restored
in TAO-DFT. In Eq. (9), ψσ

i and ψσ∗
i are considered as two

separated variations, yet we can also treat ρout solely as a
function of ψσ

i , with δρσ
out/δψ

σ∗
i = 0 given as the condition

for complex differentiability of ρout. Equations (7) and (8) can
be rewritten by means of the density-perturbation vector δρ

and the undamped iteration operator K ,

δρout = K δρ, (10)

δρdamped = [tK + (1 − t )]δρ. (11)

Equations (10) and (11) can also represent the matrix equa-
tion corresponding to Eqs. (7) and (8) on a given basis set,
respectively.

B. Criterion of spin symmetry

In a KS-DFT calculation, the converged spin-restricted
density possesses triplet instability if it is unstable with respect
to the spin-symmetry-breaking perturbations [1,10,12]. For a
system possessing no triplet instability, the spin symmetry
is preserved in the electronic ground state predicted by the
spin-unrestricted calculations if there is no other local mini-
mum of the energy functional. For such kinds of systems, any
spin-symmetry-breaking density-perturbation vector δρ will
eventually vanish under repeated iterations of Eq. (11) with a
small enough t = t j at each jth step, since iteration of self-
consistent equations [Eqs. (1)–(5)] with sufficient damping
converges to the converged spin-restricted density [14–16]. It
is expressed in terms of

∞∏
j=1

[t jK + (1 − t j )] · δρ = 0, (12)
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where K is determined by Eq. (9), and δρ is a spin-symmetry-
breaking perturbation satisfying the sum rule∫

δρσ (r) dr = δNσ = 0. (13)

On the other hand, if Eq. (12) holds for every spin-
symmetry-breaking density-perturbation vector and small
enough {t j}∞j=1, then the system does not possess triplet in-
stability.

By diagonalization

K = P
P−1, (14)

where 
 is a diagonal matrix, and P is an invertible matrix,
we have

∞∏
j=1

[t jK + (1 − t j )] =
∞∏
j=1

[t jP
P−1 + (1 − t j )PP−1]

=
∞∏
j=1

{P[t j
 + (1 − t j )]P
−1}

= P
∞∏
j=1

[t j
 + (1 − t j )] · P−1. (15)

Thus, Eq. (12) is equivalent to

∞∏
j=1

[t j
 + (1 − t j )] · δρ = 0. (16)

Since

t j
 + (1 − t j ) =
∑

i

[t jλi + (1 − t j )]|ei〉〈ei|, (17)

where {λi} and {|ei〉} are the eigenvalues and eigenvectors of
K , Eq. (16) holds if

|tλi + (1 − t )| < 1 (18)

for some sufficiently small t and for all i whose {|ei〉} con-
tribute to spin-symmetry breaking. Since that |z| = 1 is a
circle on the complex plane and that tλi + (1 − t ) is just the
linear interpolation between z = 1 and z = λi, Eq. (18) holds
for small enough t ∈ (0, 1] if and only if

Re λi < 1. (19)

Define λ to be the largest real part of eigenvalues that con-
tributes to spin-symmetry breaking. By Eq. (19), if

λ < 1, (20)

then Eq. (12) holds, the system does not possess triplet insta-
bility, and the spin-symmetry is preserved. On the contrary,
if λ > 1, then for some λi, Re λi > 1, |tλi + (1 − t )| > 1 for
any t , and Eq. (12) cannot be satisfied by any choice of {t j};
the triplet instability results in the spin-symmetry breaking.
By the criterion Eq. (20), the spin symmetry can be checked
by using only the converged spin-restricted data.

C. Derivation of kernel of undamped iteration

The terms in Eq. (9) are derived with the following steps.
The quantities without any index of spin are the converged

spin-restricted values, where up-spin and down-spin quanti-
ties are equal.

(i) For the noninteracting auxiliary system, by the first-
order nondegenerate perturbation theory, we obtain [17]

δψσ
i (r′′′) =

∑
j( �=i)

〈ψ j |δvσ
S |ψi〉

εi − ε j
ψ j (r′′′)

=
∫ ∑

j( �=i)

ψ j (r′′′)ψ∗
j (r′′)

εi − ε j
ψi(r′′) δvσ

S (r′′) dr′′, (21)

δψσ∗
i (r′′′) =

∫ ∑
j( �=i)

ψ∗
j (r′′′)ψ j (r′′)

εi − ε j
ψ∗

i (r′′) δvσ
S (r′′) dr′′,

(22)

δεσ
i = 〈ψi|δvσ

S |ψi〉 =
∫

|ψi(r′′)|2δvσ
S (r′′) dr′′, (23)

where {ψi} and {εi} are the converged spin-restricted orbitals
and energy eigenvalues. Thus,

δψσ
i (r′′′)

δvσ
S (r′′)

=
∑
j( �=i)

ψ j (r′′′)ψ∗
j (r′′)

εi − ε j
ψi(r′′), (24)

δψσ∗
i (r′′′)

δvσ
S (r′′)

=
∑
j( �=i)

ψ∗
j (r′′′)ψ j (r′′)

εi − ε j
ψ∗

i (r′′), (25)

δεσ
i

δvσ
S (r′′)

= |ψi(r′′)|2. (26)

(ii) By Eq. (5),

δρσ
out(r) =

∑
i

[
fiψ

∗
i (r) δψσ

i (r) + fiψi(r) δψσ∗
i (r)

+ |ψi(r)|2 δ f σ
i

]
, (27)

where { fi} are the converged spin-restricted occupation num-
bers. Thus,

δρσ
out(r)

δψσ
i (r′′′)

= fiψ
∗
i (r) δ(r − r′′′), (28)

δρσ
out(r)

δψσ∗
i (r′′′)

= fiψi(r) δ(r − r′′′), (29)

δρσ
out(r)

δ f σ
i

= |ψi(r)|2. (30)

(iii) Since

δ f σ
i = δ

(
1

1 + exp[(εσ
i − μσ )/θ ]

)

= − exp [(εi − μ)/θ ]

{1 + exp [(εi − μ)/θ ]}2

δεσ
i − δμσ

θ

= 1

θ
fi(1 − fi )

(
δμσ − δεσ

i

)
, (31)

where { fi} and {εi} are the converged spin-restricted occupa-
tion numbers and energy eigenvalues, by the sum rule

1

θ

∑
i

fi(1 − fi )
(
δμσ − δεσ

i

) =
∑

i

δ f σ
i = δNσ = 0, (32)

we obtain

δμσ =
∑

i fi(1 − fi )δεσ
i∑

i fi(1 − fi )
. (33)
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Thus,

δ f σ
i = 1

θ
fi(1 − fi )

[∑
j f j (1 − f j )δεσ

j∑
k fk (1 − fk )

− δεσ
i

]

=
∑

j

1

θ
fi(1 − fi )

[
f j (1 − f j )∑
k fk (1 − fk )

− δi j

]
δεσ

j . (34)

For simplicity, we define

βi j = δ f σ
i

δεσ
j

= 1

θ
fi(1 − fi )

[
f j (1 − f j )∑
k fk (1 − fk )

− δi j

]
. (35)

(iv) We have

δvσ
S (r′′)

δρσ ′ (r′)
= δ

δρσ ′ (r′)

[
v(r′′) + δ(EH + Excθ )

δρσ (r′′)

]

= δEH

δρσ (r′′)δρσ ′ (r′)
+ δExcθ

δρσ (r′′)δρσ ′ (r′)

= 1

|r′′ − r′| + gσσ ′
xcθ (r′′, r′), (36)

in which

gσσ ′
xcθ (r′′, r′) = δExcθ

δρσ (r′′)δρσ ′ (r′)
(37)

with value taken on the converged spin-restricted density.
Specifically, for the local density approximation (LDA),
Eq. (36) is reduced to the form

δvσ
S (r′′)

δρσ ′ (r′)
= 1

|r′′ − r′| + gσσ ′
xcθ (r′) δ(r′′ − r′). (38)

By Eqs. (24) and (28), we obtain

∑
i

∫
δρσ

out(r)

δψσ
i (r′′′)

δψσ
i (r′′′)

δvσ
S (r′′)

dr′′′

=
∑

i

∫
fiψ

∗
i (r)δ(r − r′′′)

∑
j( �=i)

ψ j (r′′′)ψ∗
j (r′′)

εi − ε j
ψi(r′′) dr′′′

=
∑

i j(i �= j)

fi

εi − ε j
ψ∗

i (r)ψ j (r)ψi(r′′)ψ∗
j (r′′). (39)

Similarly, by Eqs. (25) and (29), we obtain

∑
i

∫
δρσ

out(r)

δψσ∗
i (r′′′)

δψσ∗
i (r′′′)

δvσ
S (r′′)

dr′′′

=
∑

i j(i �= j)

fi

εi − ε j
ψi(r)ψ∗

j (r)ψ∗
i (r′′)ψ j (r′′)

=
∑

i j(i �= j)

f j

ε j − εi
ψ∗

i (r)ψ j (r)ψi(r′′)ψ∗
j (r′′). (40)

Thus, ∑
i

∫
δρσ

out(r)

δψσ
i (r′′′)

δψσ
i (r′′′)

δvσ
S (r′′)

dr′′′

+
∑

i

∫
δρσ

out(r)

δψσ∗
i (r′′′)

δψσ∗
i (r′′′)

δvσ
S (r′′)

dr′′′

=
∑

i j(i �= j)

fi − f j

εi − ε j
ψ∗

i (r)ψ j (r)ψi(r′′)ψ∗
j (r′′)

=
∑

i j

αi jψ
∗
i (r)ψ j (r)ψi(r′′)ψ∗

j (r′′), (41)

where

αi j =
{

fi− f j

εi−ε j
, i �= j,

0, i = j.
(42)

Note that under the limit εi → ε j (i �= j), αi j gives a finite
number f ′(εi ) for θ �= 0. This enables us to consider a system
with degenerate levels as the limit of a sequence of non-
degenerate systems. By taking this limit, Eq. (41) can be
used for systems with degenerate levels, while the fraction
( fi − f j )/(εi − ε j ) in Eq. (42) is replaced with the derivative
f ′(εi ). By Eqs. (9), (26), (30), (36), and (41), we obtain the
kernel of undamped iteration

Kσσ ′
(r, r′)

=
∫ ∑

i j

{
αi jψ

∗
i (r)ψ j (r)ψi(r′′)ψ∗

j (r′′)
+βi j |ψ j (r)|2|ψi(r′′)|2

}

×
[

1

|r′′ − r′| + gσσ ′
xcθ (r′′, r′)

]
dr′′

=
∑

i j

[
αi jψ

∗
i (r)ψ j (r)ησσ ′

i j (r′) + βi j |ψ j (r)|2ησσ ′
ii (r′)

]
,

(43)

where

ησσ ′
i j (r′) =

∫ [
1

|r′′ − r′| + gσσ ′
xcθ (r′′, r′)

]
ψi(r′′)ψ∗

j (r′′) dr′′.

(44)

D. Response theory with a basis set

When a finite basis set {χi(r)} is employed, not all δρσ (r)
are accessible in Eq. (8). The perturbations δρσ (r) are at-
tributed to the perturbation of a finite number of coefficients,
resulting in an easier derivation without involving the inter-
change of limits. By expanding the spin density on the basis
set, we obtain

ρσ (r) =
∑

i

f σ
i |ψσ

i (r)|2 =
∑

i j

(∑
k

f σ
k cσ∗

ki cσ
k j

)
χi(r)χ j (r).

(45)

It is shown that {χi(r)χ j (r)}’s form the basis of the spin
densities and that δρσ (r) should be their linear combination,

δρσ (r) =
∑

i j

δρσ
i j χi(r)χ j (r). (46)

The sum rule requires∑
i j

Si jδρ
σ
i j =

∫
δρσ (r) dr = δNσ = 0, (47)

where

Si j =
∫

χi(r)χ j (r) dr. (48)
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Equations (46) and (47) constitute the constraints of δρσ (r)
when a basis set is employed.

We rewrite the iteration formula [Eq. (8)] on a basis set. By
Eq. (43), we have

Kσσ ′
(r, r′) =

∑
i j

[
αi jψ

∗
i (r)ψ j (r)ησσ ′

i j (r′) + βi j |ψ j (r)|2ησσ ′
ii (r′)

]

=
∑
i jmn

χi(r)χ j (r)
[
αmnc∗

micn jη
σσ ′
mn (r′) + βmnc∗

nicn jη
σσ ′
mm (r′)

]

=
∑

i j

χi(r)χ j (r)Kσσ ′
i j (r′), (49)

where

Kσσ ′
i j (r′) =

∑
mn

[
αmnc∗

micn jη
σσ ′
mn (r′) + βmnc∗

nicn jη
σσ ′
mm (r′)

]
. (50)

By Eqs. (8) and (46), we obtain

δρσ
damped(r) = t

∑
σ ′

∫
Kσσ ′

(r, r′)δρσ ′
(r′) dr′ + (1 − t )δρσ (r)

=
∑

i j

χi(r)χ j (r)

[
t
∑
σ ′

∫
Kσσ ′

i j (r′) δρσ ′
(r′) dr′ + (1 − t )δρσ

i j

]

=
∑

i j

χi(r)χ j (r)

[
t
∑
σ ′kl

Kσσ ′
i j,kl δρσ ′

kl + (1 − t )δρσ
i j

]
, (51)

where

Kσσ ′
i j,kl =

∫
Kσσ ′

i j (r′)χk (r′)χl (r′) dr′

=
∑
mn

∫ [
αmnc∗

micn jη
σσ ′
mn (r′) + βmnc∗

nicn jη
σσ ′
mm (r′)

]
χk (r′)χl (r′) dr′

=
∑
mnpq

[
(αmnc∗

mic
∗
nq + βmnc∗

mqc∗
ni )cmpcn jξ

σσ ′
pq,kl

]
, (52)

ξσσ ′
pq,kl =

∫∫
χp(r)χq(r)

[
1

|r − r′| + gσσ ′
xcθ (r, r′)

]
χk (r′)χl (r′) dr dr′. (53)

Specifically, for the LDA, Eq. (53) reduces to the form

ξσσ ′
pq,kl =

∫
χp(r)χq(r)gσσ ′

xcθ (r)χk (r)χl (r) dr

+
∫∫

χp(r)χq(r)χk (r′)χl (r′)
|r − r′| dr dr′. (54)

Hence, the iteration formula Eq. (8) can be written as

δρσ
damped,i j = t

∑
σ ′kl

Kσσ ′
i j,kl δρσ ′

kl + (1 − t )δρσ
i j, (55)

where {δρσ
i j} satisfies the constraint Eq. (47); {Kσσ ′

i j,kl} is the
undamped iteration matrix, corresponding to the operator K
in Eq. (10).

E. High-fictitious-temperature limit

As the fictitious temperature θ increases, the unphysical
spin-symmetry breaking tends to vanish in TAO-DFT [7]. In
the following, we prove that it holds for all electronic systems.

First, we observe the asymptotic behavior of {αi j (θ )} and
{βi j (θ )} in the limit of high fictitious temperature.

(i) By Lagrange’s mean-value theorem, for any i and j,
there exists ε̃i j ∈ (εi, ε j ) such that

f ′(ε̃i j ) = f (εi ) − f (ε j )

εi − ε j
, (56)

where f denotes the Fermi-Dirac distribution function, given
by Eq. (3); f ′ denotes its derivative. Since

f ′(ε̃i j ) = − 1

θ

exp[(ε̃i j − μ)/θ ]

{1 + exp[(ε̃i j − μ)/θ ]}2

= − 1

θ
f (ε̃i j )[1 − f (ε̃i j )], (57)

by Eq. (42) and the decreasing of f (ε), we obtain

0 � |αi j | �
∣∣∣∣ fi − f j

εi − ε j

∣∣∣∣ = 1

θ
f (ε̃i j )[1 − f (ε̃i j )] <

f0

θ
, (58)

062808-5



YU-YANG WANG AND JENG-DA CHAI PHYSICAL REVIEW A 109, 062808 (2024)

where f0 is the maximum converged spin-restricted occupa-
tion number. Equation (58) gives

lim
θ→∞

αi j (θ ) = 0. (59)

(ii) Since for any i and j,

0 � f j (1 − f j )∑
k fk (1 − fk )

� 1, (60)

by Eq. (35), we have

0 �
∣∣βi j

∣∣ = 1

θ
fi(1 − fi )

∣∣∣∣ f j (1 − f j )∑
k fk (1 − fk )

− δi j

∣∣∣∣
� 1

θ
fi(1 − fi )

[
f j (1 − f j )∑
k fk (1 − fk )

+ δi j

]

<
2 f0

θ
. (61)

Equation (61) gives

lim
θ→∞

βi j (θ ) = 0. (62)

The vanishing {αi j (θ )} and {βi j (θ )} at high fictitious tem-
peratures, according to Eq. (52), are the key factors that reduce
the eigenvalues of the undamped iteration matrix [Kσσ ′

i j,kl ].
Since [Si j] in Eq. (48) is the Gram matrix of a set of in-
dependent functions {χi(r)}, it is positive definite. Thus, for
any i,

1 =
∫

|ψi(r)|2dr =
∑

jk

c∗
i jcikS jk � λmin(S)

∑
j

|ci j |2, (63)

where λmin(S) > 0 is the minimum eigenvalue of [Si j]. Then
we obtain the bound of the coefficients {ci j},

∣∣ci j

∣∣ � √∑
k

|cik|2 � 1√
λmin(S)

= cbound, (64)

which is independent of θ . In the exact functional case, {ξσσ ′
pq,kl}

has a bound ξbound for TAO-DFT without Eθ since it contains
no θ dependence. By Eqs. (58) and (61), as θ → ∞, we have

|Kσσ ′
i j,kl | �

∑
mnpq

|(αmnc∗
mic

∗
nq + βmnc∗

mqc∗
ni )cmpcn jξ

σσ ′
pq,kl |

�
∑
mnpq

c4
bound(|αmn| + |βmn|)|ξσσ ′

pq,kl |

� M4
basisc

4
bound

3 f0

θ
ξbound → 0, (65)

where Mbasis is the number of basis functions. That is,

lim
θ→∞

Kσσ ′
i j,kl = 0. (66)

As a result, as θ → ∞, we have

lim
θ→∞

λ = 0. (67)

Equation (67) indicates that Eq. (20) holds above some fic-
titious temperature θc. As long as λ becomes small enough
before Eθ becomes significant, Eq. (20) still holds above
θc. Furthermore, since α, β ∼ f0/θ [Eqs. (58) and (61)] and
Eθ = Aθ=0

S − Aθ
S = θSθ

S in the exact theory (See Ref. [7]), the

Eθ contribution in K vanishes if f0Sθ
S → 0 as θ → ∞. At very

high θ , the orbitals are populated equally and the occupation
numbers equal 1/Mbasis; this results in

f0Sθ
S = ln Mbasis

Mbasis
, (68)

which is small for large Mbasis. These are the reason why
Eq. (20) still holds for TAO-DFT with Eθ . According to the
criterion, the spin-symmetry breaking vanishes above this crit-
ical fictitious temperature θc.

The critical fictitious temperature θc exists under the limit
Mbasis → ∞ based on the following analysis of Eq. (52):
(i) By orthogonality of the orbitals, each ci j contributes to
the M−1/2

basis dependence; (ii) the sum over p and q contributes
to the M2

basis dependence; and (iii) the sum over m and n
does not affect any exponent of Mbasis since by Eqs. (58) and
(61) both of the coefficients {αmn} and {βmn} are bounded by
2 f (ε̃mn)[1 − f (ε̃mn)]/θ and tend to vanish for large m or n.
Thus, the Mbasis dependence in each term of K (and thus λ)
compensates for each other. This enables us to characterize
a system by its θc under a sufficiently large basis set, while
different θc can be taken in the calculations with different basis
sets to restore the spin symmetry.

In short, under the assumptions (i) if the converged spin-
restricted density is a local minimum of energy functional,
it is also a global minimum, at least for a sufficiently large
θ (beginning of Sec. II B), and (ii) the orbitals are equally
populated under high-θ limit (previous paragraph), TAO-DFT
is able to resolve the unphysical spin-symmetry breaking by a
well-chosen value of θ .

III. NUMERICAL INVESTIGATION

The analysis provided in Sec. II is implemented and exam-
ined on several molecular systems, including the dissociation
of H2, N2, He2, and Ne2, as well as the twisted ethylene.
All results are computed using TAO-LDA (i.e., TAO-DFT
with the LDA xcθ energy functional) [7] with the 6-31G(d)
basis set. KS-LDA (i.e., KS-DFT with the LDA xc en-
ergy functional) corresponds to TAO-LDA (with θ = 0). The
single-point calculations are performed by Q-CHEM 4.0 [18],
whereas λ, the largest real part of eigenvalues of K that con-
tributes to spin-symmetry breaking, is obtained according to
Sec. II with the converged spin-restricted data as input.

A. H2 dissociation

H2 dissociation, a single-bond breaking system, is incor-
rectly predicted by KS-LDA. In the exact theory, due to spin
symmetry, the spatial distribution of the two spin densities
should be identical [10]. As shown in Fig. 1, for the KS-
LDA case (θ = 0 in the figure), at the experimental bond
length Re = 0.741 Å [10,19] and 2Re, we have λ < 1, which
means that the two spin densities are the same. However, H2

exhibits spin-symmetry breaking [i.e., violation of criterion
Eq. (20)] when the bond stretches to 3Re; this deviates from
the exact theory. This unphysical behavior can be removed in
TAO-DFT. When the fictitious temperature θ is above 31
mhartree, our theory predicts λ < 1 for the 3Re case. It in-
dicates the vanishing of spin-symmetry breaking.
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FIG. 1. The largest real part of eigenvalues of K that contributes to spin-symmetry breaking, λ, for the ground state of stretched H2 (with
various bond lengths) as a function of the fictitious temperature θ , calculated by TAO-LDA. The θ = 0 case corresponds to KS-LDA. The
experimental bond length Re = 0.741 Å [10,19] is adopted. Points above the black line (λ = 1) correspond to the spin-symmetry-breaking
cases.

B. N2 dissociation

N2 dissociation, a triple-bond breaking system, provides
similar results. As shown in Fig. 2, for the KS-LDA case (θ =
0 in the figure), at the experimental bond length Re = 1.098 Å
[10,19], we have λ < 1, which means that the two spin den-
sities are identical. Nonetheless, N2 exhibits spin-symmetry
breaking [i.e., violation of criterion Eq. (20)] when the bond

stretches to 2Re and 3Re; this deviates from the exact theory.
This unphysical behavior can be removed in TAO-DFT. When
the fictitious temperature θ is above 38 mhartree, our theory
predicts λ < 1 for both the 2Re and 3Re cases. It indicates
the vanishing of spin-symmetry breaking. The dissociation of
H2 and N2 justifies the theoretical high-fictitious-temperature
limit in Sec. II E.

FIG. 2. The largest real part of eigenvalues of K that contributes to spin-symmetry breaking, λ, for the ground state of stretched N2 (with
various bond lengths) as a function of the fictitious temperature θ , calculated by TAO-LDA. The θ = 0 case corresponds to KS-LDA. The
experimental bond length Re = 1.098 Å [10,19] is adopted. Points above the black line (λ = 1) correspond to the spin-symmetry-breaking
cases.
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FIG. 3. The largest real part of eigenvalues of K that contributes to spin-symmetry breaking, λ, for the ground state of stretched He2 (with
various bond lengths) as a function of the fictitious temperature θ , calculated by TAO-LDA. The θ = 0 case corresponds to KS-LDA. The
experimental bond length Re = 2.967 Å [20,21] is adopted. Points above the black line (λ = 1) correspond to the spin-symmetry-breaking
cases.

C. He2 dissociation

A stretched helium dimer (He2) is also investigated. Since
helium is a noble gas, there is no bond formation between
the two helium atoms. Instead, the van der Waals force is
the reason of the attraction. Theoretically, the spin-symmetry-
breaking problem does not emerge, since each atom in
the helium dimer preserves its atomic orbitals due to the

lack of bond. As shown in Fig. 3, for the KS-LDA case
(θ = 0 in the figure), at the experimental bond length Re =
2.967 Å [20,21], we have λ < 1, which means that the two
spin densities are equal. This result is retained as the dimer
distance stretches to 2Re and 3Re. In TAO-DFT, at each dimer
distance, λ < 1 always holds for any θ , meaning the nonexis-
tence of the spin-symmetry breaking.

FIG. 4. The largest real part of eigenvalues of K that contributes to spin-symmetry breaking, λ, for the ground state of stretched Ne2 (with
various bond lengths) as a function of the fictitious temperature θ , calculated by TAO-LDA. The θ = 0 case corresponds to KS-LDA. The
experimental bond length Re = 3.091 Å [22,23] is adopted. Points above the black line (λ = 1) correspond to the spin-symmetry-breaking
cases.
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FIG. 5. The largest real part of eigenvalues of K that contributes to spin-symmetry breaking, λ, for the ground state of twisted ethylene
(with various HCCH torsion angles) as a function of the fictitious temperature θ , calculated by TAO-LDA. The θ = 0 case corresponds to
KS-LDA. The experimental geometry (RCC = 1.334 Å, RCH = 1.081 Å, and ∠HCH = 117.4◦) [10,24] is adopted. Points above the black line
(λ = 1) correspond to the spin-symmetry-breaking cases.

D. Ne2 dissociation

A stretched neon dimer (Ne2) is also investigated (i.e., for
another noble gas). As shown in Fig. 4, for the KS-LDA case
(θ = 0 in the figure), at the experimental bond length Re =
3.091 Å [22,23], we have λ < 1, which means that the two
spin densities are equal. This result is retained as the dimer
distance stretches to 2Re and 3Re. In TAO-DFT, at each dimer
distance, λ < 1 always holds for any θ , meaning the nonex-
istence of the spin-symmetry breaking. The stretched helium
dimer and neon dimer are non-MR systems, still justifying the
theoretical high-fictitious-temperature limit in Sec. II E.

E. Twisted ethylene

Besides the aforementioned molecular dissociation, our
theory is also examined on a twisted ethylene (C2H4), an
electronic system which has previously been shown to possess
MR character [7]. As the HCCH torsion angle approaches
90◦, the π bond between the carbon atoms breaks. As shown
in Fig. 5, for the KS-LDA case (θ = 0 in the figure), at the
experimental geometry (RCC = 1.334 Å, RCH = 1.081 Å, and
∠HCH = 117.4◦) [10,24], we have λ < 1, which means the
up-spin density is equal to the down-spin density. However,
the twisted ethylene exhibits spin-symmetry breaking [i.e.,
violation of criterion Eq. (20)] at the HCCH torsion angles 80◦
and 90◦; this deviates from the exact theory. According to the
theory in Sec. II E, this unphysical behavior can be removed
in TAO-DFT. When the fictitious temperature θ is above
15 mhartree, our theory predicts λ < 1 for the HCCH tor-
sion angles 80◦ and 90◦. It indicates the vanishing of
spin-symmetry breaking. Again, this justifies the theoretical
high-fictitious-temperature limit in Sec. II E, even for this
nondissociating molecular system.

IV. CONCLUSIONS

In summary, we have proposed a theory explaining the rea-
son why TAO-DFT can resolve the spin-symmetry-breaking
problem that commonly occurs in MR systems when adopting
KS-DFT with the conventional xc energy functionals. Specifi-
cally, we have characterized the spin-symmetry breaking with
a dimensionless variable λ derived from a response theory
in TAO-DFT; spin-symmetry breaking occurs if λ > 1, and
spin symmetry is restored if λ < 1. By the asymptotic behav-
ior of λ, we have proved that the unphysical spin-symmetry
breaking always vanishes for any system in the high-fictitious-
temperature limit. That is, for an arbitrary system, the spin
symmetry can be restored in TAO-DFT by a well-chosen
fictitious temperature. Besides, the theory is examined by the
numerical calculations on several molecular systems, includ-
ing the dissociation of H2, N2, He2, and Ne2, as well as the
twisted ethylene. In all the cases, it has been shown that
the spin symmetry can always be restored at high fictitious
temperatures.

These findings suggest the use of TAO-DFT instead of
KS-DFT for MR systems. Moreover, the critical fictitious
temperature that restores the spin symmetry, which exists
for any system, can be chosen as the fictitious temperature
in TAO-DFT. Once the spin-symmetry-breaking problem is
solved, a more accurate result in spin DFT is obtained under a
similar computational cost.
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