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Complex scaling calculation of phase shifts for positron collisions with positive ions
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We present phase-shift calculations for positron collisions with positive ions using a complex scaling method
(CSM) in which the phase shifts are derived only from the complex eigenenergies of the CSM Hamiltonian.
Based on the findings of this study [R. Suzuki, T. Myo, and K. Katō, Prog. Theor. Phys. 113, 1273 (2005)], we
propose a modification of the phase shift in the CSM calculation for application to few-body scattering problems.
This modification is based on the fact that the contributions of high-lying complex eigenenergies to the phase shift
can be approximated as a constant value in the case of small collision energy, where neither target excitation nor
positronium formation occurs. The proposed modification limits the contribution of the complex eigenenergies
to the vicinity of the collision energy, which is intuitively acceptable. We present a geometrical formulation of
the modification and demonstrative calculations of positron scattering off positive ions. Our results agree well
with those reported in the literature for the targets Ne, Ar, Kr, Xe, H, He, He+, and Li2+. The phase shifts of
positron scattering off a Li+ ion are also reported.

DOI: 10.1103/PhysRevA.109.062803

I. INTRODUCTION

An observation of a positron scattering off an atom pro-
vides essential insights into the behavior of positrons in
matter. Positrons interact attractively with electrons compris-
ing the target atom and can form a positronium (Ps) atom,
which is a bound state of the electron and positron. Even when
the collision energy is below the threshold for Ps formation, it
is crucial to consider virtual Ps formation during the scattering
process, which results in a challenging two-center problem
and requires rigorous theoretical treatment [1,2]. In recent
years, the improvement in the positron beam quality [3,4]
revealed scattering cross sections with a variety of atoms or
molecules over a wide range of collision energies [5–7]. Fur-
thermore, the development of Ps beams [8–11] has stimulated
interest in positronium-atom interactions [12–18].

Compared to positron scattering off neutral atoms, the
investigation of the scattering off positive ions has been rel-
atively limited. This is due to the experimental difficulties and
theoretical complexities arising from the long-range Coulomb
repulsion between the positron and ion. For instance, positron
scattering off a He+ ion has been studied using various
theoretical approaches [19–22] for a considerable time, and
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the latest calculations [22] confirmed the accuracy and pro-
vided a valuable benchmark for theoretical approaches.

The complex scaling method (CSM) has been widely used
to calculate the resonance energies and widths of various
few-body systems [23] while its application to the nonreso-
nant scattering problems has been relatively limited. Suzuki
et al. [24–27] proposed a CSM calculation of phase shifts by
investigating the relationship among the complex eigenener-
gies of the CSM Hamiltonian, continuum level density (CLD),
and scattering matrices. In the CSM calculation of the phase
shifts, once the complex eigenenergies of the CSM Hamilto-
nian are obtained, the phase shifts can be calculated as smooth
functions of collision energies. The CSM basis functions are
square integrable functions that damp out within a finite space.
This advantage contrasts with other conventional approaches
that utilize an explicit form of the scattering wave function
and require individual calculations for each collision energy.

In this study, we demonstrate the effectiveness of the CSM
calculation for low-energy positron scattering off positive
ions, where the collision energy is lower than the first exci-
tation energy of the target atom or ion. To the best of our
knowledge, this CSM approach has not been applied to the
phase-shift calculations of atomic or molecular systems and
can be used as an alternative approach to atomic and molecu-
lar scattering problems, including those involving positrons.

To demonstrate the validity of the CSM, we examine
the positron collision with noble gas atoms, treating it as a
two-body problem using model potentials. We then investigate
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the roles of the eigenenergies responsible for determining the
phase-shift behavior of low-energy scattering. We consider
the empirical fact that numerical convergence requires a large
set of complex eigenenergies even in the case of low-energy
scattering. The majority of the complex eigenenergies have a
large real part compared to the small collision energy, which
is counterintuitive. To calculate the phase shift using a finite
set of eigenenergies, we propose an effective modification
for low-energy scattering. We apply the CSM to positron
scattering off a helium ion (He+), hydrogen atom (H), and
lithium ion (Li2+) as examples of a three-body problem. We
employ the Gaussian expansion method [28] and accurately
describe the interparticle interactions. We then perform anal-
ogous computations for four-body systems, namely, positron
scattering off a He atom and Li+ ion.

The remainder of this paper is organized as follows. In
Sec. II, we provide an overview of the CSM-based calculation
of the continuum-level density and phase shift. Subsequently,
we describe the basis functions for the calculation of positron-
atom scattering. In Sec. III, we highlight a case study of
e+-Ne scattering and examine the problems in the conver-
gence behavior of low-energy phase shifts. Subsequently, we
propose a modification for low-energy scattering phase shifts
and demonstrate the modification for e+-X (X = Ne, Ar, Kr,
Xe) scattering, e+-X (X = H, He+, Li2+) three-body scatter-
ing, and e+-X (X = He, Li+) four-body scattering. Finally, the
conclusions are summarized in Sec. IV.

Atomic units (a.u.; me = h̄ = e = 1) are used throughout
this study, except where otherwise mentioned. The Bohr ra-
dius is denoted as aB.

II. THEORY

A. Phase-shift calculation with complex scaling method

The framework of the phase-shift calculation using CSM is
presented in Refs. [24–27]. Here, we briefly describe the out-
line of the formulation, which is important for the following
discussion.

We consider a Hamiltonian H consisting of a kinetic en-
ergy operator T and a potential energy operator V . In the
CSM, all the coordinates are applied to exp(iθ ) as follows:

r → exp(iθ )r, (1)

where θ is a real number and i is an imaginary unit. Using
the CSM, the Schrödinger equation for the complex-scaled
Hamiltonian is written as

H (θ )�(θ ) = E (θ )�(θ ), (2)

where the wave function �(θ ) is associated with the eigenen-
ergy E (θ ), which is a complex value because the Hamiltonian
is no longer Hermitian. If the wave function �(θ ) is expanded
in terms of a finite number Nmax of L2 integrable basis func-
tions, E (θ ) takes discrete energies Ek (θ )(k = 1, . . . , Nmax) by
a diagonalization of the complex scaled Hamiltonian as

〈�̃k′ (θ )|H (θ )|�k (θ )〉 = Ek (θ )δk′k, (3)

where the bra states with �̃k denote the biorthogonal state
of the ket state. The continuum states then become discrete
states, which are referred to as called pseudostates.

The Ek (θ ) of the bound state does not change with a
change in θ . In contrast, the Ek (θ ) of the scattering state
(pseudostates) almost rotates by −2θ in the complex energy
plane because the kinetic energy operator T of the Hamil-
tonian is expressed as exp(−2iθ )T in the complex scaled
Hamiltonian. The Ek (θ ) of a resonance state approaches a
complex resonance energy, and the real and imaginary parts
of which represent the resonance energy and width, respec-
tively. The eigenfunctions {�k (θ )} satisfy the completeness
relation [29,30] approximately as follows:

Nmax∑
k=1

|�k (θ )〉 〈�̃k (θ )| ≈ 1. (4)

In this work, we calculate the scattering phase shift δ(E )
based on the continuum level density (CLD) that is defined
as [31,32]

D(E ) = − 1

π
Im{Tr[G+(E ) − G+

0 (E )]}, (5)

where G+(E ) = (E + iε − H )−1 and G+
0 (E ) = (E + iε −

H0)−1 are the full and free Green’s functions, respectively.
H denotes the full Hamiltonian of the system and H0 is an
asymptotic form of the full Hamiltonian.

The CLD D(E ) is related to the scattering matrix S(E )
as [25,32–34]

D(E ) = 1

2π
Im

d

dE
ln det S(E ). (6)

When the asymptotic interaction between the collision frag-
ments does not include an explicit Coulomb potential energy
operator, the H0 only contains kinetic energy operators along
with the relative coordinate between the fragments and in-
ternal Hamiltonians of the collision fragments. In this case,
the S(E ) calculated from D(E ) by Eq. (6) corresponds to an
amplitude of the outgoing spherical Hankel function. For the
case where the both collision fragments have nonzero charges,
we include the asymptotic Coulomb potential energy operator
in H0 so that the scattering matrix S(E ) corresponds to the
amplitude of the outgoing spherical Coulomb function. The
H and H0 used in this paper are presented in the following
sections, see Eqs. (14), (18), and (21).

For a single-channel (elastic) scattering problem, because
det S(E ) = exp[2iδ(E )], where δ(E ) denotes the phase shift,
the phase shift is obtained from the CLD as

δ(E ) =
∫ E

−∞
D(E ′)dE ′. (7)

Using the completeness relation of Eq. (4), theD(E ) in Eq. (5)
is rewritten as

D(E ) ≈ − 1

π
Im

[
Nmax∑
k=1

1

E + iε − Ek (θ )

−
Nmax∑
k=1

1

E + iε − E0,k (θ )

]
, (8)

where the summation over k runs for all the eigenener-
gies, k = 1, . . . , Nmax, obtained by the full diagonalization of
the Hamiltonian with the Nmax basis functions according to
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Eq. (3). The {Ek} and {E0,k} are the eigenenergies of H (θ )
and H0(θ ), respectively, and are obtained using the same basis
functions.

In the case of single-channel scattering, Eqs. (7) and (8)
provide simple expressions for the phase shift

δ(Ecol ) =
[

Nmax∑
k=1

δk (Ecol ) −
Nmax∑
k=1

δ0,k (Ecol )

]
, (9)

where

δk (Ecol ) = tan−1

( −ImEk (θ )

ReEk (θ ) − Ecol

)
, (10)

and

δ0,k (Ecol ) = tan−1

( −ImE0,k (θ )

ReE0,k (θ ) − Ecol

)
. (11)

It should be noted that, on the complex energy plane,
δ(0,)k (Ecol ) corresponds to the angle of depression of E(0,)k (θ ),
as measured from the real energy Ecol. Thus, the calculation of
the phase shift δ(Ecol ) is reduced to the sum of the geometrical
angles of the complex eigenenergies on the complex energy
plane.

B. Two-body systems: e+-X (X = Ne, Ar, Kr, Xe)

We consider noble gas atom (X = He, Ar, Kr, or Xe) targets
as a simple positron scattering problem. As atoms have a
closed-shell structure and the kinetic energy of the positron
is less than the excitation energy, a two-body model is used in
the study. The Hamiltonian H can be written as follows:

H2bd = p2

2μe
+ Ve+X(r), (12)

where r denotes the distance between e+ and the center of
mass of the noble gas atom X, and p is the momentum op-
erator along with the vector r. μe denotes the reduced mass
between e+ and X. Ve+X(r) is a model potential that describes
the static Coulomb repulsion and induced dipole polarization
as

Ve+X(r) = Z

r

N∑
i

Aie
−αir − αd

2r4
(1 − e−(r/rc )6

). (13)

Here, the static potential parameters {Ai} and {αi} are ob-
tained to reproduce the elastic cross section and are given
in Refs. [35,36] for Ne, Ar, and Xe and Ref. [35] for Kr.
The induced polarization potential parameters αd and rc are
obtained from Ref. [36] for Ne, Ar, and Xe and Ref. [37] for
Kr. For these systems, we define the reference Hamiltonian H0

using only the kinetic energy operator

H0,2bd = p2

2μe
. (14)

According to Eq. (3), we diagonalize H2bd and H0,2bd using
Gaussian basis functions as follows:

ψklm(r) =
nb∑

i=1

C(k)
i rl e−bir2

Ylm(r̂), (15)

where the nonlinear Gaussian range parameters {bi; i =
1, 2, . . . , nb} (real values) are selected in accordance with the

FIG. 1. Two sets of coordinates in e+-H/He+/Li2+ scattering.

geometrical progression. l and m are azimuthal and magnetic
quantum numbers, respectively. The linear coefficients {C(k)

i }
are determined using the Rayleigh-Ritz variational method
for the complex scaling Schrödinger equation such that ψklm

satisfies the following condition:

〈ψ̃k′lm(θ )|H2bd(θ )|ψklm(θ )〉 = Ek (θ )δkk′ . (16)

For the asymptotic Hamiltonian H0,2bd, as in the case of
Eq. (16), we obtain the eigenenergies {E0k}. We typically use
nb = 60 and 0.01 � 1/

√
bi � 300 aB.

C. Three-body systems: e+-X (X = H, He+, Li2+)

As a second example of positron scattering, we consider
e+-X (X = H, He+, Li2+) scattering in a three-body treatment.
These systems consist of three distinguishable particles, e+,
e−, and xZ+ (the nucleus of X). Assuming an infinite mass of
X, the three-body Hamiltonian can be written as

H3bd = p2
e− + p2

e+

2
− Z

re−
+ Z

re+
− 1

re+e−
, (17)

where re−(e+ ) denotes the distance between the X and e−(e+),
and Z is the atomic number of the nucleus. re+e− is the dis-
tance between e− and e+. For the cases X = He+ and Li2+,
owing to the repulsive Coulomb interaction remaining in the
asymptotic distance, the corresponding asymptotic Hamilto-
nian H0,3bd is generally expressed as

H0,3bd = p2
e− + p2

e+

2
− Z

re−
+ Z − 1

re+
, (18)

where the first term of the potential energy operators, −Z/re− ,
provides a correct threshold energies of collision fragments
and the second term, (Z − 1)/re+ , provides the asymptotic re-
pulsive Coulomb interaction between the collision fragments
for Z > 1 cases.

The wave function of the three-body system is written as

�kJM =
2∑

c=1

∑
l,L

∑
i

(
C(k)

clLi cos
(
βνclLiR

2
c

)

+ D(k)
clLi sin

(
βνclLiR

2
c

))
rl

cRL
c

× exp
(−μclLir

2
c − νclLiR

2
c

)
[Yl (r̂c) ⊗ YL(R̂c)]JM,

(19)

where the coordinate sets (r1, R1) = (re− , re+ ) and (r2, R2) =
(re−e+ , R) are presented in Fig. 1. The parameters {νclLi} and
{μclLi} are selected in accordance with the geometrical pro-
gression. The typical ranges are 0.01 � 1/

√
μclLi � 20 aB

and 0.05 � 1/
√

νclLi � 80 aB. The two spherical harmonics
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FIG. 2. Three sets of coordinates in e+-He+ scattering.

are coupled to provide the total angular momentum J and its
projection onto the z axis, M. The parameter β = 1.5 intro-
duces oscillations in the Gaussian functions and increases the
orthogonality of the basis functions. Linear coefficients C(k)

clLi

and D(k)
clLi are determined by the diagonalization as in Eq. (3).

The eigenenergies {Ek} and {E0k} are obtained in a manner
similar to that in Eq. (16).

D. Four-body systems: e+-X (X = He, Li+)

Similar to Sec. II C, the four-body Hamiltonian for e+-X
(X = He, Li+) scattering is expressed as

H4bd =
p2

e−
a

+ p2
e−

b
+ p2

e+

2
− Z

re−
a

− Z

re−
b

+ 1

re−
a e−

b

+ Z

re+
− 1

re+e−
b

− 1

re+e−
b

, (20)

where the two electrons are labeled as e−
a and e−

b . The asymp-
totic Hamiltonian H0,4bd is defined assuming the distances
between the positron and the other particles approach the same
distances represented by re+ , i.e.,

H0,4bd =
p2

e−
a

+ p2
e−

b
+ p2

e+

2
− Z

re−
a

− Z

re−
b

+ 1

re−
a e−

b

+ Z − 2

re+
.

(21)

The wave function of the four-body system is written as

�kJM

=
3∑

c=1

∑
l,L,λ

∑
i

(
C(k)

clLλi cos
(
βνclLiρ

2
c

)+D(k)
clLλi sin

(
βνclLiρ

2
c

))
× rl

cRL
c ρλ

c exp
(−μclLλir

2
c − νclLλiR

2
c − ζclLλiρ

2
c

)
× [[Yl (r̂c) ⊗ YL(R̂c)]� ⊗ Yλ(ρ̂c)]JM + (a ↔ b), (22)

where the coordinate sets (rc, Rc, ρc) = (re− , re+ ) are pre-
sented in Fig. 2. The last term a ↔ b is an electron-permutated
basis function because we consider the electronic spin singlet
state and space-symmetric wave functions throughout this
paper. The nonlinear parameters are selected in a manner
similar to that of the three-body problem. Linear coefficients
C(k)

clLλi and D(k)
clLλi are determined by the diagonalization as in

Eq. (3).

FIG. 3. (a) Complex eigenenergies {Ek} and {E0,k} calculated
for e+ + Ne at the complex scaling parameter θ = 0.25. (b) Con-
vergence of the S-wave phase shift of e+ + Ne scattering against
complex scaling parameters θ = 0.10 (most oscillating curve), 0.13,
and 0.25 (most smooth curve). The phase shifts are compared with
those calculated using the Numerov method. The inset is a close-up
view of the phase shift behavior in the vicinity of 10−2-100 eV.

III. RESULTS AND DISCUSSION

A. Case study of potential scattering of e+-Ne collision

We begin the discussion with a case study of e+-Ne scat-
tering. Using 60 Gaussian basis functions as described in
Sec. II B, the 60 complex eigenenergies {Ek} and {E0,k} are
obtained for complex-scaled Hamiltonians H2bd and H0,2bd,
respectively. Figure 3(a) presents the lowest 23 eigenenergies
calculated with the complex scaling parameter θ = 0.25 for
S-wave scattering. The system has no bound or resonance
states, and all eigenenergies obtained are attributed to con-
tinuum states. Figure 3(b) presents the S-wave phase shifts
calculated for several complex scaling angles: θ = 0.10, 0.13,
and 0.25. To verify our calculations, we calculated the phase
shifts using the Numerov method with high precision. The
phase shift realized using a small complex scaling parameter,
e.g., θ = 0.10, exhibits an oscillation around the exact phase
shift obtained using the Numerov method. By increasing the
scaling angle, the oscillation is reduced and converges to an
exact value. The calculation of θ = 0.25 produces almost
the same phase shift as that obtained using the Numerov
method below the first excitation energy of Ne. For a small
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FIG. 4. Convergence of the S-wave phase shift δ(n)(Ecol ) [see
Eq. (23) for definition] of e++Ne at Ecol = 0 and 0.1 eV against the
number of eigenenergies included n.

collision energy, the phase shift increases as the collision
energy increases and then decreases, thus crossing zero at
approximately Ecol = 0.8 eV. This behavior results in a mini-
mum S-wave cross section and a minimum total cross section,
which is known as the Ramsauer-Townsend effect [36].

B. Problems in convergence behavior of low-energy phase shift

In Sec. III A, we confirmed that the phase-shift calculation
performed using all (Nmax = 60 in this case) eigenenergies
provides an accurate result for the e+-Ne scattering when the
complex scaling angle θ is sufficiently large. In this section,
we examine the convergence of the phase shift against the
number of eigenenergies included. This consideration is cru-
cial when we calculate three-body and four-body scattering
problems.

As observed in Fig. 3(a), the eigenenergies {Ek} are close
to {E0,k}. Thus, we can sort these eigenenergies by Re E(0,)k in
ascending order and truncate Eq. (9) as

δ(n)(Ecol ) :=
n∑

k=1

[δk (Ecol ) − δ0,k (Ecol )], (23)

where n � Nmax. Figure 4 illustrates the e++Ne scattering
phase shift δ(n)(Ecol ) as a function of n. According to Levin-
son’s theorem, the exact phase shift δ(Ecol = 0 eV) is zero.
As shown in Sec. III A, δ(n=Nmax )(Ecol = 0 eV) is reproduced
to zero. However, the convergence behavior of δ(n)(Ecol ) is
not trivial; δ(n)(Ecol = 0 eV) first increases as the number of
eigenenergies included in (n) increases. δ(n)(Ecol ) decreases
and finally converges to zero. A similar trend was observed for
δ(n)(Ecol = 0.1 eV) although the converged phase shift is not
zero. This indicates that we require almost all the eigenener-
gies having real parts much larger than the collision energy
Ecol. For example, in the present case, Re Ek=25 ≈ 250 eV,
which is counterintuitively larger than Ecol.

This “slow” convergence against n of the truncated phase
shift δ(n)(Ecol ) causes a problem in its application to few-body
scattering. We demonstrate the calculation of e+ + He+ scat-
tering as a typical case of few-body problems. Figure 5(a)
presents the complex eigenenergies of a three-body system
(e+, e−, and He2+), which are obtained by diagonalization
with approximately 4500 basis functions. Because of the in-
ternal energy of He+(1s) EHe+(1s) = −54.4 eV, the lowest {Ek}
and {E0,k} values are located just above the threshold energy

FIG. 5. (a) Complex eigenenergies {Ek} and {E0,k} calculated for
e+ + He+ at the complex scaling parameter θ = 0.20. (b) Conver-
gence of the S-wave phase shift δ(n)(Ecol ) of e+ + He+ at Ecol = 0
and 10 eV against the number of eigenenergies included n.

−54.4 eV. In contrast to the two-body problem of e++Ne
scattering, the eigenenergies at high energies cannot be at-
tributed to any of the specific physical channels because there
are several inelastic channels, and the corresponding eigen-
function must be a multichannel scattering wave function. In
the present case, we observe a series of eigenenergies that ro-
tate by 2θ around the lowest threshold energy e+ + He+(1s).
Taking these complex eigenenergies into consideration, we
examine the convergence of δ(n)(Ecol ), as shown in Fig. 5(b).
Although we include eigenenergies having real parts exceed-
ing 40 eV, δ(n)(Ecol = 0 eV) and δ(n)(Ecol = 10 eV) do not
reach convergence. At least δ(n)(Ecol = 0 eV) should converge
to zero, while δ(n=40)(Ecol = 0 eV) deviates significantly from
zero.

C. Modification to the low-energy phase shift

In this subsection, we discuss the effective modification
of the low-energy scattering phase shift when the number of
eigenenergies is limited. As observed in the convergence be-
havior of δ(n)(Ecol ), the high-lying eigenenergies contributed
to the determination of the low-energy phase shift. For prac-
tical purposes in atomic physics, it is worth proposing an
effective modification to calculate low-energy phase shift even
when only a limited number of eigenenergies close to the Ecol

are obtained. The phase shift is obtained by summing the an-
gles of depression of E(0,)k measured from Ecol; therefore, the
contributions from the high-lying eigenenergies are expected
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FIG. 6. Schematic of complex eigenenergies and the related an-
gles of depression on the complex energy plane. (xk, yk ) is selected
as the closest point to E0,k on the 2θ line.

to be insensitive to changes in Ecol in the low-energy scattering
region.

Thus, we formulate the contributions from the high-lying
eigenenergies to the phase shift, with particular emphasis on
the Ecol dependency. We consider a situation wherein the
eigenenergies {Ek} are observed close to {E0,k} and can de-
fine eigenenergy pairs (Ek, E0,k ) as illustrated in Fig. 6. Each
eigenenergy pair causes the following angular difference:

δdiff,k (Ecol ) := δk (Ecol ) − δ0,k (Ecol ). (24)

The sum of which over k yields a phase shift δ(Ecol ). It
should be noted that, in Fig. 6, {E0,k} are not exactly on the
2θ cut owing to the asymptotic Coulomb potential operator
contained in H0 and/or the numerical accuracy, depending on
the number and types of basis functions.

We define a point (xk, yk ) on 2θ cut as yk = − tan(2θ )xk

such that the distance between (xk, yk ) and E0,k is minimized
(see the inset of Fig. 6). Then, Ek and E0,k are expressed as
deviations from the same point (xk, yk ) as follows:

(Re Ek, Im Ek ) =: (xk (1 + �x,k ), yk (1 + �y,k )), (25)

and

(Re E0,k, Im E0,k ) =: (xk (1 + �0x,k ), yk (1 + �0y,k )), (26)

where �x,k , �y,k , �0x,k , and �0y,k are dimensionless real num-
bers. Using �x,k and �y,k , the arctangent argument in Eq. (10)
can be written as

−ImEk (θ )

ReEk (θ ) − Ecol
= tan 2θ

1 + �y,k

1 + �x,k − Ecol/xk
, (27)

and a similar expression can be obtained in Eq. (26).
We now consider the case wherein �x,k,�y,k � 1, and

Ecol � xk , i.e., the eigenenergy pairs that are located in a sig-
nificantly high-energy region compared with Ecol. For brevity,
we rewrite

�̃x,k := �x,k − Ecol/xk . (28)

On expanding (1 + �̃x,k )−1 in Eq. (27) and then expanding
Eq. (10), δk (Ecol ) can be written as a perturbation expansion
as (see the Appendix for details)

δk (Ecol ) = 2θ + 1
2 sin(4θ )

{−�̃x,k + �y,k + cos2(2θ )�̃2
x,k

− cos(4θ )�̃x,k�y,k − sin2(2θ )�2
y,k

} + O3, (29)

where O3 denotes the third-order term of the deviations,
�̃3

x,k, �̃
2
x,k�y,k, �̃x,k�

2
y,k , and �3

y,k . Similar expansions can be
observed in Eq. (11). Therefore, δdiff,k (Ecol ) in Eq. (24) can be
expressed as

δdiff,k (Ecol ) = 1
2 sin(4θ )

{−�̃x,k + �̃0x,k + �y,k − �0y,k

+ cos2(2θ )
(
�̃2

x,k − �̃2
0x,k

)
− sin2(2θ )

(
�2

y,k − �2
0y,k

)
− cos(4θ )(�̃x,k�y,k − �̃0x,k�0y,k )

} + O3,

(30)

where �̃0x(y),k := �0x(y),k − Ecol/xk .
Because the collision-energy dependence of δdiff,k (Ecol )

emerges from Ecol/xk , which appears for every �̃x(y),k and
�̃0x(y),k , the first-order terms in Eq. (30) only contain the term
of E0

col, and the second-order term contains only the term E0
col

and E1
col. In summary, δdiff,k (Ecol ) can be written as

δdiff,k (Ecol ) = ak + bk

xk
Ecol + O3, (31)

where ak and bk are independent of Ecol and depend only
on the complex scaling angle θ and the parameters of the
eigenenergy pairs �x,k,�0x,k,�y,k , and �0y,k . From Eq. (31),
the second term can be neglected for the eigenenergy pairs
with |xk| � Ecol. As xx ≈ Re E0,k , δdiff,k (Ecol ) can be con-
sidered a constant for a large value of Re E0,k . We then
approximate the sum of δdiff,k (Ecol ) originating from the high-
lying (large k) complex eigenenergies as constants, the phase
shift of the collision energy Ecol can be expressed as

δ(Ecol ) ≈
n∑

k=1

δdiff,k (Ecol ) + δ>n,const.. (32)

Although δ>n,const. is not known in advance, Eq. (32) is
valid for Ecol = 0 and Levinson’s theorem for a system with
no bound state

δ(Ecol = 0) = 0, (33)

provides a constraint. On subtracting Eq. (32) by that of
Ecol = 0, we obtain

δ(Ecol ) ≈
n∑

k=1

[δdiff,k (Ecol ) − δdiff,k (Ecol = 0)]

= δ(n)(Ecol ) − δ(n)(Ecol = 0). (34)

Thus, even when we obtain a limited number of eigenen-
ergy pairs n < Nmax, the subtraction of δ(n)(Ecol = 0) from
δ(n)(Ecol ) is expected to improve the accuracy of the phase-
shift determination. Hereinafter, we refer to the modification
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of Eq. (34) as the “calibration.” We apply Eq. (34)
to several positron-scattering problems in the following
subsections.

It would be practically useful to show a way estimating the
applicable energy range of the calibration by Eq. (34). The
δdiff,k (Ecol ), the |akxx/bk| of which satisfies Ecol � |akxx/bk|
can be considered as a constant with respect to changes in Ecol

under low-energy scattering. The truncation number n should
be sufficiently large, such that Re E(0,)n covers Ecol. Because
(xk, yk ) is selected as the point closest to E0,k on the 2θ -cut,
xk can be approximated as Re E0,k . Thus, by replacing xk with
Re E0,k , we obtain∣∣∣∣akRe E0,k

bk

∣∣∣∣
≈

∣∣∣∣ {(�x,k − �0x,k ) − (�y,k − �0y,k )}ReE0,k

2cos2(2θ )(�x,k − �0x,k ) − cos(4θ )(�y,k − �0y,k )

∣∣∣∣.
(35)

Here, the second-order term in ak is ignored. When the
complex scaling angle θ is small (typically θ ∼ π/12) be-
cause 2cos2(2θ ) ∼ 2(1 − 2θ )2 ∼ 2(1 − 4θ ) and cos(4θ ) ∼
(1 − 4θ ), we obtain the following approximate estimation:∣∣∣∣akRe E0,k

bk

∣∣∣∣ � Re E0,k

2
. (36)

Thus, the applicable energy range for Eq. (34) is approxi-
mately half that of Re E0,n.

D. Validity of calibration in e+-noble gas atom scattering

In this subsection, we examine the formulations described
in the previous subsection for e++Ne potential scattering and
demonstrate the validity of the calibration modification.

We first investigate the influence of each eigenenergy pair
on the phase shifts and examine the validity of Eq. (31). We
use the same calculation for the e++Ne potential scattering
presented in Sec. III A, i.e., θ = 0.25. Figure 7(a) shows
that �x,k , �y,k , �0x,k , and �0y,k of e++Ne potential scat-
tering at Ecol = 0 eV. |�x,k| and |�y,k| are in the range of
10−4–100, while |�0x,k| and |�0y,k| are smaller than 10−10.
It is convincing that small |�0x,k| and |�0y,k| because the
{E0,k}, eigenenergies of H0 (containing only the kinetic energy
operator), are on the 2θ line. In contrast, {Ek} deviates from
the 2θ line owing to the presence of the potential energy
operator Ve+Ne.

In Fig. 7(b), we examine Eq. (30), calculated using �(0)x,k

and �(0)y,k . The first-order term and first plus second-order
term of δdiff,k are compared with the exact δdiff,k (Ecol = 0).
The first-order perturbation makes a dominant contribution
to the exact δdiff,k . Including up to the second-order terms,
the exact δdiff,k is almost entirely explained. As the first-order
term does not depend on Ecol, it is convincing that the gross
structure of δdiff,k does not show collision-energy dependence.
Thus, the expansion of Eq. (30) is reasonable, and according
to Eq. (31), for δdiff,k , the high-energy eigenenergy pairs can
be considered as constants compared to Ecol for low-energy
scattering.

Figure 8 presents a comparison of δdiff,k of e++Ne poten-
tial scattering at Ecol = 0 eV with several collision energies

FIG. 7. (a) �x,k , �y,k , �0x,k , and �0y,k of eigenenergies of
e++Ne scattering corresponding to Fig. 8. (b) Reproducibility of
δdiff,k (at Ecol = 0) by the first- and second-order terms calculated
from �x,k , �y,k , �0x,k , and �0y,k according to Eq. (30).

Ecol = 0.01, 0.1, 1, and 10 eV. The largest |δdiff,k| for the
Ecol = 0 eV collision is the eigenenergy pair near k = 20 and
30. It should be noted that these positive and negative values
of |δdiff,k| totally cancel out and result in zero. The phase shift
for Ecol > 0 is equivalent to the sum of the differences be-
tween δdiff,k (Ecol ) and δdiff,k (Ecol = 0). For each δdiff,k (Ecol ), a
deviation of δdiff,k (Ecol ) from Ecol = 0 can be observed around
the Ecol, as expected. For example, the remarkable difference
of δdiff,k (Ecol ) between Ecol = 0 eV and Ecol = 0.01 eV can
be observed at Re Ek = 0.009 eV, which is close to Ecol. This
is also true for Ecol = 0.1 and Ecol = 10 eV. δdiff,k for Ecol =
1 eV is very similar to that for Ecol = 0, which is because
Ecol = 1 eV is close to the Ramsauer-Townsend minimum,
where the phase shift becomes zero. In summary, the energy
dependence of the phase shift originates from the eigenenergy
pairs near the collision energy. Equation (9) formally requires
all the eigenenergy pairs, while the eigenenergy pairs far from
the collision energy have the same contribution as Ecol = 0.
Thus, Fig. 8 clearly demonstrates the validity of the modifica-
tion in Eq. (34).

Figure 9 presents the e++Ne S-wave scattering phase shifts
obtained using only the lowest 10, 20, and 25 eigenenergy
pairs of the 60 pairs in total. As shown in Fig. 9(a), the use of a
limited number of eigenenergy pairs results in a nonzero phase
shift at Ecol = 0. However, the “calibrated” phase shifts repro-
duced the exact phase-shift behavior of low-energy collisions
for n = 14, 18, and 22. As the number of eigenenergy pairs
increases, the collision energy range, where the “calibrated”
phase shifts reproduce the exact phase shifts, becomes wider.
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FIG. 8. S-wave phase shift of e+ + Ne decomposed into δdiff,k

[see Eq. (24) for definition] for each pair of the complex eigenener-
gies. Ecol = 0.01, 0.1, 1, and 10 eV are compared with Ecol = 0 eV.

Using this modification, the elastic cross sections of e+ +
X (X = Ne, Ar, Kr, Xe) are calculated as shown in Fig. 10.
In these calculations, a pair of eigenenergies that satisfies
Re E(0,)k � Ecut are used, where Ecut = 1, 100, and 1000 eV.
The partial waves are considered from the S-wave (l = 0) to
l = 8 for Ne, Ar, and Kr, and to l = 11 for Xe such that
the cross sections converge against the partial waves. With
an increase in the number of eigenenergy pairs used for the
calculation, the total elastic cross sections reproduced the ex-
act ones calculated using the Numerov method. The indicator
Re E0,kmax/2 also agrees well with the maximum energy at
which the modification is valid.

E. Three- and four-body calculations of e+ scattering
using limited number of eigenenergies

Figure 11(a) presents a comparison of the S-, P-, and D-
wave phase shifts of e+ + He+(1s) with the latest calculations
obtained using the Harris-Nesbet variational method [22].

FIG. 9. S-wave phase shifts of e+ + Ne calculated using a lim-
ited number of pairs of complex eigenenergies n. (a) Without
calibration and (b) with calibration according to Eq. (34). The phase
shifts calculated using the CSM are compared with those calculated
using the Numerov method.

We use the complex scaling angle θ = 0.15 rad for S wave,
0.2 rad for P and D waves, include a limited number of
eigenenergy pairs (33, 36, and 35 pairs for S, P, and D
waves, respectively), and apply the calibration modification
for low-energy scattering using Eq. (32). The offsets caused
by the modification are −0.01953 rad (S wave), 0.00095 rad
(P wave), and 0.00310 rad (D wave). In this calculation,
the indicators Re E0,n/2 − EHe+(1s) become 76 eV (S wave),
38 eV (P wave), and 33 eV (D wave). It can be ob-
served that the phase shifts calculated using the complex
eigenenergies agree well within the Harris-Nesbet variational
calculations. While the D-wave phase shifts present rela-
tively large deviations from the reference at high energies
in comparison with the S- and P-wave phase shifts, which
is consistent with the smaller Re E0,n/2 − EHe+(1s) than those
partial waves.

Figure 11(b) presents the S-wave phase shifts of e+-He+

scattering to investigate the number of eigenenergy pairs
included in the calculation. When the number of pairs is
reduced from 33 to 27, the low-energy behavior of the
phase shift remains unchanged, and the high-energy behavior
does not match the precise calculation. The 27th eigenen-
ergy corresponds to Re E0,n/2 − EHe+(1s) = 18 eV, which
is approximately the maximum energy below which the
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FIG. 10. Elastic scattering cross sections of e++X (X = Ne, Ar,
Kr, and Xe) calculated using the calibrated phase shifts are presented
against the collision energy. The arrows of colors matching the corre-
sponding line indicate the Re E0,n/2, namely, 0.5, 5, 50 eV from left
to right, to show the expected applicable range.

calculated phase shifts are reliable. This indicator appears
to work well for the proposed three-body systems. The ad-
vantage of the calibration modification is that only a limited
number of eigenenergies are required to determine the phase-
shift behavior in low-energy scattering.

Figure 12 summarizes the S-wave phase shifts of
e+-X (X = H, He, He+, Li+, and Li2+) scattering calculated
using the CSM with a calibration modification (the complex
scaling angle is 0.2 rad for all of the calculations). In general,
the phase shift increases as the collision energy increases from
zero and then decreases. The low-energy increase mainly orig-
inates from the attractive induced dipole interaction between

FIG. 11. (a) Calibrated phase shifts of the e+ + He+ scattering
compared with those calculated using the Harris-Nesbet (HN) varia-
tional method [22]. For each partial wave, we use 33, 36, and 35 pairs
of complex eigenenergies for the S, P, and D waves, respectively.
The arrows from right to left present the ReE0,n/2 − EHe+ (1s) for P
and D waves as an indicator of the maximum applicable energy. The
ReE0,n/2 − EHe+ (1s) for the S wave is located at a much larger energy
(approximately 76 eV). (b) The calibrated S-wave phase shifts of
the e+ + He+ scattering calculated using the 33 pairs of complex
eigenenergies are compared with those calculated using 27 pairs
of complex eigenenergies. The black arrow presents ReE0,k=27/2 −
EHe+ (1s), which indicates the expected approximation limit for the
collision energy.

the target atom or ion and the positron, and the decrease
at higher energies is attributed to the positron-nucleus re-
pulsive interaction. As observed in this figure, the phase
shift behavior of the positron-neutral atom scattering signif-
icantly differs from that of the positron-ion scattering owing
to the presence of a long-range repulsive Coulomb force
in the later case. We emphasize that the CSM calculation
successfully describes these different phase-shift behaviors
and reproduces the results of previous studies using different
methods.

We also predict the phase shift of e+-Li+ scattering us-
ing the same quality of calculation as e+-He scattering. The
obtained phase shift exhibited a similar but more moder-
ate behavior than e+-He+, which is convincing because an
increase in the nuclear charge prevents the positrons from ap-
proaching the electrons and reduces the attractive interactions
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FIG. 12. S-wave phase shifts of positron scattering off H, He,
He+, Li+, and Li2+ atoms and ions are calculated using the CSM
with calibration modification (solid lines). Points denote the previous
works: ◦ [38] and � [39] for e+-H, + [40] and × [38] for e+-He,
♦ [21] and

�
[22] for e+-He+, and � [41] for e+-Li2+.

between them. A similar trend can be observed in e+-H and
e+-He, where the second case shows more moderate behav-
ior. Tables I and II list the numerical values of the S-wave
phase shifts of the positron-scattering off the positive ions.
Our calculation is denoted as CSMlmax , where lmax indicates
the maximum inner angular momenta, l and L in Eqs. (19)
and (22), used for the basis functions. With an increase in
lmax, the phase shifts converge in the presented energy range
for the e+ + He+ and e+ + Li2+ collisions. In the case of
e+ + He+ collisions, the converged values are slightly larger
than those reported in the latest literature [21,22]. Similar
trends are observed in the case of the e+ + Li2+ collisions.

TABLE II. S-wave phase shifts of e++Li2+ collision is compared
with the literature values. Our calculations are performed with θ =
0.2 rad and noted as CSMlmax . CIKOHN8 is referred to for Ref. [42].

k (a.u.) CSM3 CSM2 CSM1 Novikov [42] Gien [41]

0.5 1.35[−4] 1.36[−4] 1.28[−4] 1.48[−5]
0.6 2.17[−4] 2.17[−4] 2.06[−4] 3.68[−5]
0.75 4.12[−4] 4.12[−4] 3.93[−4] 1.20[−4]
0.9 7.49[−4] 7.48[−4] 7.17[−4] 3.13[−4]
1.0 1.09[−3] 1.09[−3] 1.04[−3] 5.39[−4]
1.05 1.30[−3] 1.29[−3] 1.25[−3] 6.79[−4]
1.2 2.08[−3] 2.08[−3] 2.01[−3] 1.24[−3]
1.5 4.01[−3] 4.01[−3] 3.90[−3] 2.57[−3] 2.55[−3]

Our calculation of CSM3 for e+ + Li2+ results in phase shifts
a few times larger than those reported in the literature [41,42].
The larger evaluated phase shift at low energies than that in
the previous studies indicates that the interaction between the
positron and ions is described in a more attractive manner in
our calculations. Because the size of our basis functions is
relatively large (10 852 at maximum), the description could be
improved by including virtual target excitation and virtual Ps
formation in comparison with previous calculations. Another
possible reason for the deviation from the literature values
is the insufficiency of the completeness relationship Eq. (4).
In two-body potential scattering, the positron scattering wave
function, in principle, satisfies the completeness relationship.
However, in few-body scattering, the positron wave function
is coupled with the target ion states, including their virtual
excitation. The contributions of the virtually excited states of
the target ion depend on the collision energy, which can lead to
an insufficiency in the completeness relationship. Thus, more
careful investigations are required to determine the origin of
the small differences in the phase shifts between the CSM
calculations and other methods.

TABLE I. S-wave phase shifts of e++He+ and e++Li+ collisions calculated by CSM with θ = 0.2 rad. x[y] denotes x × 10y. Literature
values are compared for e++He+. Our calculations are noted as CSMlmax , where lmax is the maximum inner angular momentum used for the
basis functions in this work.

e++He+ e++Li+

Ecol(eV) CSM3 CSM2 CSM1 CSM0 Gien [22] Bransden [21] Khan [20] Shimamura [19] CSM

6.62 4.56[−3] 4.56[−3] 4.48[−3] 1.42[−3] 3.59[−3] 3.56[−3] 3.40[−3] 1.50[−3] 3.23[−3]
7.41 5.61[−3] 5.60[−3] 5.50[−3] 1.78[−3] 4.50[−3] 4.46[−3] 4.20[−3] 2.40[−3] 3.94[−3]
8.43 6.97[−3] 6.97[−3] 6.85[−3] 2.27[−3] 5.70[−3] 5.60[−3] 5.20[−3] 4.00[−3] 4.92[−3]
9.65 8.55[−3] 8.55[−3] 8.41[−3] 2.85[−3] 7.08[−3] 6.95[−3] 6.40[−3] 5.60[−3] 6.06[−3]
11.07 1.02[−2] 1.02[−2] 1.00[−2] 3.45[−3] 8.49[−3] 8.29[−3] 7.40[−3] 7.00[−3] 7.23[−3]
12.65 1.17[−2] 1.17[−2] 1.15[−2] 3.93[−3] 9.72[−3] 1.01[−2] 8.00[−3] 7.80[−3] 8.28[−3]
15.7 1.33[−2] 1.33[−2] 1.31[−2] 4.10[−3] 1.08[−2] 1.02[−2] 7.90[−3] 6.60[−3] 9.35[−3]
18.45 1.33[−2] 1.33[−2] 1.31[−2] 3.28[−3] 1.03[−2] 9.42[−3] 6.30[−3] 6.30[−3] 9.18[−3]
21.71 1.17[−2] 1.16[−2] 1.15[−2] 1.16[−3] 8.03[−3] 6.80[−3] 2.70[−3] 4.40[−3] 7.67[−3]
25.47 8.06[−3] 8.05[−3] 7.86[−3] −2.61[−3] 3.67[−3] 2.01[−3] – 6.00[−4] 4.55[−3]
29.73 2.44[−3] 2.43[−3] 2.24[−3] −8.13[−3] −2.81[−3] −5.32[−3] −1.07[−2] −5.40[−3] −1.65[−4]
30.94 6.42[−4] 6.32[−4] 4.37[−4] −9.87[−3] −4.88[−3] −7.10[−3] −1.31[−2] −1.03[−2] −1.65[−3]
37.53 −1.00[−2] −1.00[−2] −1.03[−2] −2.02[−2] −1.70[−2] −1.97[−2] −2.68[−2] −2.18[−2] −9.43[−3]
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IV. CONCLUSION

We presented the phase-shift calculation of e+-X scattering
using CSM for the targets X = Ne, Ar, Kr, Xe, H, He, He+,
Li2+, and Li+. We observed the empirical fact that a complex
eigenenergy pair whose real part was much greater than the
collision energy was required to achieve the convergence of
the phase shift, even for low-energy scattering. Although the
necessity for these high-lying complex eigenenergies may
result in difficulties in few-body problems, the contribution
of these high-lying complex eigenenergies to the phase shift
can be regarded as a constant, and we proposed a modification
to the CSM calculation. The use of the modification was sug-
gested by the simple geometrical considerations described in
Sec. III C. The validity of the modification was demonstrated
by the positron scattering off X = Ne, Ar, Kr, Xe, H, He, He+,
and Li2+, which was in good agreement with the literature. We
predicted the phase shifts of the e+-Li+ four-body scattering
problem.

It should be noted that the present formulation of the
phase-shift calculation was employed only on the complex
energy plane. It was intriguing that the use of CSM converted
the quantum mechanical scattering problem into a problem
of simple geometry on a complex energy plane. This may
provide insights into scattering problems in future studies.
While the demonstrated cases presented in this study were
limited to the elastic scattering of the system having no reso-
nance or bound state, more general formulations for a variety
of systems, including resonance scattering and/or inelastic
scattering, will be focused on in future works. Positronium
scattering off atoms, ions, and molecules below its breakup
threshold that was investigated in recent experiments [13]
and theoretical development [38,43–45] would also be in the
scope of this approach.
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APPENDIX: EXPANSION OF δk AND EXPLICIT
FORM OF ak AND bk

Here, we describe the explicit expressions for ak and bk in
Eq. (31). δk in Eq. (10) can be written as

δk = tan−1

(
tan(2θ )

1 + �y,k

1 + �̃x,k

)
. (A1)

The CSM calculation using θ < π/4 (typically approximately
π/12) ensures that tan(2θ ) < 1. As explained in the main text,
�y,k � 1 and �̃x,k � 1. The Taylor expansion is applied to
(1 + �̃x,k )−1 = 1 − �̃x,k + �̃2

x,k − · · · and the Maclaurin ex-
pansion of tan−1[z(1 + �)], where z(1 + �) < 1 and � � 1,

tan−1[z(1 + �)]

= tan−1(z) + z

z2 + 1
� − z3

(z2 + 1)2
�2 + · · · , (A2)

we have Eq. (29). Thus, the explicit forms of ak and bk are
given as

ak = 1
2 sin(4θ )

{−�x,k + �0x,k + �y,k − �0y,k + cos2(2θ )

× (
�2

x,k − �′2
x,k

) − cos(4θ )(�x,k�y,k − �0x,k�0y,k )

− sin2(2θ )
(
�2

y,k − �′2
y,k

)}
, (A3)

and

bk = 1
2 sin(4θ ){−2cos2(2θ )(�x,k − �0x,k )

+ cos(4θ )(�y,k − �0y,k )}. (A4)

In the evaluation of |akRe E0,k/bk| of Eq. (35), there exists
an exceptional case wherein �x,k − �0x,k ≈ �y,k − �0y,k . In
this case, bk should be smaller than ai(i < k), and δdiff,k would
have negligible contribution to the sum of ai(i < k).
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