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Methods of bound-state QED that treat the self-energy contributions to the Lamb shift within the partial-
wave expansion usually face the problem of slow convergence of the latter. Inspired by an approach formulated
by Sapirstein and Cheng [J. Sapirstein and K. T. Cheng, Phys. Rev. A 108, 042804 (2023)], we propose a
modification of the standard procedure for calculating the contributions of two-electron self-energy diagrams.
The performance of the method is studied by evaluating the corresponding corrections to the binding energies of
He-like ions and by comparing the obtained results with the state-of-the-art values available in the literature: our
calculations involving a much smaller number of partial waves show an improvement in accuracy.
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I. INTRODUCTION

Bound-state quantum electrodynamics (QED) provides a
consistent description of various atomic properties, e.g., en-
ergy spectra, g factors, hyperfine splittings, etc., by means of
perturbation series, conveniently represented by Feynman di-
agrams. The corresponding calculations are often to be carried
out nonperturbatively in the parameter αZ , where α is the fine-
structure constant and Z is the nuclear-charge number. This is
obviously crucial for highly charged ions, where αZ is close
to unity [1–3]. However, the all-order (in αZ) calculations
find their application even for lightest H-like atoms (see, e.g.,
Refs. [4,5] and references therein).

To be more specific and illustrate the issues under dis-
cussion, let us consider the first-order self-energy (SE)
contribution to an energy level |a〉. The corresponding Feyn-
man diagram is shown in Fig. 1; the related mass-counterterm
diagram is omitted. The energy shift due to the SE diagram is
given by the real part of the expression

E1 = 2iα
∫ ∞

−∞
dω

∫
dx1dx2 Dμν (ω, x12)ψ†

a (x1)αμ

× G(εa − ω, x1, x2)ανψa(x2)

− δm
∫

dx ψ†
a (x)βψa(x), (1)

where ψa and εa are the Dirac wave function and energy of the
state |a〉, αμ = (1,α), α and β are the Dirac matrices, x12 =
x1 − x2, Dμν (ω, x12) is the photon propagator, G(E , x1, x2) is
the bound-electron Green’s function, i.e., the electron propa-
gator in the local binding potential V (x), and δm is the mass
counterterm. We note that one- and two-electron vacuum-
polarization diagrams, which contribute to the same orders of
QED perturbation theory as the SE ones discussed below, are
beyond the scope of the present paper.

The calculations of the first-order SE correction to all or-
ders in αZ have a long history and began with Refs. [6–8]. In
view of the importance of the SE contribution, many methods
for its evaluation have been proposed in the literature [7–23].
These methods differ, in particular, in the way they handle
the ultraviolet (UV) divergences. In this paper, a variation of
the potential-expansion (PE) approach, introduced for the SE
diagrams in Ref. [9], is considered. Within the PE methods
[10,11,14,21], the UV-divergent terms are separated out by
expanding the bound-electron Green’s function G in terms of
the potential V , G = ∑∞

i=0 G(i), where the index i denotes the
power of V , i.e., G(0) is the free-electron Green’s function,
and G(i+1) = G(i)V G(0) (the vertex-coordinate integration is
implied in such shorthand notations). The UV-divergent terms
are calculated in momentum space after a renormalization. For
the SE diagram in Fig. 1, the UV divergences are associated
with the terms G(0) and G(1). The approaches to treat the SE
diagram also differ in the following aspect. The closed analyt-
ical form of the electron propagator in a spherically symmetric
potential V (x) �= 0, where x = |x|, is currently unknown. For
this reason, the bound-electron Green’s function is inevitably
represented in atomic calculations by an infinite sum of terms
corresponding to the different values of relativistic angular
quantum number κ = (−1) j+l+1/2( j + 1/2), where l and j
are the orbital and total angular momenta, respectively. For
instance, in the original approach developed by Mohr [7],
the partial-wave summation is performed numerically in the
integrand of Eq. (1), until the desired accuracy is achieved.
In contrast, the PE methods usually treat the partial waves
step by step, integrating each term independently and then an-
alyzing the convergence of the partial-wave expansion, which
may be quite slow in some cases. The “pros” and “cons”
of the PE methods have been discussed many times, so for
details we refer the reader, e.g., to Ref. [24]. As an advantage
of the PE methods, we just note that they can be readily
generalized for calculating the contributions of higher-order
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FIG. 1. First-order self-energy diagram. The double line denotes
the electron propagator in the binding potential V (x); for point
nucleus VC(x) = −αZ/x. The wavy line corresponds to the photon
propagator. The mass-counterterm diagram is omitted.

Feynman diagrams. For a review of the issues concerning var-
ious applications of the Green’s function and different ways
to represent it in QED calculations, see, e.g., Ref. [25] and
references therein.

A number of modifications have been proposed to accel-
erate the convergence of partial-wave expansion in the PE
methods for the SE diagram in Fig. 1. Some of them ex-
ploit the idea, originally formulated by Mohr in Ref. [7],
that the dominant contribution to an expression containing
the free-electron Green’s function G(0)(E , x1, x2) comes from
the region where x1 ≈ x2 and, therefore, the result will not
change significantly, if one replaces V (x1)G(0)(E , x1, x2) with
G(0)(E , x1, x2)V (x2) or vice versa. This trick was employed,
e.g., in Ref. [24] in order to obtain an approximation for the
PE remainder G(2+) ≡ G − G(0) − G(1), which corresponds
to the terms with two or more potentials. The key point is
that, on the one hand, the constructed approximate expression
can be calculated numerically with high precision and, on
the other hand, it has a partial-wave expansion which can be
subtracted from that of the initial PE method, resulting in a
better convergence of the difference. Technically, the modi-
fication represents an identity transformation of the original
PE expression. One adds and subtracts the same quantity, but
evaluates it in different ways, which ultimately determines an
improvement in accuracy. For instance, in the modification of
Ref. [24], the subtracted contribution, when evaluated without
recourse to the partial-wave expansion, is treated in coordinate
space using the closed-form expression (without the partial-
wave expansion) for the free-electron Green’s function [7].
A similar approach has been proposed recently in Ref. [26],
where the discussed trick was employed to construct an ap-
proximation for the PE term G(2) containing two potentials.
With some simple reasoning, it is possible to derive the closed
formula for this subtraction as well. However, in this case, in
contrast to Ref. [24], the corresponding expression is calcu-
lated in momentum space.

The success of modifications proposed in Refs. [24,26]
supports a natural conjecture that the slow convergence of
the partial-wave expansion is mainly related to the next-to-
divergent terms of the PE. The difficulty is that in coordinate
space the term G(2), treated without any of the approximations
discussed above, has no closed-form representation, while in
momentum space it leads to a multidimensional integral, the

(a) (b)

FIG. 2. Self-energy diagrams in the presence of an additional
perturbing field δV . The wavy line ending with a black triangle
denotes the interaction with δV . The other notations are as in Fig. 1.

accurate evaluation of which constitutes a challenging prob-
lem.

Nevertheless, such a subtraction of G(2) (without an
approximation) has been implemented in some form in
Refs. [27,28] for approaches that use a spectral decompo-
sition within a finite-basis set to represent the free- and
bound-electron Green’s functions [25]. As is well known, the
number of basis functions, e.g., B splines [29,30], required
for an adequate representation of electron propagators grows
rapidly with increasing |κ|, making the calculations very time
consuming for large |κ|. In this connection, the calculations
utilizing the finite-basis-set representation of Green’s func-
tions are typically restricted to fewer partial waves than the
other PE methods [25,28]. To improve the convergence in the
case of propagators represented in this way, the term G(2),
evaluated within the same finite-basis-set approach, is addi-
tionally subtracted from G(2+), turning it into G(3+) [27,28].
In view of the aforementioned difficulties, it has been pro-
posed to estimate the total value of the subtraction also in
coordinate space within the same partial-wave expansion, but
to extend the calculations to the larger values of |κ| [27,28],
and then add it to the final result. This becomes possible, since
the finite-basis-set representation of the free-electron Green’s
function is not used in the latter case. In fact, this modification
transfers the slow-convergence problem from the evaluation
of the total SE correction to the calculation of its two-potential
part.

It is worth noting that a separate treatment of next-to-
leading PE terms to improve the convergence has been
realized for the SE corrections to the bound-electron g fac-
tor [31,32] and hyperfine splitting (HFS) [33]. The relevant
Feynman diagrams are shown in Fig. 2, where the potential
δV perturbing the ordinary SE diagram is given by a constant
external magnetic field in the case of the g factor and by the
magnetic field of the nucleus in the case of the HFS. In the
diagram in Fig. 2(a), the potential δV does not enter the SE
loop. Therefore, the methods developed for the first-order SE
correction in Eq. (1) can be adapted for the corresponding
contribution. For the vertex diagram in Fig. 2(b), this is not
the case. Here, the term G(0)δV G(0) is UV divergent, and,
to accelerate the convergence of the partial-wave expansion,
the next term of the PE, G(0)δV G(1) + G(1)δV G(0), has to be
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(b)(a)

FIG. 3. Two-electron self-energy diagrams. The notations are the
same as in Fig. 1.

additionally subtracted. For the bound-electron g factor, due
to a special form of the potential δV in momentum space, the
dimensionality of the corresponding integral for the subtrac-
tion is considerably reduced, and its evaluation turns out to
be similar to that for the renormalized term G(1) in Eq. (1)
[31]. For this reason, this method has become a standard
practice in the bound-electron g-factor calculations. For the
HFS, such a reduction does not occur. The expression for the
subtraction was derived in momentum space for the point-
nucleus Coulomb potential VC(x) = −αZ/x, it contains seven
integrations, and its accurate evaluation has required a lot of
computing time and the use of quadruple-precision arithmetic
[33]. Such calculations are unique, and they are hard to be
serialized.

The two-electron SE diagrams are shown in Fig. 3. An
accurate evaluation of these contributions is essential for a
proper QED description of few-electron systems in a wide
range of Z [34–38]. All the methods developed for the first-
order SE diagram in Fig. 1 can be carried over to the case of
the diagram in Fig. 3(a). On the other hand, as far as we know,
there are no convergence-acceleration schemes reported in the
literature for the vertex diagram in Fig. 3(b). The truncation of
the partial-wave expansion for the corresponding contribution
is the main source of the numerical uncertainty [37]. The
modification described in Ref. [24] can, in principle, be ex-
tended for computations of the vertex diagram. However, this
would require substantial changes to the available and well-
established numerical codes, which is a laborious task. In this
regard, an extension of the approach suggested in Ref. [26]
seems to be more straightforward. For this reason, the aim
of the present paper is to describe the method, capable of
improving the partial-wave-expansion convergence in the case
of the two-electron SE diagrams, and to study its performance.
The main focus will be on the vertex diagram in Fig. 3(b).

The paper is organized as follows. In Sec. II, the ba-
sic formulas for the two-electron SE diagrams are briefly
reviewed and the standard PE approach outlined in
Refs. [21,39] is discussed. Section III is devoted to the de-
scription of the convergence-acceleration method as applied
to the two-electron SE diagrams. In Sec. IV, we perform
test calculations for He-like ions, analyze the convergence
of partial-wave expansions, and compare the results obtained
with the those available in the literature. The partial-wave

expansions of photon and electron propagators are discussed
in Appendix A. Some details of the momentum-space cal-
culations required to improve the convergence are given in
Appendixes B and C.

Relativistic units (h̄ = 1 and c = 1) and the Heaviside
charge unit (e2 = 4πα, where e < 0 is the electron charge)
are used throughout the paper.

II. BASIC FORMULAS

The formal expressions corresponding to the two-electron
SE diagrams in Fig. 3 can be readily obtained, e.g., within
the two-times Green’s-function method [40]. The mass-
counterterm diagrams are not not explicitly specified in Fig. 3,
but we properly take them into account during a renormaliza-
tion. For the sake of simplicity, we assume that unperturbed
wave functions are represented by two-electron Slater deter-
minants,

u(x1, x2) = 1√
2

∑
P

(−1)PψPa(x1)ψPb(x2), (2)

where P is the permutation operator, (−1)P is its sign, and ψ

stands for the solutions of the one-electron Dirac equation in
some local binding potential V :

[α · p + βm + V ]ψn = εnψn. (3)

The transition to the general case of many-determinant wave
functions is straightforward. Moreover, although we consider
only the simplest case of perturbation theory for a single level,
everything discussed below can be applied to mixing states
[40] as well.

First, let us introduce some basic operators and formulas.
The interelectronic-interaction operator I (ω) is defined by

I (ω, x1, x2) = e2αμανDμν (ω, x12). (4)

Representing the electron Green’s function as

G(E , x1, x2) =
∑

n

ψn(x1)ψ†
n (x2)

E − uεn
, (5)

where u = 1 − i0 and the sum over n is extended over the
complete Dirac spectrum, one can express the matrix element
of the unrenormalized one-loop SE operator �(ε) as follows:

〈a|�(ε)|b〉 = i

2π

∫ ∞

−∞
dω

∑
n

〈an|I (ω)|nb〉
ε − ω − uεn

. (6)

Employing Eq. (5) and the orthogonality of the functions ψn,
the following identities can be obtained:∫

dy G(E , x1, y)G(E , y, x2) = − ∂

∂E
G(E , x1, x2), (7)∫

dydz G(E , x1, y)G(E , y, z)G(E , z, x2)

= 1

2

∂2

∂E2
G(E , x1, x2). (8)

The same expressions are valid for the free-electron Green’s
function G(0) as well. We also use the notations a,b = εa −
εb, I ′(ω) = ∂I (ω)/∂ω, and �′(ε) = ∂�(ε)/∂ε.
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The contribution of the diagram in Fig. 3(a) is nat-
urally divided into the reducible (“red”) and irreducible
(“irr”) parts. The reducible part comes from the intermediate
two-electron states the energy of which coincides with the
unperturbed energy E (0) = εa + εb, while the irreducible part
represents the remainder. In turn, the reducible contribution is
conveniently represented by a sum of two terms, defined ac-
cording to whether the derivative with respect to an energy
parameter acts on the operator I or �. Following Ref. [39],

we denote these terms by A and B. The derivation of the
formal expression for the vertex (“vert”) diagram in Fig. 3(b)
does not require any additional separation. Therefore, the total
two-electron SE contribution is given by

E2 = Eirr + EA
red + EB

red + Evert, (9)

where

Eirr = 2
∑
PQ

(−1)P+Q
∑
n �=Pa

〈Pa|�(εPa)|n〉 〈nPb|I (Qb,Pb)|QaQb〉
εPa − εn

, (10)

EA
red =

∑
PQ

(−1)P+Q〈Pa|�(εPa)|Pa〉〈PaPb|I ′(Qb,Pb)|QaQb〉, (11)

EB
red =

∑
PQ

(−1)P+Q〈Pa|�′(εPa)|Pa〉〈PaPb|I (Qb,Pb)|QaQb〉, (12)

Evert =
∑
PQ

(−1)P+Q i

2π

∫ ∞

−∞
dω

∑
n1n2

〈Pa n2|I (ω)|n1Qa〉〈n1Pb|I (Qb,Pb)|n2Qb〉
(εPa − ω − uεn1 )(εQa − ω − uεn2 )

. (13)

The evaluation of the terms Eirr and EA
red is similar to the calcu-

lations of the one-electron SE contribution. The terms EB
red and

Evert are infrared (IR) divergent, when considered separately.
For these reasons, in the numerical calculations, we group the
individual two-electron SE contributions as follows:

E2 = EirA + Evr, (14)

where EirA = Eirr + EA
red and Evr = EB

red + Evert. In principle,
the IR-divergent terms can be explicitly separated out and
regularized by introducing a finite photon mass [25]. How-
ever, we prefer to handle the IR divergences numerically by
combining together all the relevant terms before performing
the ω integration.

The expressions Eqs. (10)–(13) suffer from UV diver-
gences. In order to eliminate them, we employ the renormal-
ization procedures worked out in Refs. [21,39]. Namely, the
bound-electron Green’s functions are expanded in terms of
the binding potential V , and the UV-divergent contributions of
the PE are separated out and then treated in momentum space,
where the divergences are covariantly regularized and explic-
itly canceled. While in Appendixes B and C some relevant
formulas are given, we do not focus on the terms requiring the
renormalization in the present paper and refer the reader to the
original studies of the issues [21,39].

For the contribution EirA, the PE decomposition of the
Green’s function G necessary for the renormalization is shown
schematically in Fig. 4. The first two terms of the PE, usually
referred to as the zero- and one-potential contributions, are
separated out. Not to overload the schemes, we draw only the
inner parts of the SE loops omitting the photon propagator
and external electron lines. Here and below, the letters P and
X indicate the momentum and coordinate space, respectively,
in which the corresponding terms are evaluated. In the PE
approaches, the X -space calculations imply the application of
a partial-wave expansion. This expansion is truncated at some
level with a subsequent extrapolation to infinity. As a rule, this
is the main source of the uncertainty. In contrast, the P contri-

butions are treated without any partial-wave expansion, and, in
this sense, they are “exact.” Their uncertainties are determined
by the accuracy with which the multidimensional integrals in
momentum space can be evaluated. For instance, the second
term in the decomposition in Fig. 4, which corresponds to
G(1) = G(0)V G(0), contains four integrations that do not cause
numerical problems. The third term in Fig. 4 comprises two
or more interactions with the potential V . In literature, it is
referred to as the many-potential contribution. In practical
calculations, this term, G(2+), can be represented in different
ways. For example, it can be obtained by calculating in co-
ordinate space the expression G − G(0) − G(0)V G(0) or (G −
G(0) )V G(0). In this paper, we evaluate the many-potential term
literally as depicted in Fig. 4: G(2+) = GV G(0)V G(0).

For the contribution Evr, only the leading term of the PE
is UV divergent. The standard calculation schemes for the
B-reducible and vertex terms are given in Figs. 5 and 6,
respectively. According to Eq. (7), the derivative of the SE
operator in Eq. (12) up to a sign can be reduced to the integral

= + +

P P X

FIG. 4. Simplified representation of the standard calculation
scheme for the one-electron SE diagram, which is also suitable for
the sum of irreducible and A-reducible terms. The double and single
lines represent the bound- and free-electron Green’s functions. The
line ending with a small cross stands for the interaction with the bind-
ing potential V . The photon and external electron lines are omitted.
The letters P and X denote that the corresponding terms are treated
in momentum and coordinate spaces, respectively.
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∂
∂ε = − =

P

−

X

+

X

−

FIG. 5. Standard calculation scheme for the B-reducible term.
The dot on the electron lines stands for the interaction with the
identity operator. The other notations are as in Fig. 4. The first
equality is a graphical representation of Eq. (7).

of the product of two Green’s functions interacting via the
identity operator. Therefore, from a practical-calculation point
of view, the B-reducible term represents a special case of
the more complicated vertex contribution, since the identity
operator preserves all the angular quantum numbers, while the
photon lines can alter them. This is reflected in the fact that the
schemes in Figs. 5 and 6 are similar to each other.

The partial-wave expansion of the SE contributions is
based on those of the photon and electron propagators (see
Appendix A). The sums over L for photons and κ for electrons
in these expansions are not independent due to the triangular
inequalities that the angular momenta should satisfy in all
vertices of the SE diagrams. In our calculations, we consider
the sums over κ as the primary ones and include all relevant
values of L for the evaluated electron angular states. The
extrapolation of the partial-wave expansion, truncated at some
|κmax|, to infinity is an essential part of the PE methods.
We perform it as follows. The individual contributions for
|κ| � k on the electron lines are added to partial sums Sk for
k = 1, 2, . . .. The |κmax| → ∞ limit is defined by polynomial
(in 1/k) least-squares fitting of Sk . By trying different orders
of the polynomials and different data samples, we obtain an
estimate of the uncertainty associated with the extrapolation
procedure.

It should be noted that for low-Z ions a more appropriate
scheme might be to combine contributions corresponding to
the same values of the electron orbital angular momentum
l , i.e., to consider together the terms with κ = −l − 1 and
l instead of those with |κ|. This scheme is inspired by the
nonrelativistic atomic calculations and the LS coupling that
dominates in these systems. Moreover, one can also treat the
photon multipole L as a parameter for the extrapolation. In

= + −

P X X

FIG. 6. Standard calculation scheme for the vertex term. The
wavy line represents the virtual photon responsible for the interelec-
tronic interaction. The other notations are as in Fig. 4.

=

X

+

XP

−

X

FIG. 7. Convergence-acceleration scheme for the one-electron
self-energy operator � proposed in Ref. [26]. The notations are
described in Figs. 4 and 5.

principle, these alternative schemes can lead to some improve-
ment of the partial-wave-expansion convergence [7,24,26].
However, these rearrangements will have a similar effect on
the convergence-acceleration approach discussed below. The
difference between the aforementioned schemes should be
numerically negligible, provided that a sufficient number of
partial waves is taken into account.

III. CONVERGENCE-ACCELERATION APPROACH

The general idea of the approach discussed below was
described in Sec. I: to subtract a slowly converging part of
the partial-wave expansion and calculate it separately using
a closed-form momentum-space representation. We empha-
size that the contributions considered here do not require
any renormalization. In contrast to the P-space contributions
shown in Figs. 4–6, the calculations in momentum space are
intended here to improve the behavior of the partial-wave
expansions, not to eliminate the UV divergences.

The convergence-acceleration method proposed in
Ref. [26] for calculating the SE part of the Lamb shift is
shown schematically in Fig. 7. As in Figs. 4–6, we give a
simplified representation of the calculation scheme, omitting
the external electron and photon lines and leaving only
the inner electron propagators. The subtraction in Fig. 7
models the contribution of the next-to-divergent term G(2).
The fact that V (x1)G(0)(E , x1, x2) ≈ G(0)(E , x1, x2)V (x2)
justifies moving the potentials V from the inner electron
line to the vertices, where the photon propagator is attached.
This approach can be readily generalized to the case of
the contribution EirA. The closed-form expression for the
P-space term in Fig. 7 is given in Ref. [26] and discussed in
Appendix B. In the coordinate space, we evaluate the value of
the subtraction as close as possible to the term G(2+) in order
to ensure a numerical cancellation of the slowly converging
contribution.

In the present paper, we also study an alternative scheme
to improve the convergence of the many-potential term G(2+).
This scheme is shown in Fig. 8 and differs from the one in
Fig. 7 in that in this case only one potential in G(2), no matter
which of the two, is transposed from the electron line into
the diagram vertex. The derivation of the P-space expression
for the subtraction is outlined in Appendix C. The X -space
calculations are similar to each other in both schemes. As it
will be seen from the results presented in the next section, the
scheme in Fig. 8 is, in principle, not superior to the original
scheme from Ref. [26]. Moreover, the P-space expression in

062802-5



MALYSHEV, PROKHORCHUK, AND SHABAEV PHYSICAL REVIEW A 109, 062802 (2024)

=

X

+

XP

−

X

FIG. 8. Convergence-acceleration scheme for the one-electron
self-energy operator �, which is alternative to that in Fig. 7. The
notations are described in Figs. 4 and 5.

Fig. 8 turns out to be more complicated than the corresponding
term in Fig. 7. However, this scheme is an important step
toward the convergence-acceleration scheme for the vertex
SE diagrams, which are the main focus of the paper, and,
therefore, it provides a good cross check.

Let us now discuss the vertex diagram. As noted in the
previous section, the UV-divergent term corresponds to the
leading term of the PE, when both bound-electron Green’s
functions are replaced with their free-electron counterparts
(see Fig. 6). The next-to-divergent term includes one addi-
tional interaction with the potential V . This interaction can be
located on one electron line or the other. In the general case,
there is no symmetry between the electron lines, therefore
both contributions should be treated on equal footing. Using
the same idea, this next-to-divergent term is approximated
by transposing the potential to the vertex, where the photon
forming the SE loop is attached. The resulting convergence-
acceleration scheme is shown in Fig. 9. For convenience, the
subtraction of the UV-divergent term in coordinate space is
shown in round brackets. The derivation of the closed-form
momentum-space expressions for the subtractions introduced
in Fig. 9 is straightforward, but rather tedious (see the dis-
cussion in Appendix C). The corresponding formulas involve
four-dimensional integrals. The complexity of their evaluation
is comparable to that of the P-space term in Fig. 6. The
additional calculations in the coordinate space do not pose
a numerical problem either. Therefore, the proposed method
does not significantly complicate the treatment of the two-
electron SE diagrams from a technical point of view.

Finally, we note that the scheme presented in Fig. 9 can
also be applied to the calculations of the B-reducible con-
tribution. As noted in the previous section, to this end, the
interaction with the photon has to be replaced by the identity
operator taken with the opposite sign (see Figs. 5 and 6). The
states in the matrix element of �′ in Eq. (12) are the same.
Therefore, in this case, both subtractions in Fig. 9 coincide,

and the corresponding contributions can be doubled. It is
worth noting that in the case of the B-reducible contribution,
the next-to-divergent term can be readily evaluated exactly
in momentum space without the approximation caused by
the transposition of the potential. For the bound-electron g
factor, the corresponding formula is given, e.g., in Eq. (79) of
Ref. [31]. Nevertheless, in the present paper, we use similar
approaches for the B-reducible and vertex contributions.

IV. NUMERICAL RESULTS AND DISCUSSIONS

As a test bed for the approaches discussed above, we chose
the simplest system, in which the two-electron SE diagrams
contribute, namely, He-like ions. Typically, the slow conver-
gence of partial-wave expansions becomes more pronounced
as Z decreases. For these reasons, the most suitable candidates
to probe the nonperturbative (in αZ) methods are middle-Z
systems. The most recent and accurate calculations of the
two-electron SE contributions to energy levels of middle-Z
He-like ions were performed in Ref. [37] and covered the the
range 10 � Z � 40. In the present paper, we use the results of
Ref. [37] as the reference ones and perform the calculations
for the (1s1s)0, (1s2p1/2)0, and (1s2p3/2)2 states in He-like
neon (Z = 10), sulfur (Z = 16), chromium (Z = 24), and ger-
manium (Z = 32). As in Ref. [37], the calculations are carried
out for the point-nucleus Coulomb potential, VC(x) = −αZ/x.
The radial electron Green’s function (see Appendix A) is
obtained by numerical solving the corresponding system of
differential equations. The Feynman gauge is used for the
photon propagator. All the results are presented in terms of
the dimensionless function F (αZ ) defined by

E = α2(αZ )3F (αZ ) mc2. (15)

Let us start with the contribution EirA. As noted above, this
contribution can be evaluated using the approaches developed
to treat the first-order SE correction (1). In Ref. [37], e.g., it
was calculated by means of the method proposed in Ref. [24].
In Table I, we present our results for the case of Z = 10,
which is the most difficult in terms of convergence. For all
the states, we compare three calculation schemes: column
“I” shows the standard PE approach given in Fig. 4, while
columns “II” and “III” present the results obtained within the
convergence-acceleration methods depicted in Figs. 7 and 8,
respectively. The line labeled “Free” is common to all the
schemes and shows the sums of the zero- and one-potential
contributions evaluated in momentum space. “Subtraction”
stands for the P-space terms in Figs. 7 and 8, and they are ab-
sent in the standard approach. The subsequent rows show the

= + + − −−
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

−

P P X XX X X X

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

FIG. 9. Convergence-acceleration scheme for the vertex diagram in Fig. 3(b). The notations are described in Figs. 4 and 5.
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TABLE I. Individual contributions to the sum of irreducible, Eirr , and A-reducible, EA
red, terms for the (1s1s)0, (1s2p1/2)0, and (1s2p3/2)2

states in He-like neon (Z = 10), in terms of the function F (αZ ) defined in Eq. (15). “I” denotes the standard potential-expansion approach
shown in Fig. 4, “II” indicates the subtraction scheme in Fig. 7 proposed in Ref. [26], whereas “III” stands for the scheme in Fig. 8.

(1s1s)0 (1s2p1/2 )0 (1s2p3/2)2

I II III I II III I II III

Free 26.066354 26.066354 26.066354 11.037001 11.037001 11.037001 10.882193 10.882193 10.882193
Subtraction −16.894640 −13.802631 −6.447367 −5.620968 −6.416416 −5.574568
|κ| = 1 −27.382533 −11.063974 −14.147369 −10.722851 −4.668301 −5.495020 −2.240635 −0.895486 −1.097068
2 −0.446027 −0.034606 −0.043049 −0.262862 −0.027852 −0.027515 −8.454708 −3.684125 −4.319842
3 −0.104113 −0.004100 −0.004538 −0.074401 −0.003449 −0.003532 −0.194388 −0.012349 −0.016173
4 −0.037055 −0.000787 −0.000785 −0.033382 −0.001039 −0.001042 −0.054056 −0.001680 −0.002112
5 −0.015989 −0.000168 −0.000129 −0.018217 −0.000438 −0.000430 −0.024509 −0.000469 −0.000603
6 −0.007612 −0.000020 0.000017 −0.011072 −0.000220 −0.000211 −0.013581 −0.000179 −0.000240
7 −0.003807 0.000018 0.000048 −0.007208 −0.000124 −0.000116 −0.008380 −0.000080 −0.000113
8 −0.001929 0.000025 0.000049 −0.004923 −0.000075 −0.000068 −0.005531 −0.000039 −0.000059
9 −0.000951 0.000024 0.000043 −0.003483 −0.000048 −0.000043 −0.003823 −0.000020 −0.000033
10 −0.000425 0.000020 0.000036 −0.002532 −0.000032 −0.000028 −0.002734 −0.000010 −0.000019
11 −0.000137 0.000017 0.000030 −0.001881 −0.000022 −0.000018 −0.002006 −0.000005 −0.000011
12 0.000019 0.000014 0.000024 −0.001421 −0.000016 −0.000013 −0.001501 −0.000002 −0.000007
13 0.000103 0.000011 0.000020 −0.001089 −0.000011 −0.000009 −0.001142 −0.000001 −0.000004
14 0.000144 0.000009 0.000016 −0.000844 −0.000008 −0.000006 −0.000880 −0.000000 −0.000002
15 0.000161 0.000008 0.000014 −0.000660 −0.000006 −0.000004 −0.000686 0.000000 −0.000001∑25

|κ|=16 0.001228 0.000033 0.000064 −0.002319 −0.000020 −0.000011 −0.002388 0.000008 0.000002∑
|κ|>25 [extr.] 0.00100(27) 0.000016(1) 0.000039 0.00006(55) −0.000001(1) 0.000005(1) 0.00004(54) 0.000010(2) 0.000010

EirA −1.93157(27) −1.931745(1) −1.931745 −0.11209(55) −0.112028(1) −0.112028(1) −0.12871(54) −0.128651(2) −0.128652
Ref. [41] −0.112028 −0.128652(1)

individual partial-wave-expansion contributions for different
values of |κ|. For all the schemes, we truncate the calculations
at |κmax| = 25. The line labeled “

∑
|κ|>25[extr.]” gives the

estimates for the remainders of the partial-wave series. The
total values are presented in the row EirA. Here and below, the
numbers in parentheses are the uncertainties in the last digits.
If no uncertainties are given, numerical values are assumed
to be accurate to all digits specified. We note that in all the
cases the uncertainties of the calculations are solely due to the
extrapolation procedure.

As can be seen from Table I, the standard PE approach
to the contribution EirA indeed suffers from the slow conver-
gence of the partial-wave expansion. Accurate and reliable
extrapolation is difficult in this case. The convergence-
acceleration methods correct the situation significantly. We
stress that the two considered methods are in excellent agree-
ment with each other despite the fact that their “Subtraction”
terms have completely different values. We also note that
from the cases considered in Table I it is not possible to
conclude that one method is superior to the other. For the
excited (1s2p1/2)0 and (1s2p3/2)2 states, the comparison with
the results from Refs. [37,41], obtained within the approach
of Ref. [24], is also given. Excellent agreement is found (see
also the related discussion below).

Let us now pass to the contribution Evr which is of pri-
mary interest. For the vertex contribution Evert in Fig. 9 and
for the B-reducible contribution EB

red in a similar scheme,
the subtraction terms appear in two forms, X - and P-space
ones. As noted above, the subtractions in coordinate space are
calculated within the partial-wave expansion using the same
techniques as employed for the X -space terms in Figs. 5 and

6. The subtractions in momentum space are evaluated in the
closed form of multidimensional integrals (see Appendixes B
and C). To cross check our methods, in Tables II and III we
compare the X - and P-space values of the subtractions for
He-like neon (Z = 10) and uranium (Z = 92), respectively.
This choice of Z serves to demonstrate how the rate of partial-
wave-expansion convergence changes along the isoelectronic
sequence: the lower Z , the worse the convergence. Tables II
and III are organized as follows. At first, the individual
partial-wave-expansion contributions obtained within the X -
space calculations for different values of κ are shown. These
calculations are truncated at |κmax| = 50. The lines labeled
“
∑

|κ|>50[extr.]” provide the partial-wave-series remainders
obtained by extrapolation. The total X -space values are in the
penultimate rows. The P-space values of the subtractions are
shown in the last lines.

The data in Table II once again confirm that the PE
calculations for low-Z systems are a challenging prob-
lem. Even consideration of all partial waves with |κ| � 50,
supplemented by the extrapolation of the obtained results,
is significantly inferior in accuracy to the corresponding
P-space evaluation. Nevertheless, both ways to calculate
the subtraction terms are in good agreement. As can be
seen from Table III, the partial-wave-convergence situation
improves considerably for high-Z ions. The perfect agreement
between the X - and P-space values is found in this case. The
coincidence of the results obtained by means of completely
different methods is a good test of the used numerical proce-
dures.

In Tables IV, V, and VI, we present the details of the
calculations of the contribution Evr for the (1s1s)0, (1s2p1/2)0,
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TABLE II. Subtractions for the B-reducible, EB
red, and vertex, Evert , terms in He-like neon (Z = 10), in terms of the function F (αZ ) defined

in Eq. (15). Comparison of the coordinate-space (X ) and momentum-space (P) calculations.

(1s1s)0 (1s2p1/2)0 (1s2p3/2)2

EB
red Evert EB

red Evert EB
red Evert

|κ| = 1 66.2764394 −66.0951856 24.1381053 −24.1663346 12.2942539 −13.1840049
2 2.8338987 −2.7247985 1.1358243 −1.0746620 12.4466358 −11.5650413
3 0.8124463 −0.7635509 0.3382531 −0.3222053 0.6752695 −0.6356262
4 0.3663848 −0.3378507 0.1596131 −0.1519373 0.2200592 −0.2085721
5 0.2010034 −0.1822806 0.0914882 −0.0868552 0.1108712 −0.1051131
6 0.1230834 −0.1099815 0.0584104 −0.0552524 0.0665551 −0.0629485
7 0.0809627 −0.0713990 0.0399785 −0.0376627 0.0439850 −0.0414565
8 0.0560434 −0.0488455 0.0287400 −0.0269582 0.0309280 −0.0290337
9 0.0403193 −0.0347725 0.0214344 −0.0200166 0.0227223 −0.0212405
10 0.0299022 −0.0255456 0.0164511 −0.0152945 0.0172534 −0.0160585∑20

|κ|=11 0.1014834 −0.0844362 0.0627488 −0.0573333 0.0644667 −0.0589901∑30
|κ|=21 0.0187646 −0.0150319 0.0145483 −0.0127979 0.0146678 −0.0129256∑40
|κ|=31 0.0061474 −0.0048819 0.0054127 −0.0046375 0.0054314 −0.0046625∑50
|κ|=41 0.0026757 −0.0021282 0.0025253 −0.0021250 0.0025290 −0.0021326∑
|κ|>50 [extr.] 0.004235(53) −0.003421(30) 0.00425(24) −0.00348(19) 0.00424(24) −0.00349(19)

X space 70.953789(53) −70.504109(30) 26.11778(24) −26.03755(19) 26.01987(24) −25.95129(19)
P space 70.9538063 −70.5041268 26.1176417 −26.0374674 26.0197341 −25.9512077

and (1s2p3/2)2 states, respectively. For all the considered
states and values of Z , we compare two calculation schemes:
column “I” stands for the standard PE approach shown in
Figs. 5 and 6, while column “II” presents the performance of
our convergence-acceleration method. The row labeled “Free”
shows the sums of the P-space terms in Figs. 5 and 6 resulting
from the renormalization procedure; these contributions are
common to both schemes. For the convergence-acceleration
approach, the line “Subtraction” gives the corresponding
contributions evaluated in momentum space. The next lines

present the individual contributions of the partial-wave expan-
sions. For a better representation of their behavior with the
growth of |κ|, we show them with an extended number of dig-
its. In this case, the calculations are terminated at |κmax| = 18.
The row labeled “

∑
|κ|>18[extr.]” contains the partial-wave-

series tails obtained by extrapolation. The total results for the
sums of B-reducible and vertex terms are shown in the line
Evr. From Tables IV–VI, one can see a drastic improvement in
accuracy due to the application of the proposed convergence-
acceleration method.

TABLE III. The same as in Table II for He-like uranium (Z = 92).

(1s1s)0 (1s2p1/2)0 (1s2p3/2)2

EB
red Evert EB

red Evert EB
red Evert

|κ| = 1 0.4863571 −0.5007927 0.2059600 −0.1940478 0.0785919 −0.0779925
2 0.0121825 −0.0117173 0.0173520 −0.0084045 0.0755508 −0.0704169
3 0.0103269 −0.0091830 0.0086529 −0.0058546 0.0121050 −0.0108155
4 0.0051811 −0.0045102 0.0042482 −0.0028544 0.0048203 −0.0041160
5 0.0028344 −0.0024423 0.0023265 −0.0015356 0.0023598 −0.0019708
6 0.0016945 −0.0014524 0.0013909 −0.0009043 0.0013196 −0.0010880
7 0.0010868 −0.0009288 0.0008894 −0.0005717 0.0008074 −0.0006606
8 0.0007363 −0.0006282 0.0005995 −0.0003821 0.0005272 −0.0004295
9 0.0005210 −0.0004441 0.0004215 −0.0002670 0.0003619 −0.0002941
10 0.0003817 −0.0003252 0.0003067 −0.0001934 0.0002584 −0.0002098∑20

|κ|=11 0.0012845 −0.0010942 0.0010080 −0.0006315 0.0008130 −0.0006622∑30
|κ|=21 0.0002528 −0.0002156 0.0001907 −0.0001193 0.0001453 −0.0001199∑40
|κ|=31 0.0000904 −0.0000771 0.0000671 −0.0000421 0.0000502 −0.0000417∑50
|κ|=41 0.0000423 −0.0000361 0.0000312 −0.0000196 0.0000231 −0.0000193∑
|κ|>50 [extr.] 0.0000763 −0.0000652 0.0000558(1) −0.0000352(2) 0.0000410(1) −0.0000344(1)

X space 0.5230486 −0.5339123 0.2435003(1) −0.2158631(2) 0.1777750(1) −0.1688713(1)
P space 0.5230486 −0.5339124 0.2435004 −0.2158632 0.1777750 −0.1688713
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TABLE IV. Individual contributions to the two-electron self-energy correction for the (1s1s)0 state in He-like ions, in terms of the function
F (αZ ) defined in Eq. (15). EirA stands for the sum of irreducible and A-reducible terms. All the other rows are related with the B-reducible and
vertex terms. “I” denotes the standard potential-expansion approach, whereas “II” indicates the new subtraction scheme.

Z = 10 Z = 16 Z = 24 Z = 32

I II I II I II I II

Free 10.250914 10.250914 3.674285 3.674285 1.431102 1.431102 0.690929 0.690929
Subtraction 0.449680 0.287918 0.175509 0.112889
|κ| = 1 −10.9836335 −11.1648873 −4.2280123 −4.3502310 −1.8565256 −1.9345925 −1.0440163 −1.0952623
2 0.0945649 −0.0145354 0.0654957 −0.0064807 0.0424359 −0.0022917 0.0283385 −0.0009377
3 0.0481549 −0.0007404 0.0334451 0.0004071 0.0215954 0.0009355 0.0145013 0.0009893
4 0.0285982 0.0000641 0.0187576 0.0004047 0.0114214 0.0005155 0.0073432 0.0004776
5 0.0188599 0.0001372 0.0116497 0.0002645 0.0066824 0.0002810 0.0041131 0.0002405
6 0.0132200 0.0001181 0.0077188 0.0001699 0.0041933 0.0001618 0.0024838 0.0001301
7 0.0096546 0.0000909 0.0053525 0.0001117 0.0027705 0.0000981 0.0015882 0.0000747
8 0.0072663 0.0000684 0.0038419 0.0000756 0.0019054 0.0000621 0.0010625 0.0000451
9 0.0055984 0.0000516 0.0028344 0.0000525 0.0013538 0.0000408 0.0007377 0.0000283
10 0.0043959 0.0000392 0.0021389 0.0000374 0.0009883 0.0000276 0.0005283 0.0000184
11 0.0035066 0.0000302 0.0016453 0.0000272 0.0007384 0.0000192 0.0003886 0.0000123
12 0.0028351 0.0000235 0.0012866 0.0000202 0.0005629 0.0000136 0.0002924 0.0000084
13 0.0023190 0.0000185 0.0010207 0.0000152 0.0004367 0.0000099 0.0002245 0.0000058
14 0.0019165 0.0000147 0.0008202 0.0000116 0.0003441 0.0000073 0.0001755 0.0000041
15 0.0015983 0.0000119 0.0006666 0.0000090 0.0002750 0.0000055 0.0001393 0.0000030
16 0.0013438 0.0000096 0.0005474 0.0000070 0.0002225 0.0000041 0.0001122 0.0000022
17 0.0011383 0.0000079 0.0004537 0.0000056 0.0001821 0.0000032 0.0000915 0.0000016
18 0.0009707 0.0000065 0.0003792 0.0000045 0.0001505 0.0000025 0.0000755 0.0000012∑

|κ|>18 [extr.] 0.00862(70) 0.000045(12) 0.00297(39) 0.000024(8) 0.00111(12) 0.000010(3) 0.000555(35) 0.000002(1)
Evr −0.47816(70) −0.478833(12) −0.39270(39) −0.392861(8) −0.32805(12) −0.328076(3) −0.290335(35) −0.290337(1)
EirA −1.931745 −1.931745 −1.528847 −1.528847 −1.230200 −1.230200 −1.054395 −1.054395
Total −2.40990(70) −2.410578(12) −1.92155(39) −1.921708(8) −1.55825(12) −1.558275(3) −1.344730(35) −1.344732(1)
Ref. [37] −2.41058(36) −1.92171(9) −1.55827(6) −1.34472(3)

To obtain the total value of the two-electron SE contri-
bution, one has to add the contributions EirA and Evr. For
this purpose, the contribution EirA has been calculated for
Z = 16, 24, and 32 according to the scheme shown in Fig. 8,
as realized for neon in Table I. The corresponding values are
presented in Tables IV–VI in the row labeled EirA; the same
value of EirA is added for both schemes for calculating Evr.
The resulting two-electron SE contributions are shown in the
line “Total.” The uncertainties of EirA and Evr are summed
quadratically. However, in all the cases, the total uncertainties
are determined by the accuracy with which the contribution
Evr is calculated.

In Tables IV–VI, we compare our results with those ob-
tained in Ref. [37]. In that work, the general scheme for
treating the two-electron SE diagrams also follows the meth-
ods outlined in Refs. [21,39]. For the irreducible and reducible
contributions, the modification proposed in Ref. [24] was
used. The vertex contribution, which is the main source
of the numerical uncertainty, was calculated employing the
technique described in detail in Ref. [25]. No convergence-
acceleration methods were applied in this case. To overcome
the slow convergence of the partial-wave expansion for the
vertex contribution, the calculations in Ref. [37] were ex-
tended up to |κmax| = 50. As one can see from Tables IV–VI,
our results obtained within the convergence-acceleration ap-
proach are in excellent agreement with the ones from Ref. [37]
but have higher accuracy.

Finally, we should note that extending the calcula-
tions of the contribution Evr within the convergence-
acceleration method up to |κmax| = 18 is, in some sense,
excessive. For instance, if the calculations for Z =
10 were truncated at |κmax| = 12, we would obtain
−2.410563(29), −0.101678(32), and −0.145792(16) instead
of −2.410578(12), −0.101676(3), and −0.145792(2) for the
(1s1s)0, (1s2p1/2)0, and (1s2p3/2)2 states, respectively. This
is still competitive with the data from Ref. [37]. Since the
proposed approach allows one to achieve good accuracy in
calculations with relatively small values of |κ|, its application
in the methods utilizing the finite-basis-set representation for
the electron Green’s function seems promising.

V. SUMMARY

In the present paper, the efficient and practical approach
to accelerate the partial-wave-expansion convergence of two-
electron self-energy contribution has been proposed. The
approach is based on the method developed in Ref. [26] for the
first-order self-energy part of the Lamb shift. The modification
of the standard procedure consists in subtracting the slowly
converging term and calculating it separately in momentum
space in the closed form, without applying any expansion in
partial waves. Special attention has been paid to the vertex dia-
gram, which was the main source of the numerical uncertainty
in the previous calculations.
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TABLE V. Individual contributions to the two-electron self-energy correction for the (1s2p1/2)0 state in He-like ions, in terms of the
function F (αZ ) defined in Eq. (15). The notations are the same as in Table IV.

Z = 10 Z = 16 Z = 24 Z = 32

I II I II I II I II

Free 2.788828 2.788828 1.094813 1.094813 0.495255 0.495255 0.285677 0.285677
Subtraction 0.080174 0.063992 0.052388 0.045659
|κ| = 1 −2.8956680 −2.8674387 −1.1622817 −1.1577297 −0.5405833 −0.5475553 −0.3208354 −0.3326517
2 0.0693293 0.0081669 0.0450889 0.0077127 0.0316393 0.0073381 0.0251541 0.0071369
3 0.0163771 0.0003293 0.0112397 0.0005198 0.0081567 0.0007012 0.0065743 0.0008397
4 0.0077633 0.0000875 0.0055012 0.0001716 0.0040565 0.0002534 0.0032742 0.0003127
5 0.0046775 0.0000446 0.0033497 0.0000901 0.0024621 0.0001326 0.0019654 0.0001608
6 0.0031873 0.0000292 0.0022781 0.0000567 0.0016524 0.0000807 0.0012967 0.0000949
7 0.0023371 0.0000213 0.0016553 0.0000390 0.0011788 0.0000533 0.0009071 0.0000606
8 0.0017981 0.0000164 0.0012566 0.0000283 0.0008765 0.0000370 0.0006609 0.0000408
9 0.0014308 0.0000130 0.0009843 0.0000212 0.0006716 0.0000267 0.0004963 0.0000285
10 0.0011671 0.0000105 0.0007892 0.0000163 0.0005267 0.0000198 0.0003815 0.0000205
11 0.0009704 0.0000086 0.0006444 0.0000129 0.0004206 0.0000150 0.0002990 0.0000151
12 0.0008190 0.0000072 0.0005340 0.0000103 0.0003411 0.0000116 0.0002381 0.0000114
13 0.0006998 0.0000060 0.0004480 0.0000083 0.0002801 0.0000091 0.0001922 0.0000087
14 0.0006041 0.0000051 0.0003796 0.0000068 0.0002326 0.0000072 0.0001570 0.0000067
15 0.0005260 0.0000044 0.0003246 0.0000056 0.0001949 0.0000058 0.0001296 0.0000053
16 0.0004614 0.0000037 0.0002796 0.0000047 0.0001647 0.0000047 0.0001080 0.0000042
17 0.0004073 0.0000032 0.0002425 0.0000039 0.0001403 0.0000039 0.0000907 0.0000034
18 0.0003616 0.0000028 0.0002116 0.0000033 0.0001202 0.0000032 0.0000768 0.0000027∑

|κ|>18 [extr.] 0.00417(71) 0.000028(3) 0.00219(13) 0.000028(6) 0.001108(75) 0.000022(6) 0.000652(63) 0.000017(5)
Evr 0.01024(71) 0.010352(3) 0.00993(13) 0.009815(6) 0.008894(75) 0.008814(6) 0.007496(63) 0.007454(5)
EirA −0.112028(1) −0.112028(1) −0.088136 −0.088136 −0.072143(1) −0.072143(1) −0.064514(1) −0.064514(1)
Total −0.10179(71) −0.101676(3) −0.07821(13) −0.078321(6) −0.063249(75) −0.063329(6) −0.057018(63) −0.057060(5)
Ref. [37] −0.10163(5) −0.07830(4) −0.06333(2) −0.05705(1)

Test calculations of the two-electron self-energy contribu-
tion to the binding energies of He-like ions for a number of
nuclear charges, Z = 10, 16, 24, and 32, and low-lying states,
(1s1s)0, (1s2p1/2)0, and (1s2p3/2)2, have been carried out.
Considerable improvement of the partial-wave-series behav-
ior is found compared to the behavior exhibited within the
standard approach. More accurate values than those avail-
able in the literature are obtained in the calculations with a
relatively small number of partial waves considered. There-
fore, the application of the worked out approach may, in
particular, considerably expand the capabilities of the meth-
ods, which uses the finite-basis-set representations for the
electron Green’s functions. There are prospects also for fur-
ther extension and development of the discussed approach.
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APPENDIX A: PARTIAL-WAVE EXPANSION

In the Feynman gauge, the photon propagator has the form

Dμν (ω, x12) = gμν

exp[i
√

ω2 + i0 |x12|]
4π |x12| , (A1)

where the branch of the square root is fixed with the condition
Im(

√
ω2 + i0) > 0. The partial-wave expansion of the photon

propagator arises from the standard expression,

eiωx12

x12
= 4π iω

∞∑
L=0

L∑
M=−L

jL(ωx<)h(1)
L (ωx>)Y ∗

LM (x̂1)YLM (x̂2),

(A2)

where jL(z) and h(1)
L (z) are the spherical Bessel functions,

x< = min(x1, x2), x> = max(x1, x2), and x̂ = x/x.
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TABLE VI. Individual contributions to the two-electron self-energy correction for the (1s2p3/2)2 state in He-like ions, in terms of the
function F (αZ ) defined in Eq. (15). The notations are the same as in Table IV.

Z = 10 Z = 16 Z = 24 Z = 32

I II I II I II I II

Free 2.724270 2.724270 1.033948 1.033948 0.439756 0.439756 0.235699 0.235699
Subtraction 0.068526 0.050658 0.037062 0.028743
|κ| = 1 −16.5504821 −15.6607312 −6.7340475 −6.4175689 −3.0496397 −2.9274240 −1.7093961 −1.6508860
2 13.7318256 12.8502311 5.6354836 5.3144440 2.5622518 2.4312168 1.4343520 1.3662897
3 0.0399366 0.0002933 0.0229784 0.0005025 0.0137571 0.0006010 0.0092973 0.0006228
4 0.0115770 0.0000899 0.0076773 0.0001974 0.0052117 0.0002723 0.0038510 0.0003068
5 0.0058008 0.0000427 0.0039941 0.0000897 0.0027710 0.0001234 0.0020660 0.0001391
6 0.0036345 0.0000279 0.0025227 0.0000524 0.0017421 0.0000690 0.0012862 0.0000760
7 0.0025485 0.0000200 0.0017603 0.0000342 0.0011980 0.0000431 0.0008703 0.0000462
8 0.0019092 0.0000150 0.0013039 0.0000238 0.0008707 0.0000288 0.0006209 0.0000301
9 0.0014934 0.0000116 0.0010049 0.0000173 0.0006572 0.0000201 0.0004598 0.0000205
10 0.0012041 0.0000091 0.0007968 0.0000130 0.0005100 0.0000146 0.0003500 0.0000145
11 0.0009927 0.0000073 0.0006454 0.0000100 0.0004042 0.0000109 0.0002724 0.0000106
12 0.0008328 0.0000060 0.0005317 0.0000078 0.0003259 0.0000083 0.0002157 0.0000079
13 0.0007082 0.0000049 0.0004439 0.0000062 0.0002665 0.0000064 0.0001734 0.0000060
14 0.0006091 0.0000041 0.0003749 0.0000050 0.0002205 0.0000050 0.0001411 0.0000046
15 0.0005288 0.0000035 0.0003196 0.0000041 0.0001843 0.0000040 0.0001161 0.0000036
16 0.0004627 0.0000029 0.0002747 0.0000034 0.0001554 0.0000032 0.0000965 0.0000029
17 0.0004077 0.0000025 0.0002378 0.0000028 0.0001321 0.0000026 0.0000809 0.0000023
18 0.0003613 0.0000022 0.0002072 0.0000024 0.0001130 0.0000022 0.0000683 0.0000019∑

|κ|>18 [extr.] 0.00413(70) 0.000020(2) 0.00212(13) 0.000019(4) 0.001032(72) 0.000015(3) 0.000573(59) 0.000012(3)
Evr −0.01725(70) −0.017141(2) −0.01742(13) −0.017528(4) −0.018080(72) −0.018159(3) −0.018806(59) −0.018846(3)
EirA −0.128652 −0.128652 −0.102186(1) −0.102186(1) −0.082198(1) −0.082198(1) −0.070101(1) −0.070101(1)
Total −0.14590(70) −0.145792(2) −0.11960(13) −0.119714(4) −0.100278(72) −0.100357(3) −0.088907(59) −0.088948(3)
Ref. [37] −0.14574(12) −0.11969(7) −0.10035(5) −0.08894(4)

The partial-wave representation of the electron Green’s function reads as

G(E , x1, x2) =
∑

κ

(
G11

κ (E , x1, x2)π++
κ (x̂1, x̂2) −iG12

κ (E , x1, x2)π+−
κ (x̂1, x̂2)

iG21
κ (E , x1, x2)π−+

κ (x̂1, x̂2) G22
κ (E , x1, x2)π−−

κ (x̂1, x̂2)

)
, (A3)

where π±±
κ (x̂1, x̂2) = ∑

μ �±κμ(x̂1)�†
±κμ(x̂2). Here, �κμ is

the spinor spherical harmonic [43] and μ is the angular-
momentum projection. The radial Green’s function Gik

κ can
be constructed from the solutions of the radial Dirac equa-
tion bounded at infinity and at origin. For the free electron,
these solutions can be expressed in terms of the spherical
Bessel functions. In the case of the point-nucleus Coulomb
potential, they can be written in terms of the Whittaker func-
tions. We refer the reader, e.g., to Refs. [25,44] for further
details.

APPENDIX B: MOMENTUM-SPACE CONTRIBUTIONS
ARISING FROM THE FREE-ELECTRON

SELF-ENERGY OPERATOR

The closed-form momentum-space expression for the sub-
traction in Fig. 7 is given in Eq. (46) of Ref. [26], where
the corresponding acceleration scheme was proposed. In this
Appendix, we present the formula rewritten in the “language”
of Refs. [21,39] and in a form suitable for calculating the
off-diagonal matrix elements of the SE operator � defined

in Eq. (6). The derivation is based on the free-electron SE
operator, which in the Feynman gauge is given by the integral

�(0)(p) = −4π iα
∫

d4k

(2π )4

1

k2
γν

/p − /k + m

(/p − /k)2 − m2
γ ν. (B1)

Here and below, the roman style is used for four-vectors,
k = (k0, k), the scalar product of two four-vectors is (pk) =
p0k0 − pk, and /k ≡ kμγ μ.

Let us first introduce some notations. The bound-electron
solution of the Dirac equation (3) can be written in the form

ψa(x) =
(

ga(x)�κaμa (x̂)

i fa(x)�−κaμa (x̂)

)
, (B2)

where ga and fa are the large and small radial components.
The Fourier transform of the coordinate-space wave function
(B2) leads to

ψa(p) =
∫

dx e−ipxψa(x) = i−la

(
g̃a(p)�κaμa ( p̂)

f̃a(p)�−κaμa ( p̂)

)
. (B3)

062802-11



MALYSHEV, PROKHORCHUK, AND SHABAEV PHYSICAL REVIEW A 109, 062802 (2024)

The first, i.e., zero-potential, term in Fig. 4 includes the renor-
malized free-electron SE operator �

(0)
R . In the off-diagonal

case, this term reads as

E0P(ε) = α

4π

∫ ∞

0

d p p2

(2π )3
{A(ρ)(g̃ag̃b − f̃a f̃b)

+ B(ρ)[ε(g̃ag̃b + f̃a f̃b) + p(g̃a f̃b + f̃ag̃b)]}, (B4)

where the dependence of g̃ and f̃ on p is omitted for brevity,
and ρ = 1 + (p2 − ε2)/m2 (see Ref. [21] for details). In
Eq. (B4), the energy ε is the timelike component of the elec-
tron four-momentum, while p is the magnitude of its spacelike
component, that is p = (ε, p) with p = |p|. According to the
renormalization procedure, ε should be set to εa or εb [40].
However, we will leave it as a free parameter for a while. The
other notations in Eq. (B4) are the following:

A(ρ) = 2m

(
1 + 2ρ

1 − ρ
ln ρ

)
, (B5)

B(ρ) = −2 − ρ

1 − ρ

(
1 + ρ

1 − ρ
ln ρ

)
. (B6)

The subtraction in Fig. 7 approximates the contribution
of the two-potential term G(2) = G(0)V G(0)V G(0). The ap-
proximation consists in moving both potentials V out of the
electron Green’s function. In accordance with Eq. (8), up to
a factor of 1/2, the resulting inner electron line represents
∂2G(0)(ε − ω, x1, x2)/∂ε2 sandwiched between two poten-
tials. In the transition to momentum space, the potentials V (x)
can be treated along with the wave functions ψ (x). Therefore,
we define the Fourier transform of the wave function (B2)
multiplied by the potential via∫

dx e−ipxV (x)ψa(x) = i−la

(
t̃a(p)�κaμa ( p̂)

s̃a(p)�−κaμa ( p̂)

)
. (B7)

The momentum-space form of Eq. (8) for the free-electron
propagator is(

1

/q − m + i0
γ 0

)3

= 1

2

∂2

∂E2

1

/q − m + i0
γ 0, (B8)

where q = (E , q). Putting it all together, one obtains that the
subtraction can be expressed as

Ẽ2P(ε) = α

8π

∫ ∞

0

d p p2

(2π )3

{
∂2A

∂ε2
(t̃at̃b − s̃as̃b) +

[
ε

∂2B

∂ε2
+ 2

∂B

∂ε

]
(t̃at̃b + s̃as̃b) + p

∂2B

∂ε2
(t̃as̃b + s̃at̃b)

}
, (B9)

where there is no need to keep the free parameter ε further, and one has to replace it with εa or εb. The evaluation of the
derivatives of Eqs. (B5) and (C18) is straightforward:

∂2A

∂ε2
= − 8

m(1 − ρ)

{
1 + 1

1 − ρ

[
ln ρ − 2ε2

m2

(
1 + ρ

ρ
+ 2

1 − ρ
ln ρ

)]}
, (B10)

∂B

∂ε
= 2ε

m2(1 − ρ)2

{
3 − ρ + 2

1 − ρ
ln ρ

}
, (B11)

∂2B

∂ε2
= 2

m2(1 − ρ)2

{
3 − ρ + 2

1 − ρ

[
ln ρ − ε2

m2

(
2 + 5ρ − ρ2

ρ
+ 6

1 − ρ
ln ρ

)]}
. (B12)

These derivatives are regular functions of ρ at ρ ≈ 1, that is
at p2 ≈ ε2. However, to avoid numerical problems, one can
replace the exact expressions with their Taylor series in a
small vicinity of this point.

We note that in the case of the B-reducible term, the
momentum-space expression for the subtraction can be read-
ily obtained from Eq. (B9). The B-reducible term in Eq. (12)
contains the derivative of the SE operator with respect to the
argument. Its free part is derived from Eq. (B4) using the
momentum-space form of Eq. (7):(

1

/q − m + i0
γ 0

)2

= − ∂

∂E

1

/q − m + i0
γ 0. (B13)

The scheme in Fig. 9, applied to this contribution, implies
one transposition of the potential V , which can be treated by
means of an additional differentiation. Therefore, to derive
the desired formula from Eq. (B9), one has to (i) restore

one initial wave function (B3), (ii) change the overall sign
to properly consider the differentiation in Eq. (12), and (iii)
take into account the factor associated with the matrix element
of the operator I . Additionally, the resulting expression can
be multiplied by 2 in order to account for the fact that both
subtractions in Fig. 9 coincide in this case.

APPENDIX C: MOMENTUM-SPACE CONTRIBUTIONS
ARISING FROM THE FREE-ELECTRON VERTEX

OPERATOR

The subtractions in Figs. 8 and 9 involve only one trans-
position of the potential V from an inner electron line to the
nearest vertex, where the photon is connected. The role of
a generating expression in this case is played by the free-
electron vertex operator:

�μ(p, p′) = −4π iα
∫

d4k

(2π )4

1

k2
γν

/p − /k + m

(p − k)2 − m2
γ μ /p′ − /k + m

(p′ − k)2 − m2
γ ν. (C1)
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To make the discussion complete and to unify the notations used, in this Appendix we compile all the relevant formulas, some
of which were previously given in Refs. [21,39].

The second, i.e., one-potential, term in Fig. 4 and the first, i.e., free-vertex, term in Fig. 6 can be written as

E1P(ε, ε′) =
∫

d p
(2π )3

∫
d p′

(2π )3
ψ̄a(p)V (|q|)�0

R(p, p′)ψb(p′), (C2)

E (0)
vert (ε, ε

′) =
∫

d p
(2π )3

∫
d p′

(2π )3
ψ̄a(p)Acd

μ (q)�μ
R (p, p′)ψb(p′), (C3)

where ψ̄ = ψ†γ 0, q = p − p′, V (|q|) is the Fourier transform of the spherically symmetric potential V (x), and

Acd
μ (q) = 4πα

q2 − 2
d,c − i0

∫
dz e−iqzψ†

c (z)αμψd (z). (C4)

The free-vertex contribution in Eq. (C3) is given not for the Slater-determinant state (2), but for a matrix element between two
arbitrary two-electron wave functions ψaψc and ψbψd with the SE loop attributed to the “ab” electron line. The corresponding
expression can be readily employed for any case of interest. The parameters ε and ε′ in Eqs. (C2) and (C3) play a similar role to
the variable ε in Eq. (B4), that is p = (ε, p) and p′ = (ε′, p′). We keep them as free parameters, but at the final stage in Eq. (C2)
they should both be set to εa or εb, while in Eq. (C3) one must replace ε and ε′ with εa and εb, respectively.

According to Ref. [21], the renormalized free-electron vertex operator is given by

�
μ
R (p, p′) = α

4π
{Aγ μ + /p(B1 pμ + B2 p′μ) + /p′(C1 pμ + C2 p′μ) + D(/pγ μ

/p′) + H1 pμ + H2 p′μ}, (C5)

A = C24 − 2 + p2C11 + p′2C12 + 4(pp′)(C0 + C11 + C12) + m2(−2C0 + C11 + C12), (C6)

B1 = −4(C11 + C21), (C7)

B2 = −4(C0 + C11 + C12 + C23), (C8)

C1 = −4(C0 + C11 + C12 + C23), (C9)

C2 = −4(C12 + C22), (C10)

D = 2(C0 + C11 + C12), (C11)

H1 = 4m(C0 + 2C11), (C12)

H2 = 4m(C0 + 2C12). (C13)

The coefficients C0 and Ci j in Eqs. (C6)–(C13) are defined by

C0 =
∫ 1

0

dy

u
[−ln(1 + λ)], (C14)(

C11

C12

)
=

∫ 1

0

dy

u

(
y

1 − y

)[
1 − ln(1 + λ)

λ

]
, (C15)

⎛
⎝C21

C22

C23

⎞
⎠ =

∫ 1

0

dy

u

⎛
⎝ y2

(1 − y)2

y(1 − y)

⎞
⎠[

−1

2
+ 1

λ
− ln(1 + λ)

λ2

]
,

(C16)

C24 = −
∫ 1

0
dy ln

(
y(y − 1)

q2

m2
+ 1

)
, (C17)

where q = p − p′, λ = u/v, and

u = (yp + (1 − y)p′)2, (C18)

v = m2 − yp2 − (1 − y)p′2. (C19)

To perform the angular integrations in Eqs. (C2) and (C3), it is
convenient to use the following expressions for the timelike,
�0

R, and spacelike, �R, components of the free-electron vertex
operator sandwiched between two Dirac wave functions:

ψ̄a(p)�0
R(p, p′)ψb(p′) = α

4π
ila−lb

{
Fa,b

1 �†
κaμa

( p̂)�κbμb ( p̂′) + Fa,b
2 �

†
−κaμa

( p̂)�−κbμb ( p̂′)
}
, (C20)

ψ̄a(p)�R(p, p′)ψb(p′) = α

4π
ila−lb

{
Ra,b

1 �†
κaμa

( p̂)σ�−κbμb ( p̂′) + Ra,b
2 �

†
−κaμa

( p̂)σ�κbμb ( p̂′)

+ (
Ra,b

3 p + Ra,b
4 p′)�†

κaμa
( p̂)�κbμb ( p̂′) + (

Ra,b
5 p + Ra,b

6 p′)�†
−κaμa

( p̂)�−κbμb ( p̂′)
}
. (C21)

Here σ is the vector of the Pauli matrices and the coefficients Fa,b
i and Ra,b

i depend on p = |p|, p′ = |p′|, and ξ = p̂p̂′, which
is the cosine of the angle between p and p′. The dependence of Fa,b

i and Ra,b
i on the parameters ε and ε′ is also implied. These

coefficients are defined as follows:

Fa,b
1 = (A + H1ε + H2ε

′)g̃ag̃′
b + (B1ε + B2ε

′)(εg̃a + p f̃a)g̃′
b + (C1ε + C2ε

′)g̃a(ε′g̃′
b + p′ f̃ ′

b) + D(εg̃a + p f̃a)(ε′g̃′
b + p′ f̃ ′

b),

(C22)
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Fa,b
2 = (A − H1ε − H2ε

′) f̃a f̃ ′
b + (B1ε + B2ε

′)(ε f̃a + pg̃a) f̃ ′
b + (C1ε + C2ε

′) f̃a(ε′ f̃ ′
b + p′g̃′

b) + D(ε f̃a + pg̃a)(ε′ f̃ ′
b + p′g̃′

b),
(C23)

Ra,b
1 = Ag̃a f̃ ′

b − D(εg̃a + p f̃a)(ε′ f̃ ′
b + p′g̃′

b), (C24)

Ra,b
2 = A f̃ag̃′

b − D(ε f̃a + pg̃a)(ε′g̃′
b + p′ f̃ ′

b), (C25)

Ra,b
3 = B1(εg̃a + p f̃a)g̃′

b + C1g̃a(ε′g̃′
b + p′ f̃ ′

b) + H1g̃ag̃′
b, (C26)

Ra,b
4 = B2(εg̃a + p f̃a)g̃′

b + C2g̃a(ε′g̃′
b + p′ f̃ ′

b) + H2g̃ag̃′
b, (C27)

Ra,b
5 = B1(ε f̃a + pg̃a) f̃ ′

b + C1 f̃a(ε′ f̃ ′
b + p′g̃′

b) − H1 f̃a f̃ ′
b, (C28)

Ra,b
6 = B2(ε f̃a + pg̃a) f̃ ′

b + C2 f̃a(ε′ f̃ ′
b + p′g̃′

b) − H2 f̃a f̃ ′
b. (C29)

For brevity, the dependence of wave functions on p and p′ is omitted. For the functions of p′, an additional prime is added.
Therefore, the shorthand notations are g̃a = g̃a(p), f̃a = f̃a(p), g̃′

b = g̃b(p′), and f̃ ′
b = f̃b(p′). After the angular integration is

performed, the one-potential term (C2) reads

E1P(ε, ε′) = α

4π

1

(2π )5

∫ ∞

0
d p

∫ ∞

0
d p′

∫ 1

−1
dξ p2 p′2 V (q)

{
Fa,b

1 (p, p′, ξ )Pl (ξ ) + Fa,b
2 (p, p′, ξ )Pl̄ (ξ )

}
, (C30)

where q2 = p2 + p′2 − 2pp′ξ , l = |κa + 1/2| − 1/2, l̄ = 2 j − l , j = |κa| − 1/2, Pl is the Legendre polynomial, and κa = κb due
to the conservation of angular quantum numbers by the SE operator [21]. The angular integration for the free-vertex contribution
(C3) is a bit more complicated. Since the angular parts of Eq. (C3) and the desired subtraction are the same, we do not present
the corresponding formulas here and refer the reader to Ref. [39] for details. Using the expressions given below, the standard
numerical code for calculating the free-vertex contribution can be readily modified to handle the subtraction in momentum
space.

A general roadmap for deriving the closed-form momentum-space expression for the subtractions in Figs. 8 and 9 is as
follows.

(i) Differentiate the “base” expressions (C2) and (C3) with respect to ε or ε′ depending on the electron line from which the
potential V is transposed to the nearest vertex.

(ii) Replace the appropriate wave function (B3) with (B7).
(iii) Change the overall sign according to Eq. (B13).
In this Appendix, we consider the differentiation with respect to ε. The case of ε′ is treated similarly.
According to Eqs. (C20) and (C21), the differentiation of Eqs. (C2) and (C3) is equivalent to the differentiation of the

coefficients Fa,b
i and Ra,b

i . Differentiating Eqs. (C22)–(C29) with respect to ε and at the same time replacing the wave function
(B3) for the state |a〉 by (B7) gives

dFVa,b
1

dε
=

(
dA

dε
+ B1ε + B2ε

′ + H1 + dH1

dε
ε + dH2

dε
ε′

)
t̃ag̃′

b +
(

B1 + dB1

dε
ε + dB2

dε
ε′

)
(εt̃a + ps̃a)g̃′

b

+
(

C1 + dC1

dε
ε + dC2

dε
ε′ + D

)
t̃a(ε′g̃′

b + p′ f̃ ′
b) + dD

dε
(εt̃a + ps̃a)(ε′g̃′

b + p′ f̃ ′
b), (C31)

dFVa,b
2

dε
=

(
dA

dε
+ B1ε + B2ε

′ − H1 − dH1

dε
ε − dH2

dε
ε′

)
s̃a f̃ ′

b +
(

B1 + dB1

dε
ε + dB2

dε
ε′

)
(εs̃a + pt̃a) f̃ ′

b

+
(

C1 + dC1

dε
ε + dC2

dε
ε′ + D

)
s̃a(ε′ f̃ ′

b + p′g̃′
b) + dD

dε
(εs̃a + pt̃a)(ε′ f̃ ′

b + p′g̃′
b), (C32)

dRVa,b
1

dε
= dA

dε
t̃a f̃ ′

b − dD

dε
(εt̃a + ps̃a)(ε′ f̃ ′

b + p′g̃′
b) − D t̃a(ε′ f̃ ′

b + p′g̃′
b), (C33)

dRVa,b
2

dε
= dA

dε
s̃ag̃′

b − dD

dε
(εs̃a + pt̃a)

(
ε′g̃′

b + p′ f̃ ′
b

) − D s̃a(ε′g̃′
b + p′ f̃ ′

b), (C34)

dRVa,b
3

dε
=

(
B1 + dH1

dε

)
t̃ag̃′

b + dB1

dε
(εt̃a + ps̃a)g̃′

b + dC1

dε
t̃a(ε′g̃′

b + p′ f̃ ′
b), (C35)

dRVa,b
4

dε
=

(
B2 + dH2

dε

)
t̃ag̃′

b + dB2

dε
(εt̃a + ps̃a)g̃′

b + dC2

dε
t̃a(ε′g̃′

b + p′ f̃ ′
b), (C36)
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dRVa,b
5

dε
=

(
B1 − dH1

dε

)
s̃a f̃ ′

b + dB1

dε
(εs̃a + pt̃a) f̃ ′

b + dC1

dε
s̃a(ε′ f̃ ′

b + p′g̃′
b), (C37)

dRVa,b
6

dε
=

(
B2 − dH2

dε

)
s̃a f̃ ′

b + dB2

dε
(εs̃a + pt̃a) f̃ ′

b + dC2

dε
s̃a(ε′ f̃ ′

b + p′g̃′
b). (C38)

In Eqs. (C31)–(C38), the index V is added to emphasize that the wave function of the state |a〉 is multiplied by the potential.
Taking into account that p2 = ε2 − p2 and (pp′) = εε′ − pp′ξ , one obtains

dA

dε
= dC24

dε
+ 2ε C11 + p2 dC11

dε
+ p′2 dC12

dε
+ 4ε′(C0 + C11 + C12)

+ 4(pp′)
(

dC0

dε
+ dC11

dε
+ dC12

dε

)
+ m2

(
−2

dC0

dε
+ dC11

dε
+ dC12

dε

)
. (C39)

Since Eqs. (C7)–(C13) are linear combinations of the coefficients C0 and Ci j , their differentiation is trivial. Therefore, we proceed
to the differentiation of the coefficients themselves. Differentiating Eqs. (C14)–(C16) with respect to ε yields

dC0

dε
=

∫ 1

0

dy

u

{
1

v

dv

dε
ln(1 + λ) + 1

λ

dλ

dε

[
ln(1 + λ) − λ

1 + λ

]}
, (C40)

d

dε

(
C11

C12

)
=

∫ 1

0

dy

u

(
y

1 − y

){
1

v

dv

dε

[
ln(1 + λ)

λ
− 1

]
+ 1

λ

dλ

dε

[
2 ln(1 + λ)

λ
− 2 + λ

1 + λ

]}
, (C41)

d

dε

⎛
⎝C21

C22

C23

⎞
⎠ =

∫ 1

0

dy

u

⎛
⎝ y2

(1 − y)2

y(1 − y)

⎞
⎠{

1

v

dv

dε

[
ln(1 + λ)

λ2
− 1

λ
+ 1

2

]
+ 1

λ

dλ

dε

[
3 ln(1 + λ)

λ2
− 3 + 2λ

λ(1 + λ)
+ 1

2

]}
, (C42)

where

dλ

dε
= d

dε

(
u

v

)
= 1

v

[
du

dε
− λ

dv

dε

]
, (C43)

du

dε
= 2y[yε + (1 − y)ε′], (C44)

dv

dε
= −2yε. (C45)

Finally, for the coefficient C24, we have

dC24

dε
= −

∫ 1

0
dy

y(y − 1)

y(y − 1)q2 + m2

dq2

dε
, (C46)

where dq2/dε = 2(ε − ε′).
Summing up all that has been discussed in this Appendix, the closed-form momentum-space expression for the subtraction

in Fig. 8 reads as

Ẽ2P(ε, ε′) = − α

4π

1

(2π )5

∫ ∞

0
d p

∫ ∞

0
d p′

∫ 1

−1
dξ p2 p′2 V (q)

{
dFVa,b

1 (p, p′, ξ )

dε
Pl (ξ ) + dFVa,b

2 (p, p′, ξ )

dε
Pl̄ (ξ )

}
. (C47)

There is no need to keep the free parameters ε and ε′ further, and one has to set ε = ε′ and replace them with εa or εb. The
expression for the subtraction in Fig. 9 can be obtained in a similar way.

We note that the formulas derived here turn out to be more complicated than Eq. (B9). However, their complexity is
comparable to that of the contributions which are to be evaluated during the renormalization procedure.
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