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Universal quantum computation using atoms in cross-cavity systems
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Quantum gates are the building blocks of quantum circuits, which in turn are the cornerstones of quantum
information processing. In this work, we theoretically investigate a single-step implementation of both a universal
two- (CNOT) and three-qubit (quantum Fredkin) gates in a cross-cavity setup coupled to a �-type three-level
atom. Within a high-cooperativity regime, the system exhibits an atomic-state-dependent π -phase gate involving
the two-mode single-photon bright and dark states of the input light pulses. This allows for the controlled manip-
ulation of light states by the atom and vice versa. Our results indicate these quantum gates can be implemented
with high probability of success using the state-of-the-art parameters, either for the weak- or strong-coupling
regime, where the quantum interference is due to an electromagnetically induced transparencylike phenomenon
and the Autler-Townes splitting, respectively. This work not only paves the way for implementing quantum gates
in a single step using simple resources, thus avoiding the need to chain basic gates together in a circuit, but it
also endorses the potential of cross-cavity systems for realizing universal quantum computation.
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I. INTRODUCTION

Efficient manipulation of quantum information is crucial
for the realization of quantum computers [1], which can im-
prove the performance of computing tasks [2] or even solve
problems that are intractable for classical computers [3]. A
quantum computation is carried out through a quantum cir-
cuit composed of a sequence of quantum operations, such
as quantum gates, measurements, and initialization of qubits
[4]. However, the implementation of a multiqubit gate in the
standard circuit model remains challenging because it needs
to be decomposed into a chain of universal quantum gates,
comprising single- and two-qubit basic gates [4]. For example,
the three-qubit Fredkin gate [5] is fundamental for universal
reversible computation as it plays important roles in quantum
computing [6–8], quantum cryptography [9,10], quantum er-
ror correction [11,12], and measurement [13,14]. However, its
implementation requires at least five two-qubit gates [5], then
it is of interest to implement this gate more directly [15,16],
without decomposition, in order to mitigate the resource over-
head, thus enhancing the overall probability of success to
implement it. Various physical systems are currently being
explored as potential candidates for the implementation of
large-scale universal quantum computing [6,17–20]. In partic-
ular, we are interested in cavity-based quantum networks with
single atoms in optical cavities [20–27], in which a variety of
applications have been proposed [28–42].

Here, we show a single-step implementation of universal
two- (CNOT) and three-qubit (quantum Fredkin) gates in a
cross-cavity setup [27], with single-sided cavities coupled
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to a three-level atom [Fig. 1(a)]. These gates can be imple-
mented with a success probability greater than 95% (CNOT)
and 90% (Fredkin) considering the state-of-the-art parame-
ters. The principle behind the implementation of these gates
is an extension of the Duan-Kimble protocol [23], where a
π -phase shift acquired by the two-mode input pulse is con-
ditioned not only on the atomic state but also on whether the
input field is in a collective dark or bright state. For the CNOT

gate, compared to the Duan-Kimble scheme, the probability
of failure is around 50% lower in our case due to the use of
collective effects of light.

We consider a �-type three-level atom (two metastable
ground states, |g1〉 and |g2〉, and an excited one |e〉) trapped
inside the cavity setup. The atomic transition |g1〉 ↔ |e〉 is res-
onantly coupled to both intracavity modes, while the atomic
ground state |g2〉 remains uncoupled. When the atom is in
|g2〉 or the input field is in a dark state, the atom becomes
transparent to the cavity modes, and thus the pulse enters
and leaves the cavities without changing its phase and shape
(as long as the pulse duration is much longer than the in-
verse of the cavities linewidth). On the other hand, in a
high-cooperativity regime, when the atom is in |g1〉 and the
input field is in a bright state, the pulse acquires a π phase
per excitation since it gets reflected by the cavities due to
the Autler-Townes splitting (strong atom-cavity coupling) or
an electromagnetically induced transparencylike phenomenon
(weak coupling). Specifically, if the atom is in |g1〉 and a
single-photon pulse impinges upon the cavity a (or b), the
light states between the cavities are exchanged due to the
π -phase shift acquired by its bright component, therefore
resulting in an output single-photon pulse transmitted by
the opposite cavity [Fig. 1(b) and 1(e)]. If the atom is in |g2〉,
then the output single-photon pulse exits from the same cavity
through which the input pulse entered [Fig. 1(c)]. Due to the
finitude of the cooperativity parameter, the bright component
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FIG. 1. (a) A �-type three-level atom is resonantly coupled to a cross-cavity system, with single-sided cavities. (b) Impinging a single-
photon pulse upon a cavity when the atom is in |g1〉, a quantum interference exchanges the cavity light states, resulting in a single-photon
pulse transmitted by the opposite cavity. (c) If the atom is is |g2〉, it becomes transparent to the cavities, and thus the output single-photon pulse
exits from the same cavity through which it entered. (d) Truth table of the Fredkin gate implemented by our system, where the control qubit
is given by the atomic ground states (|g1〉 → |1̄〉c and |g2〉 → |0̄〉c), while the target qubits are given by the vacuum and single-photon states
of the reservoirs of cavity a and b: |0̄〉a, |1̄〉a and |0̄〉b, |1̄〉b. (e) Dynamics when a single-photon pulse of temporal shape αin(t ) impinges upon
the cavity a, but leaves from the cavity b [βout(t )] since the atom is in |g1〉. The blue line [αout(t )] indicates the possibility of the input photon
emerging from the wrong output port of the cavity system.

of the input field can be absorbed by the atom-cavity system,
rather than being completely reflected, and then transmitted
by the wrong output port of the cavity system [blue line
in Fig. 1(e)]. This possibility decreases as the cooperativity
increases.

Therefore, depending on the atomic population, the system
performs controlled operations on the external fields. For in-
stance, defining the control qubit through the atomic ground
states |g1〉 → |1̄〉c and |g2〉 → |0̄〉c, the system performs a
CNOT gate when the target qubit is defined through the two-
mode reservoir states |1〉α|0〉β → |1̄〉 and |0〉α|1〉β → |0̄〉. The
overline indicates a qubit value. The system can implement
a Fredkin gate when considering the two target qubits as
|1〉α → |1̄〉a, |1〉β → |1̄〉b (analogously to |0̄〉a,b) [Fig. 1(d)].
Here, |1〉α and |1〉β represent the single-photon state of the
input or output pulses of cavities a and b (|0〉α and |0〉β
are the vacuum states), respectively. Consequently, universal
quantum computation [4] can be performed with this setup.

This paper is organized as follows. Section II outlines the
model that describes the open quantum system under consid-
eration. In Sec. III, we introduce the methods employed to
investigate the system response via input-output theory. We
present our main results in Sec. IV, while Sec. V covers our
conclusions.

II. MODEL

The setup in Fig. 1(a), in an interaction picture rotating at
the cavities frequency (ωc), and under the white-noise limit
[43], is described by (h̄ = 1)

H =
∫ ∞

−∞
dω ωA†

ωAω +
∫ ∞

−∞
dω ωB†

ωBω

+ i√
π

∫ ∞

−∞
dω[

√
κa(a†Aω − aA†

ω )

+ √
κb(b†Bω − bB†

ω )]

+ (gaa + gbb)σ 1
+ + (g∗

aa† + g∗
bb†)σ 1

−︸ ︷︷ ︸
Hsys

, (1)

in which σ 1
+ = |e〉〈g1| and σ 1

− = |g1〉〈e|, a and b (a† and
b†) are the annihilation (creation) operators of the intra-
cavity modes, while Aω and Bω (A†

ω and B†
ω) are the

frequency-dependent annihilation (creation) operators [44] of
the bosonic reservoirs of cavities a and b, respectively. The
coupling between external and intracavity modes is estab-
lished by the decay rates of the field amplitudes of cavities
a (κa) and b (κb). Finally, ga and gb are the coupling strength
between the atomic transition |g1〉 ↔ |e〉 and the intracavity
modes.

We consider an initial state that includes all possible inputs
for the two- and three-qubit operations

|	(t0)〉 = (λ1|g1〉 + λ2|g2〉)︸ ︷︷ ︸
Atom

(|0〉a|0〉b)︸ ︷︷ ︸
Cavities

× (μa|1〉α|0〉β + μb|0〉α|1〉β + μc|1〉α|1〉β )︸ ︷︷ ︸
Reservoirs

, (2)

in which |1〉α = ∫ ∞
−∞ dωξin(ω)A†

ω|0〉α describes the input field
in a continuous-mode single-photon state [44] impinging
upon the cavity a, and |1〉β = ∫ ∞

−∞ dωζin(ω)B†
ω|0〉β the analog

for cavity b. The Fourier transform of the spectral density
functions, ξin(ω) and ζin(ω), provides the square-normalized
temporal shape of the incoming pulses, αin(t ) and βin(t ) [44],
while the coefficients λk (k = 1, 2) and μp (p = a, b, c) are
related to the initial probability of the respective state.

III. METHODS

The system response can be investigated via the input-
output theory [45], with relations

zout(t ) =
√

2κz z(t ) − zin(t ), (3)

in which

z
(t ) = (−1)δ
,in

√
2π

∫ ∞

−∞
dωe−iω(t−t
 )z
(ω), (4)

with z
(ω) = Zω(t
), for 
 = {in, out}, {z = a, Z = A} and
{z = b, Z = B}. The dynamics of an arbitrary system operator
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O(t ) is governed by the Heisenberg-Langevin equation [43]

Ȯ = − i[O, Hsys] − ∑2
l=1 �l ([O, σ l

+]σ l
− − σ l

+[O, σ l
−])

− ∑b
z=a[O, z†](κzz − √

2κzzin)

+ ∑b
z=a(κzz† − √

2κzz
†
in)[O, z], (5)

in which �l is the decay rate of the atomic spontaneous
emission from |e〉 to |gl〉, and σ l

+ = (σ l
−)† = |e〉〈gl |. Note

that the coupling of each atomic transition to its respective
reservoir was also considered in Eq. (5) [omitted in Eq. (1)],
establishing the exclusive source of photon loss considered in
our setup. However, without loss of generality, we suppress
the input operators for these reservoirs, as they are assumed to
be initially in the vacuum state.

The set of coupled dynamical equations for the system
operators based on the Heisenberg-Langevin equations is non-
linear and challenging to solve. However, it becomes linear by
applying the Holstein-Primakoff approximation σz = σ 1

+σ 1
− −

σ 1
−σ 1

+ ≈ −1 [46], which holds as long as the atom is rarely
excited and becomes exact if the atom only populates |g2〉 or
ga = gb = 0. Thus,

ȧ(t ) = −ig∗
aσ

1
−(t ) − κaa(t ) +

√
2κaain(t ), (6)

ḃ(t ) = −ig∗
bσ

1
−(t ) − κbb(t ) +

√
2κbbin(t ), (7)

σ̇ 1
−(t ) = −i[gaa(t ) + gbb(t )] − �σ 1

−(t ), (8)

with � = �1 + �2. As detailed in Appendix A, an analytical
input-output relation can be derived for the field amplitudes
in the frequency domain. Setting (just for convenience) ga =
−gb ≡ g ∈ R and κa = κb ≡ κ , we have

a†
out(ω) = rωa†

in(ω) + tωb†
in(ω), (9)

b†
out(ω) = tωa†

in(ω) + rωb†
in(ω), (10)

where rω and tω are the (frequency- and atomic-state-
dependent) complex reflection and transmission coefficients,
respectively. For resonant incoming fields, the system re-
sponse is

rωc = 1

1 + 4C
|g1〉〈g1| + |g2〉〈g2|, (11)

tωc = 4C

1 + 4C
|g1〉〈g1|, (12)

in which C = g2/2κ� is the cooperativity parameter. It is also
worth examining the system response through the collective-
mode operators X ±

in(out)(ω) = [ain(out)(ω) ± bin(out)(ω)]/
√

2,
such that X −

out(ω) = (rω − tω )X −
in (ω) and X +

out(ω) = X +
in (ω).

In a regime beyond the validity of the Holstein-Primakoff
approximation, it is advantageous to work with the dynam-
ical equations for the average values of the operators. The
resulting set is linear but infinite; however, it can become
finite but nonlinear by applying the semiclassical mean-field
approximation [47] (e.g., 〈σa〉 ≈ 〈σ 〉〈a〉), culminating in a set
of dynamical equations for 〈a〉, 〈b〉, 〈σ 1

−〉, 〈σz〉, and 〈σee〉, with
σee = |e〉〈e| (see Appendix B). The solution to the semiclassi-
cal dynamical equations can be obtained numerically without
difficulty, but this solution neglects the correlation between
the atom and the intracavity fields, and assumes the external

fields as classical ones (coherent pulses), such that 〈ain〉 =
αin(t ) and 〈bin〉 = βin(t ). Both analytical and semiclassical ap-
proaches will be used here to compare them with the quantum
description of the setup outlined below. This analysis allowed
us to investigate the influence of nonlinearities and quantum
correlations on the implementation of quantum gates in our
setup.

When the initial state contains only a single excitation
(μc = 0), an exact quantum approach, excluding the occur-
rences of photon loss due to spontaneous atomic emission,
can be obtained through the Schrödinger equation i∂t |	(t )〉 =
Heff|	(t )〉, with Heff = H − i�σee [48]. In this scenario,
which allows describing the CNOT gate operations at least, the
temporal shapes of the output pulses emerging from cavity a
[αl

out(t )] and b [β l
out(t )], conditioned to the atomic state |gl〉,

are determined using the input-output relations

αl
out(t ) =

√
2κacl

a(t ) − αl
in(t ), (13)

β l
out(t ) =

√
2κbcl

b(t ) − β l
in(t ), (14)

with αl
in(t ) = λlμaαin(t ) and β l

in(t ) = λlμbβin(t ), cl
a and cl

b
being the probability amplitudes of finding a single excitation
inside the cavity a and b, respectively, while the atom is in |gl〉
and the other modes are in the vacuum state (see Appendix C).
The non-Hermitian nature of Heff results in an unnormalized
state |	(t )〉, such that (1 − ∫ ∞

−∞ |〈	(t )|	(t )〉|2dt ) quantifies
the probability of losing the input single photon due to atomic
spontaneous emission, corresponding to the failure proba-
bility of the CNOT gate. Here, we describe the input pulse
as a Gaussian wave packet that contains a single photon,
αin(t ) or βin(t ) = (η

√
π )−

1
2 exp[− 1

2
(t−t0 )2

η2 ], in which t0 is the
time when its maximum reaches the cavity semitransparent
mirror and τp = 2η

√
2 ln(2) is the pulse duration. We assume

that τp is sufficiently long to ensure that the pulse spectral
spread (τ−1

p ) fits within the linewidth of the cavity (2κ), i.e.,
the entire input pulse enters and exits the empty cavity, result-
ing in an output pulse that maintains the shape of the input
pulse [38].

It only remains to determine an exact solution for the sys-
tem dynamics associated with the three-qubit operation with
one incoming single-photon pulse for each cavity (μc = 1).
However, the previous method leads to a set of integrodif-
ferential equations that becomes challenging to solve as we
increase the number of excitations in the setup. To circumvent
that, we opted to employ the method of hierarchical master
equations [49] to investigate the exact system response when
the input field is in the state |1〉α|1〉β
�̇m,n;p,q(t ) = − i[Hsys, �m,n;p,q] + √

mαin(t )[�m−1,n;p,q, L†
a]

+ √
pβin(t )[�m,n;p−1,q, L†

b] + √
n α∗

in(t )

× [La, �m,n−1;p,q] + √
q β∗

in(t )[Lb, �m,n;p,q−1]

+ ∑b
z=a L[Lz]�m,n;p,q + ∑2

j=1 L[Lj]�m,n;p,q,

(15)

in which Lz = √
2κz z and Lj = √

2� j σ
j

−, with L[L]� =
L†�L − (L†L� + �L†L)/2. For the biphoton initial state,
the system dynamics is described by �1,1;1,1(t ) with the
initial conditions �m,n;p,q(0) = ρsys(0) if m = n and p = q,
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FIG. 2. Comparison among the analytical, semiclassical, and ex-
act approaches for the probabilities related to (a) |g1〉|0〉α|1〉β →
|g1〉|1〉α|0〉β and (b) |g1〉|1〉α|1〉β → |g1〉|1〉α|1〉β operations, using
� = 0.2κ and κτp = 40.

being �m,n;p,q(0) = 0 otherwise. Here, ρsys(0) is the density
matrix of the system initial state related to the first line
of Eq. (2). The mean photon fluxes of the output fields
are 〈a†

out(t )aout(t )〉 = E1,1;1,1[L†
aLa] + α∗

in(t )E0,1;1,1[La] +
E1,0;1,1[L†

a] + |αin(t )|2 and 〈b†
out(t )bout(t )〉 = E1,1;1,1[L†

bLb] +
β∗

in(t )E1,1;0,1[Lb] + E1,1;1,0[L†
b] + |βin(t )|2, in which

Em,n;p,q[L] = Trsys[ρ†
m,n;p,q L].

IV. RESULTS

Hereafter we assume resonant incoming fields, ga =
−gb ≡ g ∈ R, �1 = �2 and κa = κb ≡ κ , unless otherwise
stated. First, note that any operation with the atom in |g2〉
(|g2〉|ψ〉in → |g2〉|ψ〉out) invariably succeeds (rωc = 1), since
this state is not coupled to the cavity modes. Therefore,
the system operates as two independent empty cavities, and
the output pulse exits from the same cavity through which
the input pulse entered. Furthermore, regardless of the atomic
state, the operations involving |ψ〉in = |0〉α|0〉β also succeed
because of their trivial dynamics.

Both gates proposed here contain the opera-
tions |g1〉|0〉α|1〉β → |g1〉|1〉α|0〉β and |g1〉|1〉α|0〉β →
|g1〉|0〉α|1〉β . From Eqs. (11) and (12), the analytical proba-
bility of their occurrence is |〈g1|tωc |g1〉|2 = [4C/(1 + 4C)]2.
For comparison purposes, Fig. 2(a) exhibits the analytical
result alongside the semiclassical (

∫ ∞
−∞ dt |〈aout(t )〉|2)

and exact (
∫ ∞
−∞ dt |α1

out(t )|2) results as a function of g/κ ,
considering � = 0.2κ . It is worth noting the equivalence
in all treatments, which is expected since there is only
one excitation throughout the process, and there are no
appreciable light-matter correlations, leading to an approx-
imate linear-optics regime for the given set of parameters.
For the biphoton operation |g1〉|1〉α|1〉β → |g1〉|1〉α|1〉β ,
we obtain the analytical probability |〈g1|(t2

ωc
+ r2

ωc
)|g1〉|2 =

[1 + (4C)2]2/(1 + 4C)4, as shown in Fig. 2(b), where
the exact (

∫ ∞
−∞ dtdt ′ 〈a†

out(t )aout(t )b†
out(t

′)bout(t ′)〉) [50]
and semiclassical (

∫ ∞
−∞ dt |〈aout(t )〉|2 ∫ ∞

−∞ dt ′ |〈bout(t ′)〉|2)
results are also plotted. We observe that all approaches also
exhibit similar results for both low- and high-cooperativity
regimes in this case. However, there is a discrepancy in the
intermediate-cooperativity regime, highlighting the impact
of nonlinearities and quantum correlations introduced by the
presence of two photons in this process.

FIG. 3. Probabilities as a function of the cooperativity C, for
different values of total atomic spontaneous decay �, related to the
operations |g1〉|0〉α|1〉β → |g1〉|1〉α|0〉β with the atom as the control
qubit (solid lines), and |	N

B〉|1̄〉 → |	N
B〉|0̄〉 (or |	N

B〉|0̄〉 → |	N
B〉|1̄〉)

with the two modes as the control qubit. In the inset we show the
sensitivity of the fidelity to deviations in the values of ga compared
to gb. We set κτp = 40.

The system behavior can be described more elegantly
and clearly using the dark and bright states of light,
defined in terms of symmetric and antisymmetric collective-
mode operators [51,52]. For the subspace of N photons,

they are |	N
D〉in(out) = [(X +

in(out) )
N ]†

√
N!

|0〉α|0〉β and |	N
B 〉in(out) =

[(X −
in(out) )

N ]†

√
N!

|0〉α|0〉β , respectively. The input field in a dark
state does not interact with the atom regardless of its state
(empty-cavity scenario), so |g j〉|	N

D〉in → |g j〉|	N
D〉out. On

the other hand, when the input field is in a bright state,
although we also expect an empty-cavity scenario if the
atom is in |g2〉, in a high-cooperativity regime the output
pulse acquires a phase (−1)N if the atom is in |g1〉, that is,
|gj〉|	N

B 〉in → (−1) jN |g j〉|	N
B 〉out. As a consequence, a CNOT

gate can also be implemented with the control qubit defined
through the single-photon dark and bright states of light,
|0̄〉c ≡ |	1

D〉 = (|1〉α|0〉β + |0〉α|1〉β )/
√

2 and |1̄〉c ≡ |	1
B〉 =

(|1〉α|0〉β − |0〉α|1〉β )/
√

2, whereas the target qubit is de-
fined through the atomic superposition states |0̄〉 ≡ (|g2〉 +
|g1〉)/

√
2 and |1̄〉 ≡ (|g2〉 − |g1〉)/

√
2.

Figure 3 shows the exact probability of the occurrence of
the operation |1̄〉c|0̄〉 → |1̄〉c|1̄〉 (identical result for |1̄〉c|1̄〉 →
|1̄〉c|0̄〉) when considering the atom controlling the light states
(solid lines) and vice versa (dashed lines), for low (� =
0.02κ) and high (� = 20κ) atomic spontaneous emission
rates. This analysis summarizes the probability of success
in implementing the CNOT gate, since only these operations
do not have unitary fidelity for all ranges of parameters in
this case. We observe a probability greater than 95% for
C � 10. Remarkably, this high probability occurs not only
for the strong-coupling regime (� = 20κ and C ∼ 10 ⇒ g =
20κ), where the reflection of the input pulse in a bright state is
expected when the atom is in |g1〉 due to the Autler-Townes
splitting [53], but also for the weak-coupling regime (� =
0.02κ and C ∼ 10 ⇒ g ≈ 0.6κ), where the reflection is due
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FIG. 4. Probabilities of the Fredkin gate operations for (a) C = 20 and (b) C = 5, considering � = 0.2κ and κτp = 40.

to a destructive quantum interference between the system ab-
sorption paths (electromagnetically induced transparencylike
phenomenon) [54–56]. The collective effects of light used in
our protocol yield a failure probability 50% lower than that
of the Duan-Kimble scheme [23] (see Appendix D), which
considers a single cavity. Furthermore, although there is a
success probability of 95% for this operation when C � 10,
it can reach a postselected fidelity of 99.9% for the same
cooperativity value after detecting a photon emerging from
the cavity system (see Appendix E). Furthermore, the inset
of Fig. 3 shows a small deviation in the success probability
of performing a CNOT gate as the value of ga deviates from
the value of gb (similar for deviations between κa and κb).
This deviation changes the form of the bright and dark states;
then the quantum interference is no longer totally achieved,
decreasing the success probability.

Finally, Fig. 4 illustrates the probability of occurrence for
all operations in the implementation of a Fredkin gate [truth
table in Fig. 1(d)], considering κτp = 40 and � = 0.2κ for
two experimentally feasible values of cooperativity [27], C =
5 [Fig. 4(b)] and C = 20 [Fig. 4(a)]. We observe a success
probability greater than 95% for C = 20. However, we can
notice a decrease of that for C = 5 (probability of 85%),
where the losses by atomic emission become evident, mostly
for the operation involving two photons.

V. CONCLUSIONS

We have shown that a cross-cavity system coupled to a
�-type three-level atom provides a promising platform to
perform universal quantum computation. We demonstrated
how to implement a CNOT gate based on a π -phase gate that
involves bright and dark states of light, which is activated
depending on the atomic state. We can have either the atom
controlling the light states or vice versa. Remarkably, we have
shown that a quantum Fredkin gate can also be directly im-
plemented with this system, where the atom controls the light
states of both pulses interacting with the cavities. Based on the
state-of-the-art parameters [27], our results predict high suc-
cess probabilities for the two- and three-qubit quantum gates
investigated in this study. Our system can also be extended
to the case of multiple pulses or multiple atoms within the
crossed-cavity system, thus allowing the implementation of
multi-qubit logic gates [57]. Therefore, our results contribute

to the advancement of quantum technologies for applications
in quantum information, communication, and computation.
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APPENDIX A: HEISENBERG-LANGEVIN EQUATIONS
WITH HOLSTEIN-PRIMAKOFF APPROXIMATION:

ANALYTICAL METHOD

The Fourier transform of Eqs. (6)–(8) yields

− iωa(ω) = −ig∗
aσ

1
−(ω) − κaa(ω) +

√
2κaain(ω), (A1)

− iωb(ω) = −ig∗
bσ

1
−(ω) − κbb(ω) +

√
2κbbin(ω), (A2)

− iωσ 1
−(ω) = −i[gaa(ω) + gbb(ω)] − �σ 1

−(t ). (A3)

Considering just for convenience ga = −gb ≡ g ∈ R and
κa = κb ≡ κ , we have from Eq. (A3) that

σ 1
−(ω) = − ig

� − iω
[a(ω) − b(ω)]

= − ig
√

2

(� − iω)
X −(ω), (A4)

where the collective-mode operators are defined as

X ±(ω) = 1√
2

[a(ω) ± b(ω)]. (A5)

We must be cautious when expressing the atomic operator in
terms of the collective-mode operator [Eq. (A4)] to be inserted
into Eqs. (A1) and (A2), since there is a risk of overlooking
a proper description of the information regarding the atom.
Specifically, by performing this substitution, we disregard the
fact that σ 1

−(ω) = 0 in Eq. (A4) when the atom is initially in
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|g2〉 (which is equivalent to g = 0). For our purposes, this mis-
take can be avoided by considering in an ad hoc manner the
substitution g → g̃ = g|g1〉〈g1| on the right side of Eq. (A4).

Inserting Eq. (A4) into Eqs. (A1) and (A2),

X −(ω) =
√

2κ (� − iω)

(κ − iω)(� − iω) + (g̃
√

2)2
X −

in (ω), (A6)

X +(ω) =
√

2κ

κ − iω
X in

+ (ω), (A7)

where we can observe that the symmetric collective-mode
operator are decoupled from the atom regardless its state,
since it does not depend on g. From the input-output relation
written in terms of the collective-mode operators,

X ±
out(ω) =

√
2κX ±(ω) − X ±

in (ω), (A8)

we obtain

X −
out(ω) = x∗

−X −
in (ω), (A9)

X +
out(ω) = x∗

+X +
in (ω), (A10)

with

x∗
− ≡ (κ + iω)(� − iω) − (g̃

√
2)2

(κ − iω)(� − iω) + (g̃
√

2)2
, (A11)

x∗
+ ≡

(
κ + iω

κ − iω

)
, (A12)

directly implying in

a†
out(ω) = (x+ + x−)

2︸ ︷︷ ︸
rω

a†
in(ω) + (x+ − x−)

2︸ ︷︷ ︸
tω

b†
in(ω), (A13)

b†
out(ω) = (x+ − x−)

2︸ ︷︷ ︸
tω

a†
in(ω) + (x+ + x−)

2︸ ︷︷ ︸
rω

b†
in(ω), (A14)

with rω and tω being the (frequency- and atomic-state-
dependent) complex reflection and transmission coefficients.

At this point it is important remarking that the Hamiltonian
in Eq. (1) was written in an interaction picture rotating at the
cavities frequency. The results for the Heisenberg picture are
obtained by making ω → ω − ωc in Eqs. (A9) and (A10).
Therefore, the system response for resonant incoming fields
(ω = ωc) is given by Eqs. (11) and (12).

APPENDIX B: MEAN-FIELD APPROXIMATION:
SEMICLASSICAL METHOD

When the atom can be significantly excited, in a parameter
regime beyond the validity of the Holstein-Primakoff approx-
imation, it is convenient to work with the dynamical equa-
tions for the expectation values of the operators in Eqs. (6)–(8)

˙〈a〉 = −ig∗
a〈σ 1

−〉 − κa〈a〉 +
√

2κa〈ain〉, (B1)

˙〈b〉 = −ig∗
b〈σ 1

−〉 − κb〈b〉 +
√

2κb〈bin〉, (B2)

˙〈σ 1−〉 = i(ga〈aσz〉 + gb〈bσz〉) − �〈σ 1
−〉. (B3)

This set of differential equations is not closed. Specifically, the
equation of motion for 〈σ 1

−〉 depends on the expectation values
〈aσz〉 and 〈bσz〉, which involve two operators. Similarly, the
equations of motion for expectation values involving two
operators rely on expectation values with three operators, and
so forth [known as the Bogoliubov-Born-Green-Kirkwood-
Yvon (BBGKY) hierarchy]. An approach to truncate this set
of equations, beyond the Holstein-Primakoff approximation,
is through the semiclassical mean-field approximation [47],
which relies on the factorization of expectation values that
involve two operators, e.g., 〈σa〉 ≈ 〈σ 〉〈a〉. The resulting set
of dynamical equations becomes finite but nonlinear

˙〈a〉 = −ig∗
a〈σ 1

−〉 − κa〈a〉 +
√

2κa〈ain〉, (B4)

˙〈b〉 = −ig∗
b〈σ 1

−〉 − κb〈b〉 +
√

2κb〈bin〉, (B5)

˙〈σ 1−〉 = i(ga〈a〉 + gb〈b〉)〈σz〉 − �〈σ 1
−〉, (B6)

˙〈σz〉 = − 2i(ga〈a〉 + gb〈b〉)〈σ 1
−〉∗

+ 2i(g∗
a〈a〉∗ + g∗

b〈b〉∗)〈σ 1
−〉 − 2(�1 + �)〈σee〉, (B7)

˙〈σee〉 = − i(ga〈a〉 + gb〈b〉)〈σ 1
−〉∗

+ i(g∗
a〈a〉∗ + g∗

b〈b〉∗)〈σ 1
−〉 − 2�〈σee〉. (B8)

APPENDIX C: SCHRöDINGER EQUATION FOR
SINGLE-EXCITATION INITIAL STATE: EXACT METHOD

When the initial state of the setup contains a single exci-
tation [μc = 0 in Eq. (2)] an exact solution can be obtained
by numerically solving the Schrödinger equation i∂t |	(t )〉 =
Heff|	(t )〉, with Heff = H − i�σee [48], in which the non-
Hermitian damping term excludes the occurrences of photon
loss due to spontaneous atomic emission. The single excita-
tion condition allows one to consider the following general
evolved state

|	(t )〉 = ce(t )|e〉|0〉a|0〉b|0〉α|0〉β

+
2∑

l=1

cl
a(t )|gl〉|1〉a|0〉b|0〉α|0〉β

+
2∑

l=1

cl
b(t )|gl〉|0〉a|1〉b|0〉α|0〉β

+
2∑

l=1

∫ ∞

−∞
dωξl (ω, t )|gl〉|0〉a|0〉bA†(ω)|0〉α|0〉β

+
2∑

l=1

∫ ∞

−∞
dωζl (ω, t )|gl〉|0〉a|0〉b|0〉αB†(ω)|0〉β.

(C1)

Inserting the evolved state into the Schrödinger equa-
tion yields the following sets of coupled integrodifferential
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equations for the amplitudes

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ċe

ċ1
a

ċ1
b

ξ̇1

ζ̇1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−� −iga −igb 0 0

−ig∗
a 0 0

√
κa
π

∫
dω 0

0 −ig∗
b 0 0

√
κb
π

∫
dω

0 −
√

κa
π

0 −iω 0

0 0 −
√

κb
π

0 −iω

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ce

c1
a

c1
b

ξ1

ζ1

⎤
⎥⎥⎥⎥⎥⎥⎦, (C2)

[
ċ2

a

ξ̇2

]
=

[
0

√
κa/π

∫
dω

√
κa/π −iω

][
c2

a

ξ2

]
, (C3)

[
ċ2

b

ζ̇2

]
=

[
0

√
κb/π

∫
dω√

κb/π −iω

][
c2

b

ζ2

]
. (C4)

By integrating the equations for ξ̇l and ζ̇l from an initial
time t0 to t > t0, we obtain

ξl (ω, t ) = ξl (ω, t0)e−iω(t−t0 ) −
√

κa

π

∫ t

t0

dτcl
a(τ )e−iω(t−τ ),

(C5)

ζl (ω, t ) = ζl (ω, t0)e−iω(t−t0 ) −
√

κb

π

∫ t

t0

dτcl
b(τ )e−iω(t−τ ),

(C6)

for l = 1, 2. Now we apply the time limit for these solutions,
for a past time t0 → −∞ we obtain ξl (ω, t0) ≡ ξ l

in(ω) and
ζl (ω, t0) ≡ ζ l

in(ω) when the incoming pulse is still at a suf-
ficiently large distance from the cavity. Also, we integrate for
t to a future time t1 > t , such that

ξl (ω, t ) = ξl (ω, t1)e−iω(t−t1 ) +
√

κa

π

∫ t1

t
dτcl

a(τ )e−iω(t−τ ),

(C7)

ζl (ω, t ) = ζl (ω, t1)e−iω(t−t1 ) +
√

κb

π

∫ t1

t
dτcl

b(τ )e−iω(t−τ ).

(C8)

Similarly for a future time t1 → +∞, we obtain ξl (ω, t1) ≡
−ξ l

out and ζl (ω, t1) ≡ −ζ l
out, where the minus sign comes from

the convention that takes into account the propagation direc-
tion of the fields in their amplitudes.

The square-normalized temporal shapes of the incoming
and outgoing pulses related to cavity a are

αl
in(t ) = 1√

2π

∫ +∞

−∞
ξin(ω)e−iω(t−t0 ), (C9)

αl
out(t ) = 1√

2π

∫ +∞

−∞
ξout(ω)e−iω(t−t1 ), (C10)

and similar for β l
in,out(t ) with ζ l

in,out. As a result, combining
Eqs. (C9) and (C10) with the relations obtained for ξl (ω, t )
and ζl (ω, t ), we obtain Eqs. (13) and (14), which are the

boundary conditions relating the field amplitudes outside the
cavities to the intracavity fields.

The last step to build a solvable set of equations is to
eliminate the integral terms in ċl

a(t ) and ċl
b(t ). Let us take as

an example the equation for ċl
a(t ),

ċl
a(t ) = −ig∗

aδl,1ce +
√

κa

π

∫ +∞

−∞
dωξl (ω, t )

= −ig∗
aδl,1ce +

√
κa

π

∫ +∞

−∞
dωξ l

in(ω)e−iω(t−t0 )

︸ ︷︷ ︸√
2παl

in (t )

− κa

π

∫ t

t0

dτcl
a(τ )

∫ +∞

−∞
dωe−ω(t−τ )

︸ ︷︷ ︸
2πδ(t−τ )︸ ︷︷ ︸

πcl
a (t )

, (C11)

such that

ċl
a(t ) = −ig∗

aδl,1ce +
√

2κaα
l
in(t ) − κacl

a(t ). (C12)

The same procedure can be taken for cl
b(t ), yielding the fol-

lowing set of coupled differential equations

ċ1
a(t ) = −ig∗

ace(t ) − κac1
a(t ) +

√
2κaα

1
in(t )

ċ1
b(t ) = −ig∗

bce(t ) − κbc1
b(t ) +

√
2κbβ

1
in(t )

ċe(t ) = −�ce(t ) − igac1
a(t ) − igbc1

b(t ), (C13)

ċ2
a = −κac2

a(t ) +
√

2κaα
2
in(t )

ċ2
b = −κbc2

b(t ) +
√

2κbβ
2
in(t ). (C14)

Given a certain input pulse [αin(t ) and/or βin(t )] and consider
the initial state of Eq. (2), we have that αl

in(t ) = λlμaαin(t ),
β l

in(t ) = λlμbβin(t ), and cl
a(0) = cl

b(0) = ce(0) = 0. Then, it
is straightforward to numerically solve the system dynamics,
and hence access the outgoing pulse dynamics through αl

out(t )
and β l

out(t ) determined by Eqs. (13) and (14).

APPENDIX D: COMPARISON BETWEEN
THE DUAN-KIMBLE PROTOCOL AND OUR

CROSS-CAVITY SCHEME

Let us compare our proposal with the previously used
atom-cavity system, which we will consider as the Duan-
Kimble (DK) scheme [23]. The DK scheme is equivalent
to considering only the cavity a in Eq. (1). As a result,
considering the Holstein-Primakoff approximation for the
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sake of simplicity, one obtains, for a resonant incoming field
and the atom in |g1〉,

aout =
(

1 − 2C

1 + 2C

)
ain,

in which C = g2/2κ� is the individual cooperativity param-
eter between the atom and a single mode. We observe that
a π phase shift in this case is possible only for C > 1/2.
Moreover, the probability of not having a reflected field with
a π phase shift (failure probability) is, for C > 1/2,

PDK
F = 1 −

(
1 − 2C

1 + 2C

)2

= 8C

(1 + 2C)2
. (D1)

In our protocol, the phase shift can be acquired by the
bright component of the two-mode incoming field. Therefore,
we have to look at its respective collective operator

X −
out =

(
1 − 4C

1 + 4C

)
X −

in .

In this case, a π phase shift occurs for C > 1/4 (minimum
value corresponds to the half-value for the single-cavity case,
which represents a gain of a factor 2 in the individual cooper-
ativity parameter to implement a π phase shift). Furthermore,
the probability of failure in our case is, for C > 1/4,

PF = 1 −
(

1 − 4C

1 + 4C

)2

= 16C

(1 + 4C)2
. (D2)

For C � 1, PF

PDF
F

≈ 1
2 , that is, compared to the DK scheme,

the probability of failure is 50% lower in our case. For exam-
ple, considering C ≈ 10, PF ≈ 9.52% while PDK

F ≈ 18.14%.
This gain is due to the collective effects present in our pro-
tocol, namely the effective coupling between the atom and
the bright mode of the cavity system is geff = g

√
2, then we

have Ceff = 2C, which explains the following correspondence
aout = ( 1−2C

1+2C )ain → X −
out = ( 1−2Ceff

1+2Ceff
)X −

in = ( 1−4C
1+4C )X −

in .

APPENDIX E: POSTSELECTED PROCESS FIDELITY

The implementation of a quantum gate can be character-
ized by two quantities: gate efficiency (success probability)

and gate fidelity (accuracy of the quantum operations per-
formed by the gate). The efficiency of gates based on
cavity-assisted photon scattering [20] is affected by all sources
of photon loss, including atomic spontaneous emission, ab-
sorption and scattering by beam splitters or cavity mirrors,
imperfection in the photon source, and inefficiencies in photon
collection and detection. However, these negative occurrences
can be eliminated by postselecting events in which a photon
emitted by the cavity system is detected. Although a photon
count may not be mandatory for implementing the gate, it
heralds that the protocol has succeeded without modifying the
gate fidelity. In other words, a photon detection just ensures
us that the gate has succeeded.

In our scheme, since we have two single-sided cavities,
we have two ports. When the atom is in |g1〉 and we send a
single-photon pulse towards the cavity a, for example, in our
protocol it is desired that the photon is completely transmitted
by the cavity b. However, it is possible to occur two other
undesired events, namely the photon can be either lost (due
to any source of photon loss) or come out of cavity a (the
photon can be absorbed by the atom-cavity system and then
transmitted by the wrong output port of the cavity system).
Although the first event only affects the gate probability and
can be circumvented by detecting a photon emerging from
the cavity system (postselection approach), the second one
corresponds to an error in the qubit value involved in the gate
implementation, thus reducing the gate fidelity.

After detecting a photon emerging from the cavity system,
the postselected fidelity of these operations is given by a quan-
tum conditional probability [58]. In the implementation of
the CNOT gate, only the operation |g1〉|1〉α|0〉β → |g1〉|0〉α|1〉β
(or |g1〉|0〉α|1〉β → |g1〉|1〉α|0〉β) has its efficiency affected,
as characterized in Fig. 2(a). Thus, the postselected fidelity
of this operation after detecting a photon emerging from the
cavity system is given by

PPS = |〈g1|tωc |g1〉|2
|〈g1|tωc |g1〉|2 + |〈g1|rωc |g1〉|2 = (4C)2

1 + (4C)2
. (E1)

For C ∼ 10, we have seen that this operation occurs with
a probability (P = [4C/(1 + 4C)]2) greater than 95.2%.
However, after detecting a photon emerging from the
cavity system, the postselected fidelity of this operation
becomes 99.9%.
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