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Coherent excitation transport through ring-shaped networks
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The coherent quantum transport of matter wave through a ring-shaped circuit attached to leads defines an
iconic system in mesoscopic physics that has allowed researchers to both explore fundamental questions in
quantum science and to draw important avenues for conceiving devices of practical use. Here we study the
source-to-drain transport of excitations going through a ring network, without propagation of matter waves. We
model the circuit in terms of a spin system with specific long-range interactions that are relevant for quantum
technology, such as Rydberg atoms trapped in optical tweezers or ion traps. Inspired by the logic of rf- and
dc-SQUIDs, we consider rings with one and two local energy offsets, or detunings. As a combination of specific
phase shifts in going through the localized detunings and as a result of coherent tunneling, we demonstrate how
the transport of excitations can be controlled, with a distinctive dependence on the range of interactions.
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I. INTRODUCTION

Quantum transport in mesoscopic circuits deals with mat-
ter propagating in networks characterized by a spatial scale
comparable with the particle’s coherence length [1,2]. In this
regime, quantum effects such as quantum tunneling, conduc-
tance quantization, flux quantization, Aharanov-Bohm effect,
etc. play a prominent role [3–5]. Recently, the transport
properties of cold atoms guided in versatile and flexible laser-
generated circuits have been studied both theoretically and
experimentally [6–13]. In fact, through widely tunable inter-
actions and disorder, new paradigms in mesoscopic physics
have been defined, for both bosonic and fermionic systems,
with a great potential for basic quantum science and applica-
tions [14,15].

In this paper, we refer to one of the most iconic systems
of mesoscopic physics that has led to far-reaching implica-
tions: a mesoscopic ring-shaped track connected to source
and drain leads [1,2,16–18]. The tunneling through scattering
impurities or localized barriers placed in the ring circuit can
induce specific phase shifts in the particles wave function [19].
In this way, the source-to-drain current can be controlled,
a fact that is relevant to study the fundamental features of
quantum interference and to engineer mesoscopic quantum
devices with enhanced performances. With a similar logic,
neutral bosonic matter-wave current oscillations have been
predicted and analyzed in Ref. [10]. Rings with one or two
localized barriers can define the bosonic analog of rf- and
dc- superconducting quantum interference devices (SQUIDs)
[15,20–22]. Such cold-atom implementations pave the way to
rotation sensors based on the Sagnac effect [23].

Here we study the source-to-drain quantum transport
through a ring-shaped circuit, in which the dynamics occur
in terms of excitations, rather than of matter. The implemen-

tation we rely on is a circuit made of Rydberg atoms trapped
in tweezers or ions trapped in suitable electromagnetic fields
[24–27]. Indeed, in such systems, the motion of the atoms or
of the ions can be neglected, with the relevant dynamics oc-
curring as the transfer of excitations of internal energy states.
Moreover, both Rydberg atoms and ions can be trapped in a
large variety of different geometries and with a remarkable
control of the physical conditions [28–31]. In contrast to the
cases considered so far, here we deal with systems with a
long-range interaction, capturing the characteristic physics of
Rydberg atoms and trapped ions [32–34].

We implement a specific quench dynamics that we
demonstrate to lead to the sought drain-to-source excitation
transport: after initializing the excitation in the source, it
propagates along the two arms of the ring and, after many
scattering events determined by the interaction, reaches the
drain. Dealing with a closed system, the excitations popu-
lation in the source and in the drain displays characteristic
oscillations. We shall demonstrate that the entire excitation
dynamics and then the source-to-drain transport can be con-
trolled by suitable energy level detunings localized in the
ring track. Such detunings play a similar role of what the
aforementioned local potential barriers do for matter waves
[10]. Indeed, the presence of detunings gives a nontrivial time-
dependent phase to the time-evolved state. Inspired by the
rf-and dc-SQUID concepts, we address the cases of one and
two localized detunings. The paper is organized as follows: In
Sec. II, we introduce the model and the possible experimental
platforms on which it can be realized. In Sec. III, we study the
dynamics of the leads and the ring population in the presence
of a single detuning in one arm of the ring. In Sec. IV, we
perform the same type of simulations, but in presence of two
detunings, i.e., one for each arm of the ring, with the same
height and the same sign first, and with opposite sign second.
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FIG. 1. (a) Pictorial representation of the system: two single-site
leads, a source and a drain, are connected to a ring lattice. The
various sites are connected with a hopping strength that scales as
1/dα , with d the distance between sites. Intraring and leads-ring
hopping strengths are denoted by Jnn (red lines) and Knn (green lines),
respectively. Boxes show the three possible configurations that we
are going to study: (b) one barrier, (c) two barriers with the same
sign, and (d) two barriers with opposite sign. The number Nr of
sites in the ring lattice is such that Nr is even, while Nr/2 is odd.
The asymmetric location of the detunings with respect to the leads
is chosen to guarantee different paths for the excitation on the two
arms.

Our conclusions are drawn in Sec. V. The Appendix provides
a more detailed analysis of the model properties and of the
mechanisms that lead to the peculiar dynamics observed in
the main text.

II. MODEL AND METHODS

We consider a system comprised of two leads, the source
(S) and the drain (D), each of them modeled by a single
site containing, at most, one excitation, connected to a ring
network (R) of Nr sites. Localized detunings, or impurities
(I), are placed in the ring lattice and arranged in different
configurations (see Fig. 1). The excitation in each site is
modeled as a two-level atom system {|↑〉 , |↓〉}. The system
Hamiltonian reads

Ĥ = ĤR +
∑

L=S,D
ĤLR + ĤSD, (1)

with

ĤR =
∑

i< j∈R

g

dα
i, j

(σ̂+
i σ̂−

j + H.c.) + ĤDet, (2a)

ĤLR =
∑
j∈R

g

dα
L, j

(σ̂+
j σ̂−

L + H.c.) (L = S,D), (2b)

ĤSD = g

dα
S,D

(σ̂+
S σ̂−

D + H.c.), (2c)

ĤDet =
∑
j∈R

∑
jl ∈I

� j n̂ jδ j, jl . (2d)

Here, σ̂ a
� (a = x, y, z) denote the spin-1/2 Pauli matrices on

a given atom and σ̂±
� = 1

2 (σ̂ x
� ± iσ̂ y

� ) are the corresponding
raising and lowering operators, with � = {S,D, 1, . . . , Nr}
labeling one of the atoms in the leads or in the ring. The
Hamiltonian part [Eq. (2a)] describes the intraring hopping
in the presence of detunings [Eq. (2d)], while Eq. (2b) de-
scribes the leads-ring hopping and Eq. (2c) describes the

direct source-drain hopping. We suppose that the excitation
|↑〉 can hop from site to site with a strength scaling as 1/dα ,
where d denotes the distance between the sites and α � 0 is a
parameter inversely related to the hopping range. In particular,
di, j is the intraring distance (i, j = 1, . . . Nr), dS, j and dD, j are
the distances between the leads and all the sites of the ring,
while dS,D is the distance between source and drain. Here-
after, we mainly concentrate on the weak lead-ring coupling
limit, corresponding to Knn � Jnn, where Knn and Jnn are the
leads-ring and intraring nearest-neighbor hopping strengths,
respectively (see Appendix A for details). We also consider
an even number Nr of atoms in the ring, in such a way that
Nr/2 is odd.

We should stress that we are interested in the cases
1 � α � 3, where the nearest-neighbor and the fully con-
nected models correspond to α → ∞ and α = 0, respectively.
Trapped ions in linear chains provide a powerful platform to
realize quantum spin Hamiltonians in which the spin-spin in-
teraction or the hopping strength scale approximately as d−α ,
where α ∈ (0, 3) [24,32,35–38]; the |↓〉 and |↑〉 states are two
internal electronic states of the ions. The implementation of
different geometries is more challenging, but two-dimensional
spin Hamiltonians [37,39–43] as well as circular ring traps of
ions [30,44,45] have already been realized. The case α = 3
can also be implemented in Rydberg atoms. For such systems,
|↓〉 and |↑〉 are two Rydberg states of opposite parity (i.e.,
|S〉 and |P〉) [26,33,46,47]. Thanks to the high control on the
geometry in which the atoms are located in these systems
[28,29,48], it is possible to realize ring-shaped and more com-
plicated geometries [49].

We focus on three possible configurations of the localized
detunings in the ring lattice. The case I = { j0} corresponds
to one localized detuning [Fig. 1(b)]; the path crossed by the
excitation in the two arms of the ring is clearly different. The
two other cases correspond to I = { jA, jB}, with jA and jB in
diametrical position, �A = �B and �A = −�B, respectively
[Figs. 1(c) and 1(d)]. Since dS, jA 	= dS, jB , also in this case,
the path crossed by the excitation fraction in one arm of
the ring is different from the other. The local detunings are
experimentally feasible through local ac-Stark shifts with a
focused laser on the site of interest [32,50].

To study the excitation transport, we apply the following
quench protocol. At t = 0, we localize a single excitation in
the source,

|ψ (0)〉 = |↑〉S ⊗ |↓, . . . ,↓〉R ⊗ |↓〉D ; (3)

then we evolve the state via the Schrödinger equa-
tion |ψ (t )〉 = exp ( − iĤt ) |ψ (0)〉. To monitor the dynamics,
we scrutinize the number of excitations in the source, the ring,
and the drain,

n̂R = 1

2

∑
j∈R

(
1̂ j + σ̂ z

j

)
, n̂L = 1

2

(
1̂L + σ̂ z

L
)

(L = S,D).

(4)

Since the Hamiltonian conserves the total number of ex-
citations, n̂tot = n̂S + n̂R + n̂D, with the initial condition
(3), we can work in the one-excitation sector, namely,
〈ψ (t )|n̂tot |ψ (t )〉 = 1. Thus, we define the projector P̂ repre-
sented by a N × 2N matrix that projects operators and states
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FIG. 2. Left panels: Excitation populations in the source PS , the ring PR, and the drain PD , for three different values of the hopping range
α = 1, 2, 3, from top to bottom. Right panels: Ring phase difference δφ between two opposite sites located in the two arms of the ring, for the
three values of α considered. Excitation populations and phase difference are plotted as a function of time (x axis) and detuning (y axis) of the
single barrier located in the ring at position j0 = �Nr/4. The population values are indicated by the color bar that goes from 0 to 1, and the
phase difference by the one that goes from −π to π . The number of sites in the ring is Nr = 14. The leads-ring coupling is Knn = Jnn/10

of the full Hilbert space into operators and states of the one-
excitation sector. The states and operators with which we
will work are of the form P̂ |ψ〉 and P̂ÔP̂†, with |ψ〉 and Ô
being a generic state and operator acting on the full Hilbert
space.

Numerical computations have been performed using the
JULIA package QUANTUMOPTICS.JL [51].

III. DYNAMICS IN THE PRESENCE
OF A SINGLE DETUNING

Let us first consider the case of a single localized detun-
ing [Fig. 1(b)]. We analyze the dynamics of the number of
excitations in the source, the ring, and the drain, as well as
the phase difference behavior between the two arms of the
ring (in particular, the phase difference between two opposite
sites located in the two different arms). Numerical results are
summarized in Fig. 2.

A. Excitation dynamics

Because of the weak-coupling assumption, insight on the
general features of the excitation dynamics can be achieved by
looking at the (discrete) energy spectrum of the leads and the
ring separately. The initial state |ψ (0)〉 ≡ |S〉 is assumed to
be at zero energy. The ring Hamiltonian in the single-particle
sector has Nr eigenstates with nonzero energies; they result
to be doubly degenerate, except for the ground state and the

highest excited state. The role of the localized detuning is to
break the degeneracies and shift the ring levels. For specific
values of the detuning �res, the ring energy levels can be
resonant with the initial source state |S〉 (see Appendix B).
In this case, the excitation is transferred from the source to
the drain and backward to the source, through the ring that
is well populated (Fig. 2, left panels). Since the total number
of excitations is conserved and the ring is populated, during
its time evolution the population is distributed along the leads
and the channel. Far from resonance, coherent source-drain
oscillations display a marked dependence on � as soon as
α increases. This means that the source-drain dynamics de-
pends on the characteristics of the ring and not only on the
source-drain direct coupling ĤSD. In this regime, the trans-
port can occur in terms of cotunneling processes [4,52,53]:
Similarly to the transport occurring in quantum dots in the
regime in which sequential tunneling cannot happen (because
of the Coulomb blockade), here a source-to-drain transport
can occur through virtual transitions in the ring energy levels;
in this regime, the ring is found with a low population of
excitations.

Due to the presence of more than nearest-neighbor hopping
processes, specific features of the system emerge when the
leads and the ring-shaped track are not treated separately (see
Fig. 1). Specifically, because of a combination of geometri-
cal effects and energy level configuration, we found that the
transport displays a marked dependence on α, especially in
the (leads-ring) nearly resonant regimes.
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For α = 1, the source and drain populations oscillate reg-
ularly until �/Jnn ≈ 5, corresponding to the value for which
the rings start to be populated and the dynamics inside the
leads is less regular. The specific detuning values for which
the ring is populated correspond to those for which the ring
is resonant with the leads (see Fig. 7 in Appendix B 2).
Far from those values, the ring is not populated and the
source-drain oscillations do not depend on the detuning. A
peculiar localization phenomenon related to the emergence of
a source localized eigenstate (see Appendix D) is observed
for small negative values of the detuning. An appropriate
quench of the detuning from negative to positive can be
used to switch from no-transfer to almost perfect transfer of
excitations.

For α = 2, the dynamics is quite different: in the (�, t)
plane, a V pattern appears. On the borders of the V pattern,
the drain and source populations are, respectively, maximum
and minimum. The vertex of the V is in correspondence with
�res, where the ring is more populated. Another important
feature of this regime is the population dynamics for values
of detuning far from the resonance. The source is, at every
time, the most populated, and the drain is the less populated.
The ring population is small but not zero; it shows a weak
oscillation with those of the source.

The α = 3 regime is characterized by slow (compared with
the previous cases α = 1 and α = 2) coherent transfer of
excitation from the source to the drain, interrupted at the value
of � for which the source and ring are resonant. As a specific
feature of this case, we note a localization of the excitation in
the source occurring for values of � slightly smaller than �res.
Indeed, such localized source state appears in the analysis
of the full leads-ring system Hamiltonian spectrum (see Ap-
pendix D). For different values of �, the complete states also
have a substantial projection in the drain state and therefore
the dynamics results display the characteristic source-drain
coherent oscillations.

B. Phase difference dynamics

We now analyze the phase of the excitations flow between
the two arms of the ring. To this end, we compute the phase
difference between the two symmetric sites of the arms, la-
beled by i = Nr/2 − 1 and j = Nr/2 + 1. The argument of
the two-body correlator 〈σ̂+

i σ̂−
j 〉 gives the phase difference

δφ between the two sites (see Appendix E for details). To
corroborate our results, we analytically studied a straight finite
chain and found that the phases of the coefficients of the
time-evolved state in the position basis nontrivially depend on
�.

The rightmost panels of Fig. 2 report the phase difference
as a function of time and detuning, for various values of α.
Our results indicate that as for matter waves with a local-
ized potential barrier, the localized detuning causes a phase
shift between the two arms of the ring. The dependence of
the phase difference on the detuning is evident for any α.
In particular, it follows the oscillation frequency of the ring
population. However, even when such oscillation amplitude is
small and hardly observable, the phase difference can present
non-negligible oscillations. For instance, for α = 1 and a neg-
ative detuning, there are evident phase difference oscillations

while the ring is basically not populated. In a window around
� = 0, the phase difference is zero because the paths on the
two arms are the same. On the other hand, in correspondence
with the resonances, as soon as the ring becomes populated,
we observe strong oscillations in the phase difference. In
general, phase oscillations follow the population ones, inde-
pendently of the amplitude of the latter. If there is a small
amount of excitations moving in the ring, the phase difference
oscillates with an amplitude that is significantly different from
zero.

IV. DYNAMICS IN THE PRESENCE
OF DOUBLE DETUNING

In this section, we focus on the source-to-drain dynamics
of the number of excitations in the case in which two atoms
in the ring are detuned. We first study the case in which the
two detunings have the same sign [Fig. 1(c)] and then the
case in which they have same magnitude but opposite sign
[Fig. 1(d)].

A. Excitation dynamics in the presence of double detunings with
the same sign

Also in this case, the hopping range has pronounced effects
on the dynamics. The combined energy shifts caused by the
two detunings and hopping range give rise to a resonant trans-
port occurring in correspondence to two resonances (instead
of the one in the previous single-detuning case) that turns
out to not be symmetric with respect to � = 0. The nature
of the level shift that brings to resonance can be accessed
analytically and numerically looking at the ring spectrum,
respectively, in the nearest-neighbor and long-range cases (see
Appendix B). The population dynamics is reported in the left
panels of Fig. 3.

For α = 1, the dynamics is characterized by fast oscil-
lations between source and drain, with a frequency that is
nearly independent of the detuning. The ring is almost never
populated except for the two �res values, where the dynamics
in the leads is erratic. In the case α = 2, the dynamics clearly
changes. Far from resonances, the dynamics is similar to the
one observed in the single-detuning case. In this case, we
see two V-shaped patterns in the (�, t ) plane around the two
resonances. We notice a depletion in the source and a filling
of the drain in correspondence to the meeting points of the
two V-shaped patterns. Finally, as in the case with single
detuning, for α = 3, the transport between source and drain
is slower and more affected by the process occurring in the
ring track. In particular, by tuning �, the transport in the
system shows markedly different features. For large (posi-
tive or negative) values of �, the transport of excitations is
slowed down, with the ring being weakly populated. Around
the two resonant levels, the transport becomes erratic and
the ring becomes populated. In between the two resonances,
we observe regular and fast oscillations of the population in
the leads.

In Appendix F, we report strong leads-ring coupling re-
sults for α = 3. We observe that for increasing Knn/Jnn, the
source-drain oscillations weaken. The latter survive until Knn

remains smaller than Jnn; when the couplings are comparable,
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FIG. 3. Populations and ring phase difference as in Fig. 2, for two equal detunings (�A = �B = �) located at jA = �Nr/4 and
jB = �3Nr/4. The Hamiltonian parameters are set as in Fig. 2.

the leads are weakly populated and clear oscillations are no
longer observed. In this scheme, the spectrum is not divided
into leads and ring states far from the resonance, so the ring is
populated independently of �res.

B. Excitation dynamics in the presence of double detunings with
opposite sign

We complete our analysis by studying the configuration
of a double equal barrier with opposite sign. Also here, the
three different regimes can be observed by changing α. The
double-barrier regime is basically different from the other two
because the first perturbative order energy correction is zero
(see Appendix B), and thus it is harder to get resonances.
Results for the population dynamics are reported in the left
panels of Fig. 4.

For α = 1, the dynamics is characterized by fast oscilla-
tions between source and drain; the ring is never resonant with
the initial state and so is never populated. For α = 2, the ring
spectrum presents two symmetric resonances (instead of the
asymmetric ones of the previous section) with the zero-energy
mode. This feature is corroborated by a perturbative analysis
showing that the resonances depends on �2 (see Appendix B).
For large (positive and negative) values of �, the population
in the drain is minimal, while a small fraction of excitation
oscillates between source and ring. For values of � between
the two resonances, a source-drain slow oscillation given by
the recombination of the two V-shaped patterns appears. The
regime corresponding to α = 3 is characterized by slow co-
herent oscillations between the two leads, with the ring track
being weakly populated. Differently from the α = 1 case,

the value of � determines the oscillation frequency between
source and drain. We found that the excitation transfer slows
down by increasing �.

C. Two-arms phase difference with double detunings

The rightmost panels of Figs. 3 and 4 report the phase
difference between the sites of the two arms closest to the
drain in the presence of two detunings. As in the case of
single detuning, the phase difference oscillations are min-
ima in amplitude for α = 1 far from resonances. For α = 2,
we observe strong phase difference oscillations; evident os-
cillations are observed also for α = 3. In all the cases
analyzed so far, the phase difference oscillations follow in
frequency those of populations. Also in this case, the phase
oscillations are correlated to the ring population oscilla-
tions: the phase oscillation amplitude is bigger when the ring
is more populated. However, a little amount of excitation
in the ring is sufficient to have substantial oscillations in
the phase.

In Appendix E, we also discuss the phase difference dy-
namics for different locations of the detunings. As expected,
phase oscillations strongly depend on it; if the detunings are
located in such a way that the excitation fractions follow the
same paths on the two arms of the ring, the phase difference is
zero for any �. This result can be achieved by putting two
equal detunings in two diametrically opposite zones of the
arms. Otherwise, if the resonance location in � is the same
and the two paths are different, the dynamics differs with the
one considered here, with specific features depending on the
geometry.
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FIG. 4. Same as in Fig. 3, but for two detunings with equal magnitude but opposite sign: �A = −�B = �.

V. DISCUSSION

We studied the source-drain excitation transport through a
ring lattice track in which, in one or two sites, the atoms are
detuned by � with respect to the others; such detunings act as
local energy shifts in the system and therefore play the role of
localized impurities. Motivated by the know-how in quantum
technology, the system is described by a XY Hamiltonian with
1/dα hopping; specific values of α that are relevant for ion
traps [25,35,54] and Rydberg atoms [26] localized in optical
tweezers are considered. In the case of trapped ions, the hop-
ping range is controllable through α which can be tuned in the
[0,3] interval, while for Rydberg atoms, α = 3 is fixed by the
dipole-dipole interaction. On the other hand, Rydberg atoms
trapped in optical tweezers enjoy a huge freedom in the geom-
etry in which they can be located, while the realization of traps
with the desired geometry in ion systems is more challenging.
The long-range nature of the hopping should be contrasted
with previous studies corresponding to nearest-neighbor hop-
ping in matter-wave systems [10]. The transport properties can
be controlled by tuning �, with distinctive features depending
on α.

The energy excitation is initialized in the source lead,
with a zero-energy state. Then it is transferred to the ring
by quenching the interaction with the rest of the system. In
the weak leads-ring tunneling regime, once the excitations are
transferred to the ring track, they propagate within the ring
with a fast time dynamics. The presence of localized detun-
ings causes a shift of the energy levels of the XY Hamiltonian
of the ring and, for specific values of �, a state resonant with
the source one can occur. Inspired by rf- and dc-SQUIDs, we
addressed the two cases of one and two detunings; in turn,

we considered two detunings with the same or with opposite
sign. The number of detunings, their sign, and their locations
strongly affect the nature of the transport. Indeed, as reported
in Appendix B, the shift of the ring energy levels strongly
depends on the features of the local detunings. Their number
and locations, together with the hopping range, can be tuned
to control the values of detuning for which the transport is
resonant. Far from resonance, the dynamics is not affected by
detuning configurations for α = 1, while it is for α = 3. In the
first case, long-range hopping processes are relevant, localized
detunings can be bypassed during the dynamics, and the sys-
tem does not show dependence on their location. In the second
case, nearest-neighbor hopping processes are still dominant
and the dynamics strongly depends on detuning values in
broad regions around resonances. The far-from-resonance dy-
namics depends on detuning configurations. The case α = 2
shows an intermediate behavior: while far from resonance
the dynamics does not depend on the detuning configura-
tions, close to resonance it is detuning dependent in a broad
region. Overall, resonant and nonresonant transport display
distinctive features. For resonant transport, the excitation can
be transferred from the source to drain, while the ring track
is moderately occupied. Far from resonance, the excitation
oscillates between source and drain, minimally populating
the ring on the the observed timescales. The nature of the
oscillation depends on the characteristics of the ring. Clearly,
the far-off-resonance dynamics is nearly independent of the
detuning (indicating that the detuned sites are bypassed by the
long-range hopping). By increasing α, we observe a nontrivial
effect of detunings, which is first localized around the resonant
transport and then extended to the nonresonant dynamics. In
Appendix D 3, we analyzed the effects of possible noise in the
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detunings for α = 3. A small noise does not affect the spectral
structure and is expected to not alter the general features of
the dynamics. In contrast, a noise comparable with � alters
the structure of the spectrum and may cause uncontrollability
of transport.

By studying the phase difference between upper and lower
arms of the ring, we can conclude that the detuning can affect
the phase of excitations (similarly to the effect of barriers
in matter-wave propagation). The corresponding phase dif-
ference is observed to oscillate, even for small population
oscillations. Phase difference and population oscillation fre-
quencies are related.

Besides its own interest, our work may constitute the start-
ing point to conceive devices of practical value employing
Rydberg atoms or trapped ions. The realization of quantum
analogues of classical circuits components, in the wake of
what has been proposed in Ref. [55], is a possible example
in this direction, with the difference that here, the spectral and
geometrical properties of the channel are used to control the
transport. Moreover, since localized detunings are experimen-
tally feasible and behave like potential barriers, these types of
systems can constitute a possible platform for the realization
of analogues of a SQUID, in which the flow occurs in terms of
excitations, rather than of matter. In addition, the control of the
excitation dynamics in spin models may turn out to be useful
for quantum batteries [56]; in particular, the possibility to tune
the hopping between two two-level systems, being source and
drain in this case, can be used to control charging and storing
processes [57]. Finally, we point out that our logic can be
feasibly extended to systems with different geometries, also
in the presence of noise.
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APPENDIX A: DISTANCE AND WEAK-COUPLING LIMIT

Here we provide a proper definition of the intraring and
ring-leads distances; then we specify what we mean for weak
ring-leads coupling. To define the distances, we first introduce
an appropriate labeling of the atoms in the ring: supposing to
work with an even number of sites in the ring, we label as Nr

the site closest to the source and Nr/2 the site closest to the
drain. We identify with ϕ j = 2π j/Nr the angle associated to
site j of the ring. Given this labeling, the source-ring distance
is

dS, j =
√

(dS,R + R)2 + R2 − 2(dS,R + R)R cos ϕ j, (A1a)

where R is the radius of the ring and dS,R is the distance
between the source and the site Nr . Analogously, the drain-

(a)

(b)

(c)

FIG. 5. Pictorial representation of distances in the system con-
sidered. (a) Intraring distance between two sites located at positions
i and j. (b) Source-ring distance. (c) Drain-ring distance.

ring distance is

dD, j =
√

(dD,R + R)2 + R2 − 2(dD,R + R)R cos(π − ϕ j ),

(A1b)

with dD,R the distance between the drain and the site Nr/2. In
both cases, j = 1, . . . , Nr . The intraring distance is

di, j = 2R sin

( |ϕi − ϕ j |
2

)
= 2R sin

(
π |i − j|

Nr

)
, (A1c)

where i, j = 1, . . . , Nr . Finally, the source-drain distance is
dS,D = dS,R + 2R + dD,R. A sketch of the distances is re-
ported in Fig. 5.

Given a proper definition of the intraring and leads-ring
distances, we introduce the intraring nearest-neighbor (nn)
hopping,

Jnn = g

dα
nn

with dnn = 2R sin

(
π

Nr

)
, (A2)

and the leads-ring nearest-neighbor hopping,

Knn = g

dα
S,R

= g

dα
D,R

, (A3)

where we are assuming dS,R = dD,R. In the main text, we
work in the weak leads-ring coupling limit Knn � Jnn, mean-
ing dα

S,R � dα
nn. Thus, if we consider Knn = Jnn/M, with M

an integer bigger than one, the distances will be related by
dS,R = M1/αdnn.

APPENDIX B: RING SPECTRAL ANALYSIS

In the weak-coupling regime, the ring and leads modes can
be treated separately; their relation is crucial to understand
the nature of the transport. The initial state of our protocol is a
zero-energy state, and thus the presence of zero-energy modes
in the ring is responsible for the population of the latter during
the dynamics. In the absence of zero-energy modes in the ring,
the latter will not be populated and the dynamics will result
in coherent oscillations between source and drain. In this
section, we will study the effect of localized detunings on the
spectrum of an XY model in a ring. We first use a perturbative
approach to study the effect of the detunings on the spectrum
of the nearest-neighbor model; it is instructive to understand
the possible presence of resonances between ring and drain.
Then, we numerically analyze the modification of the ring
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Hamiltonian spectrum due to the long-range hopping, paying
particular attention to the changes in terms of resonances with
zero-energy modes. We work in the one-excitation sector of
the Hamiltonian.

1. Nearest-neighbor XY energy shift due to detuning

Let us consider the generic Hamiltonian

Ĥ = Ĥ0 + λĤ′, (B1)

where Ĥ0 is the unperturbed Hamiltonian, while Ĥ′ is a
perturbation whose intensity λ is supposed to be small with
respect to the unperturbed eigenvalues. We consider a Hamil-
tonian that possesses at least a couple of degenerate states |E0

a 〉
and |E0

b 〉 such that

Ĥ0

∣∣E0
a,b

〉 = E (0)
∣∣E0

a,b

〉
(B2)

and work in the subspace spanned by these two states. Let us
introduce the matrix element

Wi j = 〈
E0

i

∣∣Ĥ′∣∣E0
j

〉
. (B3)

The first-order correction to the unperturbed eigenvalue is [19]

E (1)
± = 1

2 [Waa + Wbb ±
√

(Waa − Wbb)2 + 4|Wab|2],

E± = E (0) + λE (1)
± . (B4)

Now, we consider an XY model on a ring composed of Nr sites
perturbed by a localized detuning term,

Ĥ = J
Nr∑
j=1

(σ̂+
j σ̂−

j+1 + H. c.) + �

Nr∑
j=1

n̂ jδ j, j0 = Ĥ0 + �Ĥ′,

(B5)

where � is the perturbative parameter and we work in the
one-excitation sector. The unperturbed Hamiltonian can be
diagonalized by transforming the spins in fermions via a
Jordan-Wigner transformation [58,59],

ĉ j =
( ∏

�< j

σ̂ z
�

)
σ̂−

j , (B6)

such that the ĉ(†)
j operators obey the usual anticommutation

relations for fermions. The resulting unperturbed model is
a fermionic nondiagonal Hamiltonian. In the one-excitation
sector, the fermionic operators are rotated through the trans-
formation,

ĉ†
j = 1√

Nr

Nr∑
n=1

e2π i jn/Nr d̂†
n , (B7)

and the diagonal unperturbed Hamiltonian is obtained [59,60],

Ĥ0 =
Nr∑

n=1

E (0)
n d̂†

n d̂n, E (0)
n = 2J cos

(
2πn

Nr

)
. (B8)

Defining the momentum k = 2πn/Nr , we can observe that
the eigenvalues of the Hamiltonian are all doubly degenerate,
except for the ground state and the maximum excited state. We
can easily observe that the couples of degenerate eigenstates
are of the form |k〉 and |2π − k〉 (or, alternatively, |n〉 and
|Nr − n〉), which refers to states with momenta k and 2π − k;

thus we can restrict our analysis in the subspace spanned by
these two states. Here, the perturbation matrix element is

Wk,k′ = 〈k|n̂ j0 |k′〉 . (B9)

To perform the computation, it is convenient to transform the
number operator in terms of Jordan-Wigner fermions in the
momentum space. After that, the first matrix element to which
we are interested is

Wk,k = 1

Nr

Nr∑
m,m′=1

e−2π im j0/Nr e2π im′ j0/Nr 〈n|d̂†
md̂m′ |n〉

= 1

Nr

Nr∑
m,m′=1

e2π i(m′−m) j0/Nr δn,mδm′,n = 1

Nr

= W2π−k,2π−k . (B10)

At the same time, the off-diagonal term will be

Wk,2π−k = 1

Nr

Nr∑
m,m′=1

e2π i(m′−m) j0/Nr δn,mδm′,Nr−n

= e2ik j0

Nr
= W ∗

2π−k,k . (B11)

Given the perturbation matrix elements, we can compute the
first-order energy corrections using Eq. (B4),

E± = E (0) + �
2 ± 2

2Nr
. (B12)

Thus, one of the two degenerate states remains un-
changed and the other one is shifted by a factor 2�/Nr .
The nondegenerate eigenvalues EGS and Emax are shifted
by a common factor WkGS,kGS = 〈kGS|n̂ j0 |kGS〉 = Wkmax,kmax =
〈kmax|n̂ j0 |kmax〉 = �/Nr , where kGS and kmax are the momenta
associated, respectively, to the ground and the maximum en-
ergy state.

In the case of two detunings with the same sign, the pertur-
bation Hamiltonian is

Ĥ′ = n̂ jA + n̂ jB ; (B13)

the perturbation matrix elements are

Wk,k = 2

Nr
= W2π−k,2π−k, (B14a)

Wk,2π−k = 1

Nr
(e2ik jA + e2ik jB ) = W ∗

2π−k,k . (B14b)

Given the matrix elements, we can compute the energy cor-
rection for degenerate states via

(B4)E± = E (0) + �

Nr
{2 ±

√
2 + 2 cos[2k( jA − jB)]}. (B15)

If we set the barriers in opposite sides of the ring, i.e.,
jA = �Nr/4 and jB = �3Nr/4, in such a way that
| jA − jB| = Nr/2, we obtain a shift of a factor 0 or 4�/Nr for
each state. On the other hand, the ground and the maximum
energy states are both shifted by a factor 2�/Nr .

Finally, it is straightforward to observe that the first-order
correction to the energy states in the presence of two barriers
with opposite sign gives zero contribution at the first pertur-
bative order. To do that, it is sufficient to perform the same
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FIG. 6. Numerical results for the spectrum of the nearest-
neighbor XY model in the presence of localized barriers. Only
energies with energy near to zero are reported. The number of sites
is Nr = 14.

calculation done for two equal detunings with Ĥ′ = n̂ jA − n̂ jB .
If | jA − jB| = Nr/2, the first-order energy correction is zero
for each state of the spectrum.

Figure 6 reports the numerical results for the energy shifts
in the presence of localized detunings. Through the numerical
computation, we easily understand what happens beyond the
first perturbative order. In particular, for both single and dou-
ble equal detunings, the first-order shifts in � are corrected for
big values of the latter tending to flatten. The main difference
between the two cases is the slope of the shift at small values
of the detuning. The one of the single-barrier case is smaller
than the one of the double-barrier case. Thus, while in the
latter it is sufficient to permit to two levels to cross the zero-
energy mode, in the single-barrier case of the linear shift, it is
not sufficient. It is important to observe that we do not observe
resonances in our � range; it is possible that they are present
for bigger values of the detuning. However, in the case of
two opposite detunings, the reported degenerate states are not
shifted even for more than first-order contributions; then, we
do not expect resonances, and the dynamics is characterized
by coherent oscillations between source and drain.

2. Long-range XY energy shift due to detuning

For a nearest-neighbor XY model, the spectrum is sym-
metric with respect to the zero-energy states, meaning that
the energies are organized in pairs, ±En. We also showed
how from the energy shifts we expect that the resonances
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FIG. 7. Numerical results for the spectrum of the long-range XY model in the ring in the presence of localized detunings (2a). Only
close-to-zero energies are reported. The plot is organized in three panels: (a) Results in the presence of a single detuning, (b) results in the
presence of two equal detunings, and (c) results in the presence of two opposite detunings. For each panel, we show results for α = 1, 2, 3, 5.
The number of sites is Nr = 14.
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are symmetric for � → −�. However, the dynamics reported
in the main text shows that for long-range hopping, this is
not true. The ring population does not follow a symmetric
behavior with respect to � = 0. Therefore, a detailed analysis
of the energy shift in the spectrum is important to understand
the asymmetry in the dynamics. The model with which we
work here is (2a).

Figure 7 reports the energy spectrum in all three paradig-
matic detuning configurations considered so far. Before
analyzing the effect of the detuning, it is necessary to pay
attention to the role of the inverse hopping range α for � = 0.
We can immediately observe that for each value of α, the
degeneracies persist; on the other hand, a substantial shift of
the levels is observed. Passing from α = 5 to α = 1, the levels
lose their symmetry with respect to E = 0 and tend to crush to
a negative-energy value. This means that the first E > 0 and
the first E < 0 states no longer possess symmetric energy with
respect to zero. When the detuning is switched on, the energy
levels are shifted and cross the zero-energy mode.

To be more quantitative, let us first consider the case of the
single barrier reported in Fig. 7(a). Here, the levels that cause
resonances are the orange and red. Increasing the hopping
range, the red and the orange levels are shifted downwards;
during the shift, one of the two levels crosses the zero-energy
mode, giving rise to one resonance at negative �. The purple
level in the nearest-neighbor limit is not sufficiently shifted
to give rise to a positive resonance at positive � in the inter-
val considered so far. Then, for one detuning, we have only
one value or narrow range of � for which the ring becomes
populated during the dynamics.

Figure 7(b) reports the results for two equal detunings: for
each value of α, there are at least two values of � for which the
zero-energy mode is crossed, as in the nearest-neighbor case.
In the presence of two opposite detunings [Fig. 7(c)], the long-
range hopping is responsible for a shift of the energy levels
that is quadratic in the detuning �. As in the nearest-neighbor
limit, also in the presence of long-range hopping, the first-
order correction is zero, and thus the shift scales as �2 with a
coefficient that increases as α decreases. For this reason, it is
possible to have symmetric resonances with respect to � = 0.
In particular, in the reported plots, resonances appear at α = 2.

It is safe to assume that the presence of the resonances
also strongly depends on the number of atoms in the ring.
The presence of size-dependent resonance location can be
immediately deduced from the perturbative results obtained
in the previous section. Indeed, the unperturbed energy is
E (0)

k = 2J cos k, where k ∼ 1/Nr and the first-order shifts are
directly proportional to �/Nr . In the presence of long-range
hoppings, we do not have access to the exact spectrum of
the Hamiltonian; however, at least for a finite value of Nr ,
we can analyze how the resonance position moves, increasing
the size. To be more precise, we consider the case of a single
barrier and plot the crossing states as a function of �. Here, for
crossing states, we mean the states that cross the zero-energy
level in the interval � ∈ [−10, 0].

Figure 8 reports them and the first-order linear correc-
tions E (0) + 2�/Nr , where we extracted E (0) from numerical
data and assumed that the first-order perturbative shift is
unchanged with respect to the nearest-neighbor case. We im-
mediately observe that for small values of �, the linear shift

FIG. 8. Crossing energy states in the presence of a single barrier
located at j0 = �Nr/4 for three different values of the number of
atoms in the ring, Nr . The solid lines refer to numerical values
of the energy for Nr = 10 (dark red), Nr = 14 (dark green), and
Nr = 18 (dark blue); the thickness of the curves is in descending
order in the size N . The dashed red, green, and blue lines refer to first
perturbative order corrections E (0)/Jnn + 2�/JnnNr for, respectively,
Nr = 10, 14, 18. In all three cases, α = 3.

keeps working well; indeed, increasing the size of the system,
the slope of the shift is smaller. Moreover, the energy E (0)

is smaller, increasing the size, and this makes the resonance
position located at smaller values of |�| for bigger values
of the size. Finally, we observe that already for Nr = 18, the
position of the resonance can be qualitatively estimated from
the linear shift as �res ≈ −E (0)Nr/2 since it is located at a
relatively small value of the detuning.

APPENDIX C: DYNAMICS IN ABSENCE OF DETUNINGS

Here we analyze the dynamics of the system in the absence
of any type of detuning. We expect to find a nontrivial dynam-
ics also in the absence of it; due to the geometry of the system,
the excitation that travels along the system is subject to many
scattering and splitting events. To have an idea of the complex-
ity of the dynamics, let us consider an excitation subject only
to nearest-neighbor hopping that travels in the system starting
from the source. The excitation moves from the source to the
nearest site on the ring. The coupling between source and ring
is smaller compared to the intraring one; thus, once a small
excitation fraction reaches the ring, it is quickly split in the
two arms of the ring. The split excitation fractions travel in
the two arms of the ring and meet at the end of them, before
the drain. Here, they scatter, a part of the excitation hops to the
drain, and the rest continue their dynamics in the arms of the
ring. During a long time evolution, a lot of scattering events
occur and the dynamics will be complex and not intuitively
easy to describe.

Figure 9 reports the population dynamics of the drain for
different values of the inverse hopping range α. We consider
α = 1, α = 3, nearest-neighbor limit, and the particular value
of α for which, in the absence of detuning, the ring presents
zero-energy levels resonant with the initial state. For instance,
from Fig. 7 we can observe that for N = 16, the particular
αres value is close to 2. Indeed, we find αres = 2.168; the other
αres values are reported in the Fig. 9 caption. We observe how
the drain population oscillates quite regularly except in the
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FIG. 9. Dynamics of the drain population in the absence of de-
tunings in the ring. Results are reported for three different values of
the size of the system: N = 12 (orange), N = 16 (green), and N = 20
(black); the thickness of the curves is in ascending order in the size
N . The four panels refer to different values of the inverse hopping
range: (a) α = 1, (c) α = 3, and (d) nearest neighbor. (b) The dy-
namics for the values of the inverse hopping range for which the ring
presents zero-energy levels in the absence of detunings. These val-
ues are αres = 1.731 (N = 12), αres = 2.168 (N = 16), αres = 2.508
(N = 20). Leads and ring are weakly coupled, Knn/Jnn = 0.1.

αres case; the ring is well populated and the oscillations are
extremely irregular. For the other cases, the ring is weakly
populated (see Figs. 2–4), and thus it is important to follow
the behavior of the drain density.

The latter is characterized by small frequency oscillations
with big amplitude modulated by fast oscillations with small
amplitude. In the nearest-neighbor limit, the two frequencies
can be evaluated analytically [10],

ω±
Jnn

= ±Nr

δ

8 + K̃2
nnNr − 2K̃2

nnδ

4K̃2
nnδ

2 − Nr
(
8 + K̃2

nnNr
)

+
{(

Nr

δ

8 + K̃2
nnNr − 2K̃2

nnδ

4K̃2
nnδ

2 − Nr
(
8 + K̃2

nnNr
))2

+ Nr

δ

8K̃2
nn

8Nr + K̃2
nn

(
N2

r − 4δ2
)
}1/2

, (C1)

where K̃nn = Knn/Jnn and δ = csc(π/Nr ). From the numerical
computation, we can observe that the frequencies are weakly
dependent on the size of the system. The nontrivial form of
the frequencies confirms how the dynamics is complex.

Surprisingly, for α = 3, the dynamics changes a lot with
respect to the nearest-neighbor limit. One of the crucial differ-
ences is that here the leads are strongly connected to a plethora
of sites near to the Nr and Nr/2, not just with one site. The
first counterintuitive result is the slow down of the dynamics
with respect to the nearest-neighbor case. The presence of
hoppings does not cause a faster transport of the excitation
from one site to the other. Second, the transport is slower for

N = 12, while N = 16 is the faster case. Thus, a smaller size
does not correspond to faster dynamics. Last, the case α = 1 is
the most intuitive one. The hopping range is sufficiently large
to avoid complex internal effects in the ring. The oscillations
are faster with respect to all the other cases considered with a
smaller hopping range; moreover, increasing the system size,
it becomes slower.

APPENDIX D: INFORMATION ON THE DYNAMICS FROM
THE COMPLETE SPECTRUM

In Appendix B, we showed that important information on
the dynamics can be extracted from the bare ring Hamiltonian,
assuming that the ring and the leads are weakly coupled.
Here, we focus our attention on the complete Hamiltonian,
describing how the resonances manifest themselves on the
state population and how the transport nature is modified and
damaged from strong coupling and disorder.

1. Full Hamiltonian eigenstate nature

In the one-excitation sector, a generic eigenstate of the
Hamiltonian can be written in the computational basis as

|En〉 = c(n)
S |S〉 + |R〉 + c(n)

D |D〉 , (D1)

where |S〉 = |↑〉S ⊗ |↓, ...,↓〉R ⊗ |↓〉D,
|R〉 = ∑

j∈R c(n)
j |↓〉S ⊗ |↓, ...,↑ j, ...,↓〉R ⊗ |↓〉D, and

|D〉 = |↓〉S ⊗ |↓, ...,↓〉R ⊗ |↑〉D are, respectively, the
source, ring, and drain states. In the absence of resonances, it
is safe to assume that the leads and the ring degrees of freedom
are separated. Thus, we group the states of the Hamiltonian
in three classes: {|Enl 〉 , |Enr 〉 , |Enlr 〉}, where |Enl 〉 are states
in which all the excitations are in the leads, |Enr 〉 = |R〉 are
states in which only the ring is populated, and |Enlr 〉 are states
in which the population is distributed between ring and leads.
The labels satisfy the relation nl + nr + nlr = N . Since the
initial state of our protocol is |ψ (0)〉 = |S〉 and 〈R|S〉 = 0,
the states |Enr 〉 will not contribute to the dynamics; thus, the
generic time-evolved state can be written as

|ψ (t )〉 =
∑

nl

e−iEnl t 〈Enl |S〉 |Enl 〉

+
∑
nlr

e−iEnlr t 〈Enlr |S〉 |Enlr 〉 . (D2)

Moreover, if the Hamiltonian spectrum does not contain uni-
form states |Enlr 〉, the dynamics is dominated by the leads
states |Enl 〉 = c(nl )

S |S〉 + c(nl )
D |D〉 and will result in oscilla-

tions between source and drain of the form

|ψ (t )〉 =
∑

nl

e−iEnl t
(
c(nl )
S

)∗[
c(nl )
S |S〉 + c(nl )

D |D〉]. (D3)

The value of the lead state energies and their coefficients
is fundamental to have information on the source-drain os-
cillation frequency and amplitude. On the other hand, the
ring becomes populated only when the Hamiltonian has |Enlr 〉
states. Thus, we expect to observe states |Enlr 〉 in the spectrum
in correspondence to the resonances.

Here we focus our attention on the eigenstate population
P(n)

j = 〈En|n̂ j |En〉; we compute it for the source, ring, and
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FIG. 10. Source, ring, and drain population, from left to right, in the spectrum for three different values of the size N = Nr + 2: (a) N = 12,
(b) N = 16, and (c) N = 20. Most of the states are approximately ring states, meaning that their P(n)

R ≈ 1. For each N , only three states are not
ring states: for N = 12, the fifth, sixth, and seventh excited states; for N = 16, the seventh, eighth, and ninth excited states; for N = 20, the
ninth, tenth, and 11th excited states. In all three plots, the parameters are set in such a way that Knn/Jnn = 0.1, and α = 3. Only one barrier is
taken into account.

drain in the whole spectrum. Figure 10 reports the behavior
of the eigenstate populations in the leads and ring for three
different values of the size of the system; the inverse hopping
range is α = 3 and only one localized barrier at j0 = �Nr/4 is
taken into account. We immediately observe that the majority
of the states of the system are ring states for which P(n)

R ≈ 1
and P(n)

S,D ≈ 0; they do not contribute to the dynamics if the
system is initialized in |S〉. Comparing between Figs. 8 and
10, we observe that in correspondence with the resonance,
the ring population is 1/2 for two states of the spectrum,
and the excitation is equally distributed between the ring
and leads; this will result in a filling of the ring during the
dynamics. Far from resonance, the Hamiltonian states are
approximately ring or leads states with P(n)

R ≈ 0, 1; thus, the
dynamics will result in coherent oscillations between source
and drain.

Let us observe that leads states possess P(n)
L =P(n)

S +P(n)
D =1,

and, therefore, the nature of the dynamics strongly depends
on the source and drain population of the states. In particu-
lar, for � < �res, there are source localized states, meaning
states in which the source population is dominant above all
the others. In the absence of uniform states, the dynamics
follows Eq. (D3), which results in |ψ (t )〉 ≈ eiφ |S〉 if there
is a dominant localized source state. Thus, for � < �res,
the excitation remains localized in the source or, at most, a

small fraction of it moves to the drain. The value of the popu-
lation shows an irregular dependence on the size; the position
of the resonance is size dependent and various finite-size
effects comes into play. Far from resonance, the size depen-
dence is not regular, and the source and drain populations
follow different behaviors without a well-defined dependence
on the size. Thus, for each value of the size, there is a res-
onance, but the dynamics far from the resonance strongly
depends on N .

2. Eigenstate leads population for different leads-ring coupling

In the previous section, we analyzed the full spectrum
populations in the weak-coupling regime. Here, we go beyond
it and study the system in terms of leads population. In partic-
ular, we analyze the leads magnetization that is directly related
to leads and ring populations,

σ̂ z
L = σ̂ z

S + σ̂ z
D = 2(n̂L − 1̂) = −2n̂R. (D4)

This means that the leads and the ring states, respectively, have
〈σ̂ z

L〉 = 0 and −2.
We focus on the Rydberg case α = 3. Figure 11 reports the

leads magnetization for three different values of the leads-ring
coupling. Increasing the coupling, the population of the eigen-
states changes drastically. For small coupling, three states are
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FIG. 11. Leads magnetization in the spectrum as a function of the barrier height � for different leads-ring couplings Knn/Jnn. Nr = 14 and
α = 3 are considered. The ring contains a single barrier localized in �Nr/4.

|Enrl 〉 states around the resonance point, they are the seventh,
eighth, and ninth excited states. The others are approxima-
tively ring or leads states. Increasing Knn/Jnn, both |Enr 〉 and
|Enl 〉 states become |Enrl 〉 states. The spectrum is no longer
separated in well-defined classes; this will result in a dynamics
that is not characterized by coherent source-drain oscillation,
but the ring will be populated not only for specific � values.
Thus, the transport will no longer be controllable by tuning �.

3. Robustness against noise

Here we study the robustness of the results under the
presence of disorder. In particular, we work with the impurity
Hamiltonian

Ĥimp =
∑
j∈R

� j n̂ j, (D5)

where � j is randomly extracted in the interval [−ε,+ε]
for each j except for j0 = �Nr/4, in which � j belongs to
the interval [� − ε,� + ε]. Therefore, it corresponds to the
case of the single localized barrier in the presence of noise.
We study the effect of disorder on the leads population for
Nrea = 100 disorder realizations in the single-barrier case for
N = 12 and α = 3. We report the behavior of the expectation
value,

〈En|σ̂ z
L|En〉 = 1

Nrea

Nrea∑
β=1

〈
E (β )

n

∣∣σ̂ z
L
∣∣E (β )

n

〉
, (D6)

which is the leads magnetization expectation value in the
Hamiltonian spectrum averaged over many disorder realiza-
tions. |E (β )

n 〉 is the nth eigenstate of the Hamiltonian for the

β-th disorder realization. Figure 12 reports the behavior of the
leads magnetization for different values of the disorder. We
can observe how the presence of disorder can be dangerous
for the population; indeed, for strong disorder (ε = 1), the
ring and leads states can become |Enlr 〉 states. However, a
little amount of disorder (ε = 0.1) does not modify the struc-
ture of the populations. In the intermediate case ε = 0.5, the
population behavior is slightly modified but keeps well the
zero disorder structure with a resonance and a well-defined
separation between leads and ring states far from it.

APPENDIX E: PHASE DIFFERENCE DYNAMICS

Here we provide more details on the phase effects that the
presence of localized detunings generate. In the first part, we
show how the presence of a single localized detuning in the
center of the chain of three atoms has significant effects on the
phase associated to each site. For this reason, we suspect that
a phase difference between two different paths with detuning
located in different positions arises. In the second part of this
Appendix and in the main text, we report the phase difference
between two sites in the two arms in different conditions. We
show that its dynamics is related to the population one.

1. Detuning-dependent phase difference in the three-sites system

The presence of a localized detuning introduces a time-
dependent phase between different sites of the system. To
see this, let us consider the simple three-sites problem. We
suppose to consider only nearest-neighbor hopping and put
a localized detuning in the middle of the chain. As a first

−2

−1.5

−1

−0.5

0

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

−10 −5 0 5 10
−2

−1.5

−1

−0.5

0

−10 −5 0 5 10

σ
z L

Δ

= 0.1

σ
z L

Δ

= 0.5

σ
z L

Δ

= 1

Δ/Jnn Δ/Jnn Δ/Jnn

JnnJnn Jnn

FIG. 12. Leads magnetization in the spectrum as a function of the barrier height � for different values of the disorder ε. We consider
Knn/Jnn = 0.1 (weak coupling). Nr = 10 and α = 3 are considered. The impurity Hamiltonian is in Eq. (D5). The y axis reports the expectation
value of σ̂ z

L for each n [see Eq. (D6)]. We average over Nrea = 100 disorder realizations.
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stage, we fix the detuning � = 0 and consider the three-site
Hamiltonian

Ĥhop = J (σ̂+
1 σ̂−

2 + σ̂+
2 σ̂−

3 + H.c.). (E1)

By considering the initial state |ψ (0)〉 = |↑1,↓2,↓3〉 and
evolve it through the Schrödinger equation, the resulting time-
evolved state is

|ψ (t )〉 = 1

2
[cos(

√
2Jt ) + 1] |↑1,↓2,↓3〉 + i√

2
sin(

√
2Jt ) |↓1,↑2,↓3〉 + 1

2
[cos(

√
2Jt ) − 1] |↓1,↓2,↑3〉 ; (E2)

in the absence of detuning, there is not a relative phase between the sites 1 and 3. In the presence of a localized detuning, the
Hamiltonian considered is Ĥ = Ĥhop + �n̂2, and the resulting time-evolved state is

|ψ (t )〉 =
(

e−i[�− f (�,J )]t/2

N 2
1

+ e−i[�+ f (�,J )]t/2

N 2
2

+ 1

2

)
|↑1,↓2,↓3〉

+
(

[� − f (�, J )]e−i[�− f (�,J )]t/2

2JN 2
1

+ [� + f (�, J )]e−i[�+ f (�,J )]t/2

2JN 2
2

)
|↓1,↑2,↓3〉

+
(

e−i[�− f (�,J )]t/2

N 2
1

+ e−i[�+ f (�,J )]t/2

N 2
2

− 1

2

)
|↓1,↓2,↑3〉 , (E3)

where N 2
1 = 2 + [� − f (�, J )]2/4J2,

N 2
2 = 2 + [� + f (�, J )]2/4J2, and f (�, J ) = √

�2 + 8J2.
In this way, the real and imaginary parts of the |↑1,↓2,↓3〉
state are

Re[c↑↓↓(t )] = cos [(� − f )t/2]

N 2
1

+ cos [(� + f )t/2]

N 2
2

+ 1

2
,

(E4a)

Im[c↑↓↓(t )] = − sin [(� − f )t/2]

N 2
1

− sin [(� + f )t/2]

N 2
2

.

(E4b)

The phase associated to the state is

φ↑↓↓(t ) = tan−1

[
Im[c↑↓↓(t )]

Re[c↑↓↓(t )]

]
, (E5)

while the phase associated to the state |↓1,↓2,↑3〉 is

φ↓↓↑(t ) = tan−1

[
Im[c↑↓↓(t )]

Re[c↑↓↓(t )] − 1

]
, (E6)

and, therefore, the two phases are different. In the presence
of detuning, a nonzero relative phase between the first and
the last sites of the chain is present. The difference with the
zero-detuning case is clear: the states |↑,↓,↓〉 and |↓,↓,↑〉
acquire a �-dependent phase; also, the state |↓,↑,↓〉 has a
�-dependent phase, differently from the zero-detuning case
in which it is fixed to ±π .

2. Phase difference for different locations of detunings

If we consider two arms that differ from the detuning
value, we expect to see a nontrivial phase difference between
their sites. To formally evaluate the phase shift in the setup
considered in the main text, we write the generic time-evolved
states of the system in the position basis,

|ψ (t )〉 = cS (t ) |S〉
+

∑
j∈R

c j (t ) |↓〉S ⊗ |↓, ...,↑ j, ...,↓〉R ⊗ |↓〉D

+ cD(t ) |D〉 , (E7)

and we observe that the two-body correlator

〈σ̂+
i σ̂−

j 〉 = c∗
i (t )c j (t ) = |ci(t )||c j (t )|ei[φ j (t )−φi (t )] (E8)

is directly related to the phase shift. Thus, the phase
difference between the two sites i and j is accessible through
δφ(t ) = φ j (t ) − φi(t ) = arg [ 〈σ̂+

i σ̂−
j 〉 ]. We can fix

i = Nr/2 − 1 and j = Nr/2 + 1 in order to have information
on the difference between the phases accumulated by
excitation fractions crossing the two arms of the ring.
Figures 2–4 report the phase difference dynamics and
detuning dependence for the configurations in Fig. 1,
displaying its relation with the population dynamics. Here,
we show the phase difference for alternative choices of the
detunings location in the Rydberg case α = 3.

We immediately observe that when the two detunings have
the same sign and their locations are symmetric with respect to
the leads [Fig. 13(a)], the phase difference is zero everywhere.
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FIG. 13. Phase difference δφ as a function of detuning and time.
(a),(c) Phase difference for two (a) equal and (c) opposite detun-
ings located at jA = �Nr/4 and jB = �3Nr/4 − 1 as in the top-left
sketch. (b),(d) Phase difference for two (b) equal and (d) opposite
detunings located at jA = 1 and jB = Nr/2 + 1 as in the top-right
sketch. The hopping range is fixed to α = 3, Knn/Jnn = 0.1
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FIG. 14. Left panels: Excitation populations in the source PS , in the ring PR, and in the drain PD for three different values of the leads-ring
coupling Knn/Jnn = 0.2, 0.5, 1, from top to bottom. Far-right panels: Ring phase difference δφ between two opposite sites located in the two
arms of the ring for the three values of Knn/Jnn considered. Excitation populations and phase difference are plotted as a function of time (x axis)
and detuning (y axis). Two equal detunings such that �A = �B = � located at jA = �Nr/4 and jB = �3Nr/4 are considered. The population
values are indicated by the color bar that goes from 0 to 1, and the phase difference by the one that goes from −π to π . The number of sites in
the ring is Nr = 14. The inverse hopping range is α = 3.

Indeed, due to the symmetry of the system, the excitation
acquires the same phase in the two arms. Differently, if the
detunings are opposite, strong phase difference oscillations
appear in such a way that they are never zero, except in
� = 0 [Fig. 13(c)]. Figures 13(b) and 13(d) show the phase
difference in a situation in which the distance between the
detunings is the same as the one considered in the main text,
meaning jB − jA = Nr/2, but they are located in different po-
sitions. As in the main text case, the equal barrier case presents
two resonances for �res analogous to those considered in the
main text configuration; they are easily recognizable by fast
phase difference oscillations. However, far from resonance,
the dynamics is different and strongly depends on the barrier
location. The same applies to the opposite barrier case; there
is no resonance, but the nature of the oscillation is different.

APPENDIX F: STRONG-COUPLING DYNAMICS

In the main text, we studied the dynamics in the
weak leads-ring coupling regime (in particular, we fixed
Knn/Jnn = 0.1). Thanks to this assumption, some important
features of the dynamics could be understood through the
study of the isolated ring spectrum. If we increase the cou-
pling, the ring and leads modes are no longer separated, the
internal dynamics in the ring becomes comparable with those
of the leads, and its population becomes significantly nonzero
(see Appendix D 2).

Figure 14 reports the population and phase difference
behavior for α = 3, in the presence of equal detunings for
different values of the leads-ring coupling. Comparing these
results with those in Fig. 3 obtained for Knn/Jnn = 0.1, we can
recognize clear differences with respect to the weak-coupling
case reported in the main text. First, the ring presents a non-
negligible population also for values that do not correspond
to resonance between ring eigenstates and the source initial
state. As regards the source-drain transport, its velocity is
increased far from resonance; between the two resonances,
the oscillations lose regularity due to the presence of ring
modes that enter the dynamics. Increasing the coupling, the
ring becomes more and more populated and the source-drain
oscillations are less evident. For Knn/Jnn = 0.5, independently
of the detuning, the spectrum is no longer separated in leads
and ring states, and thus the resonance plays a marginal role.
The dynamics is characterized by weak source-drain oscilla-
tions with a pattern that is almost symmetric for � → −�

and independent on �res. Finally, for Knn/Jnn = 1, the ring
and leads dynamics are exactly comparable; the ring is almost
fully populated and the leads are characterized by weak oscil-
lations.

The rightmost panels of Fig. 14 show the phase difference
δφ between the sites located on the two arms of the ring. As in
the weak-coupling case, δφ follows the population oscillations
for different values of Knn/Jnn. When Knn/Jnn = 1, the ring is
strongly populated. Although the population in the leads is
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FIG. 15. (a) Uncoupled spectrum close to zero energy, from left to right: α = 3, α = 5, α → ∞ which is the nearest-neighbor limit;
Knn/Jnn = 0.1 and Nc = 14. (b) Chain populations PC in the complete spectrum for different values of the ring-leads coupling Knn/Jnn; α = 3
and Nc = 14. (c) Dynamics of the source, chain, and drain populations (from left to right) for different values of the detuning; the leads-chain
coupling is weak Knn/Jnn = 0.05, the inverse hopping range and the number of atoms are α = 3 and Nc = 14. In all three panels, a single
detuning located at j0 = �Nc/4 is considered.

small, the phase oscillations seem to be characterized by the
frequency of the source-drain population’s oscillations.

Both for the population and the phase difference dynamics,
the weak-coupling regime turns out to be the most interesting
one in terms of controllability of the source-drain excitation
transport through the localized detunings placed in the ring.

APPENDIX G: LINEAR-CHAIN NETWORK

Here we consider an alternative arrangement of the atoms,
with respect to that considered in the main text, in which
the channel is made of a linear chain of Nc = N − 2 atoms.
Distances are defined as follows:

di, j = a|i − j|, dS,D = dS,C + (Nc − 1)a + dD,C,

dS, j = dS,C + a( j − 1), dD, j = dD,C + a(Nc − j), (G1)

where a is the lattice spacing in the chain, while dS,C and
dD,C are the distances between leads and chain. The sites are
labeled in such a way that j = 1 is the site connected to the
source and j = Nc is the site connected to the drain.

In the nearest-neighbor coupling limit, the channel Hamil-
tonian can be diagonalized passing first through a Jordan-
Wigner transformation and then appropriately rotating the
creation and destruction operators. The unperturbed Hamil-

tonian turns out to be [60,61]

Ĥ0 =
Nc∑

n=1

E (0)
n d̂†

n d̂n, E (0)
n = 2J cos

(
πn

Nc + 1

)
, (G2)

where the d (†)
n fermions are superpositions of the c(†)

n fermions
(B6),

ĉ j =
√

2

Nc + 1

Nc∑
n=1

sin

(
π jn

Nc + 1

)
d̂n. (G3)

In this case, the spectrum is not degenerate, and thus the
barrier will simply shift the energy levels without splitting
any degeneracy. In the case of a nondegenerate spectrum,
the first-order correction in the presence of a single detuning
located at the position j0 can be straightforwardly calculated,

�E (1)
n = � 〈n|n̂ j0 |n〉 = 2�

Nc + 1
sin2

(
πn j0

Nc + 1

)
. (G4)

We are interested in the role of the long-range hopping. Fig-
ure 15(a) reports the energy spectrum of the uncoupled chain
Hamiltonian near the zero-energy value for different values of
α. For � = 0 and in the nearest-neighbor case, the spectrum
is symmetric with respect to E = 0; then a linear shift of
the levels is caused by �. As in the ring case, with a single
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detuning, the shift is not sufficient to have a resonance at
zero energy in the detuning interval considered. Increasing the
hopping range and so decreasing α, the levels are basically
shifted downwards in terms of energy. For this reason, for
finite α, it is possible that resonances appear. For α = 3, we
observe a resonance with the zero-energy state at � around
zero. The presence of a resonance will allow us to state that
the ring will be populated during the dynamics.

However, as previously observed, the presence of reso-
nances is not sufficient to obtain complete information on the
dynamics. It is also important to understand how the complete
spectrum of leads and chain behaves in �. In Fig. 15(b), we
show the chain population for three different values of the
leads-chain coupling Knn/Jnn. We can immediately observe
that in this case also, for Knn/Jnn = 0.1, the chain and leads

states are not well separated. In particular, far from resonance,
many eigenstates are of the form |Enl〉 and so the dynamics
will not result in coherent oscillations between the source
and drain. For Knn/Jnn = 0.05, the separation is better defined
for big values of �, while around the resonance, the chain
population is 1/2. Thus, we can conclude that to decouple the
leads and chain, we need bigger distances between them with
respect to the ring case.

Finally, Fig. 15(c) reports the dynamics of the source,
chain, and drain population for Knn/Jnn = 0.05. In proximity
of the resonance, the chain is heavily populated, to the dis-
advantage of the source. Increasing the value of the detuning
and going far from resonance, the transport through the chain
is reduced; however, the � window in which the chain is
populated is not simply a narrow region as in the ring case.
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