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The monochromatic driving of a quantum system is a successful technique in quantum simulations, well
captured by an effective Hamiltonian approach, and with applications in artificial gauge fields and topological
engineering. Here, we investigate multichromatic Floquet driving for quantum simulation. Within a well-defined
range of parameters, we show that the time coarse-grained dynamics of such a driven closed quantum system is
encapsulated in an effective master equation for the time-averaged density matrix, that evolves under the action
of an effective Hamiltonian and tunable Lindblad-type dissipation or quantum gain terms. As an application,
we emulate the dissipation induced by phase noise and incoherent emission or absorption processes in the
bichromatic driving of a two-level system, and reproduce the phase decoherence in a harmonic oscillator model.
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I. INTRODUCTION

There is currently an intense research effort devoted to the
realization of quantum simulators able to reproduce complex
quantum dynamics in simpler and controllable setups [1]. In
many cases, the quantum systems to be emulated are coupled
to an environment, and thus behave as open quantum sys-
tems. Such an interaction is usually considered as detrimental.
However, a controlled dissipation can be a unique asset for
quantum state targeting [2] such as ground states [3], pointer
states [4,5], or even excited states [6], for the engineering of
correlations [7], and opens many perspectives for many-body
quantum simulation [8].

The emulation of quantum dissipation is therefore an im-
portant step in the roadmap to accurate quantum simulators
[21]. Several mechanisms have been used to produce dis-
sipation in a quantum setup. It includes the driving of two
interacting quantum subsystems—one of them acting as a
bath on the other [9,10], the use of atom losses [11,12], the
Zeno effect [13–17], the bistability of atom transport [18],
and time periodic driving [19] to name a few. In this paper,
we detail an alternative strategy relying on multichromatic
Floquet driving to emulate quantum dissipation while keeping
the system conservative.

Periodic Floquet-driven quantum systems have become
instrumental to emulate novel interactions, quantum states
of matter, or artificial gauge fields [20–32]. Multichromatic
Floquet driving has also been applied recently to manipu-
late topological quantum states [33,34]. In the following, we
discuss how an effective quantum dissipation can emerge in
a time coarse-grained (TCG) dynamics. In contrast to other
studies using a combination of a classical noise with a uni-
tary evolution [35–37] as well as a stochastic averaging, our
approach relies exclusively on the unitary quantum dynamics
of a Floquet-driven system with no need of extra artificial
noise. The emergence of effective Hamiltonians and quantum
dissipation in the TCG dynamics was initially discussed in

Refs. [38,39]. Nevertheless, the considered approach based on
a Dyson series had several flaws and ill-defined approxima-
tions which limit its practical applicability. First, it produces
an effective equation whose validity is in principle limited
to a very short time interval (typically less than a Rabi os-
cillation for a two-level system) and to moderate dissipation
strengths. These assumptions are overly restrictive, as a long
time is needed for moderate dissipation to accumulate and
alter significantly the dynamics of a given quantum system.
Most importantly, in the presence of noncommuting constant
and driving Hamiltonians, this previous approach overlooked
leading-order nonunitary terms which can significantly in-
fluence the effective dissipative dynamics. To address these
issues, we exploit a timescale separation formalism [20,22]
for multichromatic driving, and derive an effective master
equation for the TCG density matrix with well-controlled
approximations, and valid over a long time interval. Our
treatment provides a robust theoretical framework to tailor
effective quantum dissipation in Floquet systems.

This paper is organized as follows. In Sec. II, we first
consider a classical harmonic oscillator subject to a bichro-
matic modulation of the pulsation. This simple example gives
physical insights on the emergence of an effective dissipation
in the TCG dynamics of a driven system. In Sec. III, we apply
the Floquet formalism in order to obtain an effective master
equation for the TCG dynamics of a quantum system in the
presence of a multichromatic driving. In Sec. IV, we provide
examples of emulation of quantum dissipation in the TCG
dynamics of simple quantum systems.

II. BICHROMATIC DRIVE
OF A CLASSICAL OSCILLATOR

Here, we first take the simple example of a classical oscil-
lator subject to a dual-tone high-frequency drive. A separate
treatment of the slow or fast timescales reveals that an ef-
fective time-dependent pulsation arises in the low-frequency
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dynamics. This time dependence corresponds to alternate
phases of loss and gain associated respectively to a decrease
or increase of the effective pulsation.

Let us first consider the monochromatic drive of a one-
dimensional classical harmonic oscillator with a fast and
periodic modulation [22], and recall briefly the main results.
This system is described by the classical Hamiltonian H (t ) =
p2

x/(2m) + mω2
0 (cos ωt ) x2/2, and the modulation frequency

is assumed much larger than the harmonic trap frequency
ω � ω0. One thus has a clear timescale separation, and we
define a time averaging such that cos ωt = 0 and cos ω0t =
cos ω0t . Precisely, we take for the time averaging f (t ) a low-
pass filter that preserves only the Fourier components f̃ (ω′)
of frequency lower than a cutoff frequency ωc, chosen as
ω0 < ωc < ω. The dynamical equation mẍ = −mω2

0(cos ωt )x
can then be rewritten by decomposing the global motion
x(t ) = x(t ) + ξ (t ) as the sum of a slow motion, x(t ), and a
fast micromotion, ξ (t ):

ẍ = −ω2
0cos(ωt )ξ,

ξ̈ = −ω2
0 cos(ωt )x − ω2

0[cos(ωt )ξ − cos(ωt )ξ ]. (1)

We have used that cos(ωt )x = cos(ωt )x = 0. By a pertur-
bative treatment of the fast micromotion, one obtains to the
leading order ξ̈ = −ω2

0 cos(ωt )x + O(ω2ε). We now use that
the time dependence of x is very slow, so that x can be treated
as a constant in the integration with a good approximation.

The fast motion can then be integrated as ξ (t ) � ω2
0

ω2 cos(ωt )x.
One verifies a posteriori that the fast motion ξ (t ) is of small
amplitude as ω0 � ω. Inserting this expression of ξ (t ) in
Eq. (1), one obtains a closed equation for the slow motion:

ẍ = −ω4
0

ω2
cos2 ωt x.

As cos2 ωt = 1/2, this corresponds to a constant effective pul-
sation �eff = ω2

0/(
√

2ω). Furthermore, the effective potential
energy of the slow motion is stored in the kinetic energy of the
micromotion 1

2 m�2
eff x

2 = 1
2 mξ̇ 2.

We now generalize this approach to the bichromatic
case, with a quadratic potential VF (t ) = 1

2 mω2
0 (cos(ω1t ) +

cos(ω2t )) x2 with fast frequencies ω1, ω2 close enough so that
|ω2 − ω1| � ω1,2 and cos(ω2 − ω1)t = cos(ω2 − ω1)t . The
equations of motion for the slow motion take the form

ẍ = −ω2
0[cos(ω1t ) + cos(ω2t )]ξ,

ξ̈ � −ω2
0[cos(ω1t ) + cos(ω2t )]x. (2)

The fast micromotion can be integrated as

ξ � ω2
0

(
cos(ω1t )

ω2
1

+ cos(ω2t )

ω2
2

)
x. (3)

By inserting this expression in Eq.(2), and taking the time
averaging, one finds

ẍ = −�eff (t )2x, (4)

with

�eff (t )2 = ω2
0

(
1

ω2
1

+ 1

ω2
2

)1/2

cos

(
1

2
(ω1 − ω2)t

)
. (5)

As a result of the bichromatic driving, the effective pulsation
�eff (t )2 of the slow motion acquires a time dependence. Dif-
ferently from the monochromatic case, the potential energy
of the low-frequency motion E = 1

2 mẋ
2 + 1

2 m�2
eff (t )x2 is no

longer a constant: it oscillates on a timescale corresponding to
the beat note |ω1 − ω2| of the two driving frequencies.

III. OBTENTION OF AN EFFECTIVE MASTER
EQUATION FOR THE TCG DYNAMICS

WITH THE FLOQUET FORMALISM

We consider from now on a quantum system driven by the
sum Ĥ (t ) = Ĥ0 + ĤF (t ) of a time-independent Hamiltonian
Ĥ0 and a fast driving Hamiltonian ĤF (t ) = ∑

m V̂meiωmt +
H.c. The quantum system is closed, and thus the instantaneous
quantum state |ψ (t )〉 undergoes a unitary evolution with a fast
time dependence. However, the evolution of the TCG density
matrix ρ(t ) = |ψ (t )〉〈ψ (t )| is in general nonunitary, as the
TCG procedure wipes out part of the quantum dynamics.

We first recall well-known results on the unitary evolution
under Floquet Hamiltonians. The evolution operator corre-
sponding to the Hamiltonian Ĥ (t ) is the product of three
unitary transforms [20,22]:

Û (t, t0) = e−iK̂ (t )Û eff (t )eiK̂ (t0 ), (6)

where Û eff (t ) = T [e−i
∫ t

t0
dt ′Ĥ eff (t ′ )] accounts for the slow dy-

namics under the effective Hamiltonian Ĥ eff (t ) (T is the
time ordering operator), while the terms involving the kick
operator, K̂ (t ), contain the fast time dependence. The Flo-
quet frequencies ωm are assumed to be much larger than
the eigenfrequencies of Ĥ0 and V̂m: ε = �/ω � 1 with � =
maxm{||Ĥ0||, ||V̂m||} and ω = minm{ωm}. This frequency hier-
archy is used to expand Ĥ eff (t ) = ∑+∞

n=0 Ĥ eff
n (t ) and K̂ (t ) =∑+∞

n=1 K̂n(t ).
The considered TCG procedure works as a low-pass filter

in frequency space involving a cutoff frequency ωc: Ô(t ) =
1√
2π

∫ ωc

−ωc
Ô(ω)e−iωt dω, where Ô(ω) = 1√

2π

∫ +∞
−∞ Ô(t )eiωt dt

is the Fourier transform of the considered operator Ô(t ). As
in the previous example, the cutoff frequency ωc is chosen
as to leave invariant the slow Hamiltonian dynamics, i.e.,

e±iĤ0t = e±iĤ0t , while filtering out the fast Floquet frequencies

∀m e±iωmt = 0 [ĤF (t ) = 0]. We assume that for the slow op-

erators considered throughout this paper [such that Ôslow(t ) =
Ôslow(t )] one always has Ôslow(t )Ô(t ) = Ôslow(t )Ô(t ) and

Ô(t )Ôslow(t ) = Ô(t )Ôslow(t ). This property is fulfilled if the
Ôslow operator oscillates at frequencies ωslow � ωc and if the
Ô(t ) operator does not have frequencies nearby the cutoff ωc.
These assumptions are realistic for a sufficient large separa-
tion between the slow and fast timescales.

Let us now proceed to derive an effective master
equation for the TCG density matrix. From Eq. (6),

we obtain ρ(t ) = e−iK̂ (t )ρe(t )eiK̂ (t ) with ρe(t ) =
Û eff (t )eiK̂ (t0 )|ψ (t0)〉〈ψ (t0)|e−iK̂ (t0 )Û eff (t )† evolving under
an effective Hamiltonian Ĥ eff (t ) (see Appendix A). By
construction of the effective Hamiltonian, the density matrix
ρe(t ) follows slow dynamics and fulfills ρe(t ) = ρe(t ). We
subsequently expand the fast unitary transforms e±iK̂ (t ) in
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terms of the small parameter ε = �/ω. The TCG density
matrix then reads

ρ(t ) = ρe(t ) +
N∑

n=1

δρ (m)(t ) + O(εN+1). (7)

Each term δρ (m)(t ) represents a correction of order O(εm) and
depends linearly on the density matrix ρe(t ). In order to derive
these corrections, one needs explicit expressions for the fast
kick operators K̂m(t ). These are used to cancel the fast time de-
pendence in the effective Hamiltonian, and can be obtained at
each order through a systematic procedure (Ref. [20] and Ap-
pendix A). For instance, K̂1(t ) fulfills ˙̂K1(t ) = ĤF (t ) and reads
K̂1(t ) = ∑

m
1

iωm
(V̂meiωmt − h.c). The lowest-order correction

is of second order as δρ (1)(t ) = −i[K̂1(t ), ρe(t )] = 0 and
is given by δρ (2)(t ) = − 1

2 {K̂1(t )2, ρe(t )} + K̂1(t )ρe(t )K̂1(t ).
An effective equation for the time-averaged density ma-
trix is obtained by taking the time derivative of Eq. (7).
Special care is, however, needed in order to gather con-
sistently corrections to the same order. For instance, the
contribution δρ (2)(t ) involves a product of fast-evolving
[K̂1(t )] and slow-evolving [the density matrix ρe(t )] func-
tions. When applied to the latter, the time derivative yields
terms which are smaller by one order in the small param-
eter ε. This leads us to distinguish the slow and fast time
dependence by setting τ and t for the corresponding time
variables, with ∂τ = O(�) and ∂t = O(ω) [40,41]. We note
δρ (m)(t, τ ) the corresponding corrections to the density ma-
trix, so that the second-order correction reads δρ (2)(t, τ ) =
− 1

2 {K̂1(t )2, ρe(τ )} + K̂1(t )ρe(τ )K̂1(t ). The complete effec-
tive master equation can be written to second or-
der as ∂

∂t ρ = −i[Ĥ eff , ρe] + ∂tδρ (2)(t, τ ) + ∂τ δρ (2)(t, τ ) +
∂tδρ (3)(t, τ ) + O(�ε3). The contribution ∂tδρ (2)(t, τ ) yields
the operator LFF

2 [ρ] (9), while the terms ∂τ δρ (2)(t, τ ) and
∂tδρ (3)(t, τ ) yield altogether the Lindblad-like term LFSF

2 [ρ]
(10) accounting for the interplay between the slow and fast
degrees of freedom.

We eventually obtain the effective master equation for the
TCG density matrix, which constitutes the central result of
this paper (see Appendix B):

∂ρ

∂t
= −i[Ĥ eff , ρ] + LFF

2 [ρ] + LFSF
2 [ρ] + O(�ε3) (8)

with

LFF
2 [ρ] =

∑
m,n

2 eiωmnt

iωmn−
D[V̂ †

m , V̂n][ρ], (9)

LFSF
2 [ρ] =

∑
m,n

eiωmnt

i

[
1

ω2
n

D[V̂m, [V̂ †
n , Ĥ0]][ρ]

+ 1

ω2
m

D[V̂ †
n , [V̂m, Ĥ0]][ρ]

]
, (10)

with ωmn = ωm − ωn, 1/ωmn− = 1
2 (1/ωm − 1/ωn), and

D[V̂ , V̂ ′][ρ] = V̂ ρV̂ ′ + V̂ ′ρV̂ − 1
2 {{V̂ , V̂ ′}, ρ}.

This effective master equation contains two nonunitary
contributions encapsulated in the Lindblad-like terms LFF

2 [ρ]
and LFSF

2 [ρ] provided that the fast driving Hamiltonian

contains at least two different frequencies {ωm, ωn} close
enough to ensure e±i(ωm−ωn )t = e±i(ωm−ωn )t . We assume from
now on that this property is fulfilled, i.e., that the Floquet
frequencies ωm belong to a narrow bandwidth: ∀(m, n) |ωm −
ωn| < ωc � ω. Under this assumption, the beat notes be-
tween these Floquet modes generate tunable non-Hermitian
contributions to the time-averaged dynamics. The nonunitary
operator LFF

2 [ρ] scales as 1/ωmn− � |ωmn|/ω2. For usual
situations where |ωmn| � �, which corresponds to dissipa-
tion terms oscillating at a comparable pace (or slower) as the
effective Hamiltonian dynamics, the nonunitary operators of
Eq. (8) are of second order. The extra contribution LFSF

2 [ρ]
(10) arises when [V̂m, Ĥ0] �= 0, and takes into account the
interaction between slow and fast quantum dynamics in
the time-averaged evolution. This term can be of the same
magnitude as LFF

2 [ρ] and significantly affect the effective
dissipative dynamics. In order to have a clear physical
interpretation, Eq. (9) must yield a complete positive trace-
preserving (CPTP) evolution and thus involve positive jump
rates in the Lindblad operators (9) and (10). Here, these rates
oscillate as a function of time between negative and positive
values. As discussed below, a suitable phase choice can nev-
ertheless ensure their positivity over a long time window for
close Floquet frequencies ωm and ωn.

The effective master equation derived in the present frame-
work is valid over an arbitrary long time interval. This
is an essential benefit from our approach based on the
exact expression (6) followed by an expansion in terms
of the Floquet frequencies. We obtain (see Refs. [20,22]
and Appendixes A and B) Ĥ eff

0 = Ĥ0, Ĥ eff
1 = 1

2

∑
m,n( 1

ωm
+

1
ωn

)[V̂m, V̂ †
n ]ei(ωm−ωn )t and Ĥ eff

2 = 1
2

∑
m,n( 1

ω2
m

[[V̂m, Ĥ0], V̂ †
n ] +

1
ω2

n
[[V̂ †

n , Ĥ0], V̂m])ei(ωm−ωn )t . As in the classical oscillator of
Sec. II, the time dependence of the effective Hamiltonian
results from the multichromatic driving. At the considered
second order and for Floquet frequencies taken in a narrow
bandwidth, kick operators must be grouped pairwise in order
to generate low-frequency harmonics that survive the time
averaging. This is why the bichromatic case considered below
contains the phenomenology of the nonunitary effects that
arise in any multichromatic Floquet driving.

IV. EMULATION OF DISSIPATION WITH TCG
DYNAMICS IN SIMPLE QUANTUM SYSTEMS

We provide in this section an illustration of the emulation
of quantum dissipation in the TCG dynamics of simple quan-
tum systems. We investigate the TCG dynamics in two-level
systems, and in a quantum harmonic oscillator. Finally, we
discuss the class of quantum dissipative processes that can be
simulated by this approach.

As a first example, we consider a two-level sys-
tem with Ĥ0 = ω0σz, and the Floquet operators V̂m =
�mσx for m = 1, 2 (σx,y,z are the Pauli matrices, and
we set here �1,2 = � > 0). This choice yields LFF

2 [ρ] =
8�2(sin(ω21t )/ω12−)(ρ − σxρσx ) and LFSF [ρ] = −8ω0�

2

( 1
ω2

1
+ 1

ω2
2
) cos2 ( 1

2 ω21 t )(σxρ σy + σyρσx ). The effective

Hamiltonian contributions are Ĥ eff
1 = 0 and Ĥ eff

2 = −8ω0

�2( 1
ω2

1
+ 1

ω2
2
) cos2( 1

2ω21t )σz. To emphasize the role of the
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FIG. 1. Quantum dynamics in the interaction picture with Ĥ0 =
ω0σz and V̂1,2 = �1,2σx . Shown are the instantaneous density-
matrix profile |ρ̃eg(t )| as a function of time (solid gray line) with
ρ̃(t ) = U eff (t )†ρ(t )U eff (t ) and coarse-grained density-matrix coher-
ence |ρ̃eg(t )| as a function of time obtained from a time averaging of
the instantaneous solution ρ̃(t ) (solid black line), or from a resolu-
tion of the full effective master equation (dashed black line), of an
effective master equation without the contribution LFSF [ρ̃] (see text)
to the quantum dissipation term (dotted line). Parameters: ρ(0) =
|ψ+〉〈ψ+| where |ψ+〉 = (|e〉 + |g〉)/

√
2, ω0 = 0.1 × (2π )/T0, �1 =

�2 = 2/T0, ω1 = 4 × (2π )/T0, ω21 = 0.025 × (2π )/T0, ε = 0.1.

dissipative dynamics, we provide hereafter the quantum evo-
lution within the interaction picture with respect to the
second-order effective Hamiltonian Ĥ eff = Ĥ0 + Ĥ eff

2 . Fig-
ure 1 pictures the time evolution of the instantaneous density-
matrix coherence ρ̃eg(t ) with ρ̃(t ) = Û eff (t )†ρ(t )Û eff (t ). We
express all time-related quantities using an arbitrary time
unit T0. We also provide the TCG evolution using a convo-
lution with the cardinal sine function f (t ) = sin(ωct )/(πt )
[with ωc = 2 × (2π )/T0 in all numerical examples]. We
subsequently compare this time-averaged density matrix
ρ̃(t ) = ∫

dt ′ f (t ′ − t )ρ̃(t ) with the predictions of the ef-
fective master equation with the initial condition ρ̃0 =
eiK̂1(t0 )[

∫ +∞
−∞ dt f (−t )ρ̃(t )]e−iK̂1(t0 ). We have also added the

prediction from the master equation in the absence of the
LFSF [ρ̃] term, i.e., as derived in Ref. [39]; this latter approach
is only valid over a short time interval and for moderate
dissipation forces, two too restrictive assumptions.

Our second example illustrates the emulation of phase
noise in the time-averaged quantum dynamics. In NMR, such
a dissipative physical mechanism results from fluctuations of
the magnetic field. The phenomenological equation for the
average spin dynamics, Ṁ = γ M × B + (M0 − Mz )/T1ẑ −
M⊥/T2, accounts for the dissipative effects through two times
T1 and T2, associated respectively to the longitudinal (Mz)
and transverse (M⊥) relaxations. In terms of the density
matrix, the former corresponds to the population difference
ρee − ρgg while the latter involves the density-matrix coher-
ences ρeg, ρge. The phase noise is accounted for with decay
times T1 = +∞ and T2 = 1/γ [42]. The master equation that
models the phase noise reads ∂tρ = −i[Ĥ0, ρ] + γ

2 Lphase[ρ]
with the Liouvillian Lphase[ρ] = σzρσz − 1

2 {σzσz, ρ}.
To emulate such a dissipative dynamics, we con-

sider a bichromatic driving with Ĥ0 = ω0σz and V̂m =
�mσz for m = 1, 2. In this particular case, the contri-
bution of the LFSF [ρ] term vanishes and the resulting
master equation coincides with the desired form with

FIG. 2. Emulation of phase noise: results of the effective master
equation vs full quantum evolution. Shown are the instantaneous
density-matrix coherence Re[ρeg(t )] as a function of time (solid gray
line), time coarse-grained coherence Re[ρeg(t )] (solid black line),
and the density-matrix coherence Re[ρeg(t )] (dashed black line)
obtained from the effective master equation [Eq. (8)]. Parameters:
Ĥ0 = ω0σz, V̂1,2 = �1,2σz, ω0 = 0.5 × (2π )/T0, �1 = −�2 = 7/T0,
ω1 = √

10 × (2π )/T0, and ε = 0.35. Other parameters are identical
to Fig. 1.

γ (t ) = −(16/ω12−)Im[�∗
1�2ei(ω2−ω1 )t ]. Using close and non-

commensurate frequencies ω1 and ω2 enables us to accu-
mulate decoherence (or gain) over a significant time interval
depending on the sign of γ .

As previously, we validate numerically our findings by
resolving the full unitary quantum dynamics driven by the
Hamiltonian Ĥ (t ) = Ĥ0 + ĤF (t ) (see Fig. 2). The seemingly
erratic oscillations of the instantaneous density-matrix coher-
ence generate a TCG dynamics that follows very accurately
the effective master equation, i.e., the one of a damped
Rabi oscillation. This averaging effect on the Floquet-induced
peaks is reminiscent of the averaging on individual stochas-
tic trajectories involving quantum jumps in the Monte Carlo
wave-function formalism [43]. Floquet-induced peaks accu-
mulate periodically at a pace determined by the beat frequency
ω21 between the two involved Floquet modes. This periodic
increase or decrease of sharp peaks provokes an oscillation
of the effective damping rate γ (t ) at the same frequency
ω21. An initial loss (gain) phase can be obtained by setting a
specific phase difference φ between the two Floquet modes.
Using �1 ∈ R+ and �2 = |�2|eiφ , the choice �2 = −�1

yields γ (t ) > 0 over the time interval 0 � t � π/|ω2 − ω1|,
and thus a physical CPTP evolution for the TCG density
matrix (see Fig. 2).

This observed excellent agreement is not obvious, as
Eq. (8) is a mere second-order approximation, and discards
several contributions associated to the higher-order kick op-
erators K̂m(t ). Actually, the operators K̂m(t ) vanish here for
m � 2 as a result of the commutation between the fast and
time-independent Hamiltonians. Thus, the expansion of the
unitary operators e±iK̂ (t ) boils down to a simple power ex-
pansion in the operator K̂1(t ). Furthermore, odd powers of
K̂1(t ) do not generate any low-frequency harmonics, and the
effective master equation only receives contributions from
even-order terms. Incidentally, the fourth-order contribution
cancels (Appendix C). Here, Eq. (8) is thus accurate to the
fifth order, which explains the remarkable agreement between
the TCG (8) and exact quantum dynamics, which still holds
for moderate values of the parameter ε (ε = 0.35 in Fig. 2).
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FIG. 3. Incoherent absorption or emission in the time-averaged
dynamics. Shown are the instantaneous density-matrix coherence
Re[ρeg(t )] as a function of time (solid gray line) and time-averaged
coherence Re[ρeg(t )] (solid black line) vs density-matrix coherence
Re[ρeg(t )] (dashed black line) obtained from the effective mas-
ter equation. Parameters: Ĥ0 = ω0σx , V̂1,2 = �1,2σ+, ρ(0) = |e〉〈e|,
ω0 = 0.25 × (2π )/T0, �1,2 = 2/T0, ε = 0.1. Other parameters are
identical to Fig. 2.

In our third example, we emulate a quantum dynamics
reminiscent of incoherent emission and absorption processes
in the TCG evolution of a two-level system. These processes
are described respectively by the Liouvillians Lem[ρ] =
σ−ρσ+ − 1

2 {σ−σ+, ρ} and Lab[ρ] = σ+ρσ− − 1
2 {σ+σ−, ρ},

where σ+ = |e〉〈g| and σ− = σ
†
+. By symmetry of the dissipa-

tive term D[V̂ , V̂ ′][ρ] in the effective master equation, if the
TCG dynamics contains the Liouvillian Lem[ρ], it also con-
tains the Liouvillian Lab[ρ] associated to the reverse process.
It occurs, for example, in the dynamics of a two-level atom il-
luminated by an intense light field where stimulated emission
predominates over spontaneous emission [44]. The emission
and absorption rates then approximately equal γem � γab � γ .

To emulate such a dissipation, we take the time-
independent Ĥ0 = ω0σx and fast Hamiltonians with
V̂m = �mσ+ for m = 1, 2 (�1,2 = � > 0). With this
choice, the bilinear term LFF

2 [ρ] accounts for these two
incoherent processes as LFF

2 [ρ] = γ (t )(Lem[ρ] + Lab[ρ])
with the time-dependent effective emission or absorption rate
γ (t ) = −4�2 sin(ω21t )/ω12−. The remaining contribution
reads LFSF

2 [ρ] = −ω0�
2( 1

ω2
1
+ 1

ω2
2
) cos2( 1

2ω21t )(σyρσz +
σzρσy) + �O(ε3). One finds the effective Hamiltonian
corrections Ĥ eff

1 = 2�2( 1
ω1

+ 1
ω2

) cos2( 1
2ω21t )σz and

Ĥ eff
2 = −2ω0�

2( 1
ω2

1
+ 1

ω2
2
) cos2( 1

2ω21t )σx + �O(ε3). In
Fig. 3, we observe an excellent agreement between the
exact instantaneous density-matrix coherence and its
corresponding TCG evolution. As a final example of a
higher-dimensional system, we discuss the TCG evolution
of a quantum harmonic oscillator (Ĥ0 = ω0â†â) subjected
to a bichromatic driving with V̂1,2 = ±�â†. Dissipative
TCG dynamics are given by LFF

2 [ρ] = −(4/ω12−)Lhar
2 [ρ]

with Lhar
2 [ρ] = Im[�∗

1�2ei(ω2−ω1 )t ]D[â, â†][ρ] and |LFSF
2 | �

|LFF
2 |. The effective Hamiltonian reads Ĥ eff = Ĥ0. Starting

from the initial Fock state superposition ρ0 = |ψ+〉〈ψ+| with
|ψ+〉 = (|2〉 + |4〉)/

√
2, the expected effective decoherence

is well reproduced (see Fig. 4).
More generally, our approach enables one to emulate

a Lindblad master equation of the form ρ̇ = −i[Ĥ, ρ̂] +

FIG. 4. Emulated decoherence in a harmonic oscillator with
Ĥ0 = ω0â†â and V̂1,2 = ±�â†. Shown are the instantaneous density
matrix Re[ρ24(t )] (solid gray line) and exact TCG density matrix
Re[ρ24(t )] (solid black line) elements in the Fock state basis as a
function of time compared to the prediction of the effective mas-
ter equation (dashed black line). Parameters: ω1 = 40/T0, ω21 =
0.1 × (2π )/T0, ε = �/ω1 = 0.15.

∑N
m=1 γm[L̂mρL̂†

m + L̂†
mρL̂m − 1

2 {{L̂m, L̂†
m}, ρ}], i.e., involving,

for each quantum jump operator L̂m, the reverse jump
L̂†

m at the same rate γm [45]. It requires a driving
with well-separated pairs of close frequencies {ωm, ωm +
ωm}, such that ωm � ωc and |ωm − ωn| > ωc for m �=
n. Interestingly, the effective time-dependent rates γm(t ) �
−4(|�m|2ωm/ω2

m) sin(ωmt + ϕm) can be shaped indepen-
dently by a suitable choice of the Rabi pulsations (�m),
frequency (ωm), and phase (ϕm) differences. Regarding the
LFSF

2 [ρ] term, its contribution can be attenuated by an appro-
priate choice of Ĥ0, e.g., the third example detailed above.

V. CONCLUSION

In summary, we have used the formalism of kick opera-
tors and effective Hamiltonians to derive an effective master
equation for the TCG dynamics in a multichromatic Floquet
system, that exploits the beat modes between pairs of Floquet
frequencies. In contrast to previous studies, our treatment
holds in the long-time limit. Different driving Hamiltonians
and time-averaging procedures can be considered to emulate
a wide range of dynamics. Perspectives for this paper include
the application of this method to diverse quantum systems
such as fermionic chains [46], or the emulation of effective
Lindbladians presenting different symmetries [47].
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APPENDIX A: PERTURBATIVE EXPANSION OF THE
KICK OPERATORS AND EFFECTIVE HAMILTONIANS

The exact Hamiltonian under consideration reads Ĥ (t ) =
Ĥ0 + ĤF (t ) with ĤF (t ) = ∑

m V̂meiωmt + H.c. We assume that
all Floquet frequencies ωm belong to a narrow bandwidth,
i.e., fulfill ∀m ,∀n, |ωm − ωn| � ωc � ω. Following the
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procedure of Refs. [20,22], we search for a unitary operator
eiK̂ (t ) such that the state expressed in the new gauge |φ(t )〉 =
eiK (t )|ψ (t )〉 follows a slow dynamics. The Hamiltonian in the
new gauge frame is given by

Ĥ eff (t ) = eiK̂ (t )Ĥ (t )e−iK̂ (t ) + i
∂eiK̂ (t )

∂t
e−iK̂ (t ), (A1)

and must be such that H eff (t ) = H eff (t ) at any time t . For
the considered Floquet frequencies, one has ei±(ωm−ωn )t =
ei±(ωm−ωn )t and e±iωmt = e±i(ωm+ωn )t = 0. Thus, only terms
rotating at a difference between two Floquet frequencies
(or constant terms) will contribute to the effective Hamil-
tonian H eff (t ). In this section, we determine iteratively the
first contributions to the expansion Ĥ eff (t ) = ∑+∞

n=0 Ĥ eff
n (t )

and K̂ (t ) = ∑+∞
n=1 K̂n(t ) using the identities provided by the

Baker-Campbell-Hausdorff formula:

eiK̂ (t )Ĥ (t )e−iK̂ (t ) = Ĥ (t ) + i[K̂ (t ), Ĥ (t )]

− 1

2
[K̂ (t ), [K̂ (t ), Ĥ (t )]]

− i

6
[K̂ (t ), [K̂ (t ), [K̂ (t ), Ĥ (t )]]] + . . . ,

(A2)(
∂eiK̂ (t )

∂t

)
e−iK̂ (t ) = i

∂K̂

∂t
− 1

2

[
K̂ (t ),

∂K

∂t

]

− i

6

[
K̂ (t ),

[
K̂ (t ),

∂K

∂t

]]
+ . . . . (A3)

In the following, we explicitly use the fact that Ĥ eff
n (t ), K̂n(t ),

and ∂
∂t K̂n+1 are of the same order O(εn) where ε =

�/ω. The zeroth-order contribution is obtained by taking
eiK̂ (t )Ĥ (t )e−iK̂ (t ) = H (t ) + O(ε). Using Eqs. (A1) and (A3),
we find

Ĥ eff
0 (t ) = Ĥ0 + ĤF − ∂K̂1

∂t
.

From now on, we remove the explicit time dependence of
the operators on the right-hand side to lighten notations when

needed. As Ĥ0 = Ĥ0 and ĤF (t ) = 0, we set Ĥ eff
0 (t ) = Ĥ0 and

∂K̂1

∂t
= ĤF . (A4)

The kick operator K̂1(t ) removes all the fast time dependence
from the effective Hamiltonian, and can be chosen as

K̂1(t ) =
∑

m

1

iωm
(V̂meiωmt − V̂ †

me−iωmt ), (A5)

up to an arbitrary constant operator.
To obtain the result to next order, we introduce the two

lowest-order kick operators K̂1,2(t ) into Eqs. (A1)–(A3). We
find

H eff
1 (t ) = i[K̂1, Ĥ ] − i

2

[
K̂1,

∂K̂1

∂t

]
− ∂K̂2

∂t
,

which can be recast thanks to Eq. (A4) as

Ĥ eff
1 (t ) = i[K̂1, Ĥ0] + i

2
[K̂1, ĤF ] − ∂K̂2

∂t
.

We infer

Ĥ eff
1 (t ) = i[K̂1, Ĥ0] + i

2
[K̂1, ĤF ],

∂K̂2

∂t
= i[K̂1, Ĥ0] + i

2
[K̂1, ĤF ] − Ĥ eff

1 . (A6)

As a product of a kick operator with a slow Hamiltonian yields

a null average, we have [K̂1(t ), Ĥ0] = 0 and get the first-order
expression to the effective Hamiltonian,

Ĥ eff
1 (t ) =

∑
m,n

1

2

(
1

ωm
+ 1

ωn

)[
V̂m, V̂ †

n

]
× ei(ωm−ωn )t+i(ϕm−ϕn ), (A7)

and the second-order expression for the kick operator,

K̂2(t ) =
∑

m

1

iω2
m

(
[V̂m, Ĥ0]eiωmt − H.c.

)

+
∑
m,n

1

2iωm(ωm + ωn)

× ([V̂m, V̂n]ei(ωm+ωn )t − H.c.), (A8)

up to an arbitrary constant operator.
To find Ĥ eff

2 (t ), we iterate the very same procedure. Using
Eqs. (A2) and (A3), we find

Ĥ eff
2 (t ) = i[K̂2, Ĥ ] − 1

2
[K̂1, [K̂1, Ĥ ]] − i

2

[
K̂2,

∂K̂1

∂t

]

− i

2

[
K̂1,

∂K̂2

∂t

]
+ 1

6

[
K̂1,

[
K̂1,

∂K̂1

∂t

]]
− ∂K̂3

∂t
.

(A9)

This equation can be recast using Eqs. (A4) and (A6) to
express the derivatives of the kick operators K1,2(t ) in terms
of commutators:

Ĥ eff
2 (t ) = i[K̂2, Ĥ0] + i

2
[K̂2, ĤF ] + i

2
[K̂1, Ĥ eff

1 ]

− 1

12
[K̂1, [K̂1, ĤF ]] − ∂K̂3

∂t
. (A10)

We find [K̂2, Ĥ0] = [K̂1, Ĥ eff
1 ] = 0. As the product of three

fast operators with similar Floquet frequencies does not gen-

erate any slow harmonics, we have [K̂1, [K̂1, ĤF ]] = 0. The
second-order effective Hamiltonian contribution is then given

by Ĥ eff
2 (t ) = i

2 [K̂2, ĤF ], or equivalently

Ĥ eff
2 (t ) =

∑
m,n

1

2ω2
m

[[V̂m, Ĥ0], V̂ †
n ]ei(ωm−ωn )t+i(ϕm−ϕn ) + H.c.

(A11)

K̂3(t ) can be obtained by an integration of Eq. (A10) using
the expression (A11) for Ĥ eff

2 (t ). The third-order contribution
to the kick operator is derived in Sec. C in the specific case
Ĥ0 = ω0σz and V̂m = �σx.
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APPENDIX B: DERIVATION OF THE SECOND-ORDER
EFFECTIVE MASTER EQUATION

We provide here additional details on the derivation of the
effective master equation, starting from the following expres-
sion obtained in Sec. III:

∂ρ

∂t
= −i[Ĥ eff (t ), ρe] + ∂tδρ (2)(t, τ )

+ ∂τ δρ (2)(t, τ ) + ∂tδρ (3)(t, τ ) + O(�ε3). (B1)

Using the evolution of the instantaneous state [Eq. (1) of
the main text]; the following expansion of the fast unitary
transform in terms of the kick operators,

eiK̂ (t ) = 1 − iK̂1(t ) − 1

2
K̂1(t )2 − iK̂2(t )

− 1

2
{K̂1(t ), K̂2(t )} + i

6
K̂1(t )3 − iK̂3(t )

+ O

(
�4

ω4

)
; (B2)

and the properties K̂m(t ) = 0 for m � 1 and K̂1(t )2n+1 = 0 for
n � 0 mentioned in the main text, we obtain the following
expressions for δρ (2)(t, τ ), δρ (3)(t, τ ):

δρ (2)(t, τ ) = − 1
2 {K̂1(t )2, ρe(τ )} + K̂1(t )ρe(τ )K̂1(t ),

δρ (3)(t, τ ) = K̂1(t )ρe(τ )K̂2(t ) + K̂2(t )ρe(τ )K̂1(t )

− 1
2 {{K̂1(t ), K̂2(t )}, ρe(τ )}. (B3)

Regarding the expression of δρ (3)(t, τ ), we have used the
fact that the time averaging eliminates the isolated con-
tribution of the fast operator K̂3(t ), and that cubic terms
of the kind K̂1(t )3ρe(t ), K̂1(t )2ρe(t )K̂1(t ), . . . do not contain
low-frequency harmonics and thus also disappear upon time
averaging. This property holds for the narrow-bandwidth case
∀(m, n) |ωm − ωn| < ωc � ω considered throughout the pa-
per.

Let us first derive the term ∂tδρ (2)(t, τ ). Using Eq. (A4)
and the substitution ρe(τ ) = ρ + O(ε2), we find

∂tδρ (2)(t, τ ) = −1

2
{{ĤF (t ), K̂1(t )}, ρ}

+ ĤF (t )ρK̂1(t ) + K̂1(t )ρĤF (t ) + O(�ε3).

(B4)

Using Eq. (A5), we compute the second contribution of the
right-hand side as

ĤF (t )ρK̂1(t ) =
∑
m,n

−1

iωn
V̂mρV̂ †

n ei(ωm−ωn )t

+
∑
m,n

1

iωn
V̂ †

mρV̂nei(ωn−ωm )t

=
∑
m,n

1

i

(
V̂ †

n ρV̂m

ωm
− V̂mρV̂ †

n

ωn

)
ei(ωm−ωn )t , (B5)

where we have exchanged the indices m and n in the second
term. Similarly, we have

K̂1(t )ρĤF (t ) =
∑
m,n

1

i

(
V̂mρV̂ †

n

ωm
− V̂ †

n ρV̂m

ωn

)
ei(ωm−ωn )t . (B6)

Summing up both contributions, we finally obtain

ĤF (t )ρK̂1(t ) + K̂1(t )ρĤF (t )

=
∑
m,n

1

i

(
1

ωm
− 1

ωn

)

× ei(ϕm−ϕn )ei(ωm−ωn )t (V̂mρV̂ †
n + V̂ †

n ρV̂m). (B7)

The term {{ĤF (t ), K̂1(t )}, ρ} can be obtained along simi-
lar lines. Finally, from Eqs. (B1) and (B4), the contribution
LFF [ρ] can be expressed as LFF [ρ] = ∂tδρ (2)(t, τ ) and

LFF (ρ) =
∑
m,n

2 eiωmnt

iωmn−

(
V̂mρV̂ †

n + V̂ †
n ρV̂m − 1

2
{{V̂ †

m , V̂n}, ρ}
)

+ O(�ε3), (B8)

with ωmn = ωm − ωn and 1/ωmn− = 1
2 (1/ωm − 1/ωn),

which yields Eq. (9).
In the following, we assume that e±i(ωm−ωn )t =

e±i(ωm−ωn )t , and derive the term LFSF
2 [ρ] ≡ ∂τ δρ (2)(t, τ ) +

∂tδρ (3)(t, τ )—the replacement of ρe(t ) by ρ(t ) is valid up
to third-order corrections. We begin by deriving explicitly
∂τ δρ (2)(t, τ ). Special care is needed with respect to the
operator ordering. As an example, we find

∂

∂τ
[{K̂1(t )2, ρ(τ )}] = −i{K̂1(t )2, [Ĥ eff (t ), ρ(τ )]}

= −i[Ĥ eff (t ), {K̂1(t )2, ρ(τ )}]
− i{[K̂1(t )2, Ĥ eff (t )], ρ(τ )}, (B9)

where we have used the generic identity Â[B̂, Ĉ] = [Â, B̂]Ĉ +
[B̂, Â]Ĉ. The other terms can be evaluated in a similar manner:

∂δρ (2)(t, τ )

∂τ
= −i[Ĥ eff , δρ (2)(t )] − i

{[
1

2
K̂1(t )2, Ĥ0

]
, ρ(τ )

}

− i[K̂1(t ), Ĥ0]ρ(τ )K̂1(t )

− iK̂1(t )ρ(τ )[K̂1(t ), Ĥ0]. (B10)

We have taken Ĥ eff = Ĥ0 in the dissipative terms, which is
valid to the considered order.
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We now derive the contribution ∂tδρ (3)(t, τ ). Let us com-
pute the term ∂t K̂1(t )ρe(τ )K̂2(t ):

∂

∂t
K̂1(t )ρe(τ )K̂2(t )

= ĤF (t )ρe(τ )K̂2(t ) + iK̂1(t )ρe(τ )[K̂1(t ), Ĥ0]

+ i

2
K̂1(t )ρe(τ )[K̂1(t ), ĤF (t )] − K̂1(t )ρe(τ )Ĥ eff

1 (t ),

(B11)

where we have used Eqs. (A4) and (A6). We find that the
two last contributions of the right-hand side vanish upon

averaging, i.e., K̂1ρĤ eff
1 = K̂1ρ[K̂1, ĤF ] = 0. Note that the

second contribution of the right-hand side cancels a term from
∂δρ (2) (t,τ )

∂τ
. Other contributions to ∂tδρ (3)(t, τ ) are obtained

along similar lines, and one obtains a one by one cancellation
of the dissipative terms in ∂τ δρ (2)(t, τ ). Using Eqs. (B1) and
(B10), we find

∂ρ

∂t
= −i[Ĥeff , ρe + δρ (2)] + LFF (ρ ) + LFSF (ρ) + O(�ε3).

(B12)

By writing ρ = ρe + δρ (2) + O(�ε3), the equation above be-
comes a close equation in ρ at the considered order. The

contribution coupling the fast and slow quantum dynamics is
expressed as

LFSF [ρ] = ĤF (t )ρ(τ )K̂2(t ) + K̂2(t )ρ(τ )ĤF (t )

− 1

2
{{ĤF (t ), K̂2(t )}, ρ(τ )}. (B13)

Let us evaluate one of these terms, for instance
ĤF (t )ρ(τ )K̂2(t ). From Eq. (A8), the kick operator K̂2(t )
contains contributions oscillating approximately at the
Floquet frequency and at twice the Floquet frequency
respectively. The latter does not contribute as it vanishes upon
time averaging. The considered contribution eventually boils
down to

ĤF (t )ρ(τ )K̂2(t ) =
∑
m,n

(
1

iω2
n

V̂mρ[V̂ †
n , Ĥ0]

+ 1

iω2
m

V̂ †
n ρ[V̂m, Ĥ0]

)
× ei(ωm−ωn )t . (B14)

Other terms are derived in a similar manner. Gathering all the
contributions, we have

LFSF [ρ] = − 1

2i

∑
m,n

(
1

ω2
n

{{V̂m, [V̂ †
n , Ĥ0]}, ρ} + 1

ω2
m

{{V̂ †
n , [V̂m, Ĥ0]}, ρ}

)
ei(ωm−ωn )t

+ 1

i

∑
m,n

[
1

ω2
n

(V̂mρ[V̂ †
n , Ĥ0] + [V̂ †

n , Ĥ0]ρV̂m) + 1

ω2
m

(V̂ †
n ρ[V̂m, Ĥ0] + [V̂m, Ĥ0]ρV̂ †

n )

]
ei(ωm−ωn )t ,

which can be written more concisely as Eq. (10).

APPENDIX C: HIGHER-ORDER CONTRIBUTIONS TO
THE EFFECTIVE MASTER EQUATION

In this Appendix, we apply our method to get the
next-order terms to improve the accuracy of the effective
quantum master equation for larger values of the param-
eters ε (and larger dissipation strengths), and we provide
a few applications related to the examples developed in
the paper.

At higher orders, one can no longer substitute ρe by ρ in
the second-order quantum dissipative terms—this would be
equivalent to ignoring terms of similar magnitude as the cor-
rections that we seek to obtain. Consequently, we rely on the
relation ρe = ρ − δρ (2)(t, τ ) + O(ε3) within the second-order
dissipative contributions.

Then, the effective master equation can be written as

∂ρ

∂t
= −i[Ĥeff , ρe] + ∂tδρ (2)(t, τ ) + ∂τ δρ (2)(t, τ )

+ ∂tδρ (3)(t, τ ) + ∂τ δρ (3)(t, τ ) + ∂tδρ (4)(t, τ )

+ O(�ε4) (C1)

where

∂tδρ (2)(t, τ ) = Ė2[ρ − E2[ρ]] + O(�ε5),

∂τ δρ (2)(t, τ ) = −iE2[[Ĥ eff , ρ − E2[ρ]]] + O(�ε5),

∂tδρ (3)(t, τ ) = Ė3[ρ − E2[ρ]] + O(�ε5). (C2)

The linear maps Em[ρ] are defined in a similar way as in
Ref. [39]: Em[ρ] is associated to the mth-order correction, i.e.,
these maps are defined by the relation Em[ρe] = δρ (m). From
Eqs. (B3) and (B3), we have

E2[ρ] = − 1
2 {K̂1(t )2, ρ} + K̂1(t )ρK̂1(t ), (C3)

E3[ρ] = K̂1(t )ρK̂2(t ) + K̂2(t )ρK̂1(t )

− 1
2 {{K̂1(t ), K̂2(t )}, ρ}. (C4)

The time dependence of the linear maps Em comes from the
operators K̂m(t )—ρ is used as a simple variable on which
the map is applied. We have also used the fact that the term
Ė2[ρ] ≡ LFF [ρ] is already of second order in ε.
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1. Third- and fourth-order contributions in the phase noise
configuration (Ĥ0 ∝ σz and ĤF ∝ σz)

In the specific case of phase noise, one can easily ob-
tain the effective equation up to the fifth order. Indeed, one
has K̂m = 0 for m � 2, so the total kick operator is simply
K̂ (t ) = K̂1(t ). Then, the different nonunitary terms arise from
an expansion of the unitary operators e±iK̂1(t ). Odd powers of
the kick operator K̂1 disappear upon time averaging, so that
E1 = E3 = E5 = 0, and the fourth-order equation is given by

ρ̇ = −i[Ĥeff , ρ] + Ė2[ρ] + Ė4[ρ] − Ė2[E2[ρ]] + O(�ε5).

(C5)

As E5 = 0, the next-order terms correspond to Ė6[ρ] and are
thus of fifth order. We have used the fact that for the present
case for which the operators K̂1 and Ĥ eff are both propor-
tional to σz, one has [Ĥ eff , E2[ρ]] = 0. By expanding eiK̂1(t )

in the expression of the evolved quantum state [Eq. (1) of
the main text], one finds the fourth-order expansion [we note
E4[ρ] ≡ EFF

4 [ρ] and this contribution is associated to the kick
operators K̂1(t ) alone]:

EFF
4 [ρ] = 1

24 {K̂4
1 , ρ} − 1

6 K̂3
1 ρK̂1 − 1

6 K̂1ρK̂3
1 + 1

4 K̂2
1 ρK̂2

1 .

(C6)

We then express the corresponding time derivatives:

ĖFF
4 [ρ] = 1

6

{
ĤF K̂3

1 , ρ
} − 1

2 ĤF K̂2
1 ρK̂1

− 1
6 K̂3

1 ρĤF − 1
2 K̂1ρĤF K̂2

1 − 1
6 ĤF ρK̂3

1

+ 1
2 K̂2

1 ρK̂1ĤF + 1
2 ĤF K̂1ρK̂2

1 , (C7)

Ė2[E2[ρ]] = −{
ĤF K̂1,− 1

2 {K̂2
1 , ρ

} + K̂1ρK̂1 }

+ ĤF
( − 1

2

{
K̂2

1 , ρ
} + K̂1ρK̂1

)
K̂1

+ K̂1
( − 1

2

{
K̂2

1 , ρ
} + K̂1ρK̂1

)
ĤF , (C8)

where we have used the commutation relation [K̂1, ĤF ] =
0. One can drastically simplify these expressions by writ-
ing K̂1(t ) = F (t )σz, ĤF (t ) = f (t )σz, and using the identity
σ 2

z = 12×2:

ĖFF
4 [ρ] = 4

3 f (t )F (t )3(ρ − σzρσz ), (C9)

Ė2[E2[ρ]] = 2 f (t )F (t ) F (t )2(ρ − σzρσz ). (C10)

We take as in the main text V̂m = �σz. The functions
respectively associated to the fast Hamiltonian and kick op-
erator (A5) are given by f (t ) = �

∑
m,εm

eiεmωmt and F (t ) =
�

∑
m,εm

εm
iωm

eiεmωmt , where for each label m the sum is ex-
tended over all the Floquet frequencies, and the label εm takes
the two values {−1, 1}.

From previous results, the second-order time-averaged
functions read

f (t )F (t ) = �2
∑
m,n

(
ei(ωn−ωm )t − ei(ωm−ωn )t

iωn

)
, (C11)

F (t )2 = 2�2
∑
m,n

1

ωmωn
ei(ωm−ωn )t . (C12)

Let us evaluate the fourth-order time-averaged function

f (t )F (t )3 = �4
∑
m,εm

∑
n,εm

∑
p,εp

∑
q,εq

×eiεmωmt εneiεnωnt

iωn

εpeiεpωpt

iωp

εqeiεqωqt

iωq
δεm+εn+εp+εq,0.

(C13)

The Kronecker symbol δεm+εn+εp+εq,0 accounts for the time av-
eraging and retains only the slow-rotating contributions such
that εm + εn + εp + εq = 0. For a given εm = ±1, there are
only three sets {εm, εp, εq} in {−1, 1}3 that yield εm + εn +
εp + εq = 0, so that

f (t )F (t )3 = 3 �4
∑

m,n,p,q

(
eiωmt eiωnt

iωn

e−iωpt

iωp

e−iωqt

iωq

− e−iωmt eiωnt

iωn

e−iωpt

iωp

eiωqt

iωq

)
, (C14)

which can be rewritten as

f (t )F (t )3 = 3 �4
∑
n,p

(
eiωnt

iωn

e−iωpt

iωp

)

×
∑
m,q

(
eiωmt e−iωqt

iωq
− e−iωmt eiωqt

iωq

)

= 3
F (t )2

2
f (t )F (t ). (C15)

From Eqs. (C9) and (C10), one finds ĖFF
4 [ρ] −

Ė2[E2[ρ]] = 0, i.e., the two third-order terms of the equa-
tion cancel each other. As there are no fourth-order terms,
the equation presented in the main text is accurate to the fifth
order.

2. Third-order contribution to the effective equation
in the configuration Ĥ0 ∝ σz and ĤF ∝ σx

From Eq. (1) of the main text and expansion of the
exponential of kick operators, one obtains the fourth-order
contribution to the density matrix δρ (4) = EFF

4 [ρ] + EFSF
4 [ρ]

where

EFSF
4 [ρ] = − 1

2 {{K̂1, K̂3}, ρ} + K̂1ρK̂3 + K̂3ρK̂1 + K̂2ρK̂2.

(C16)

This contribution arises in the presence of noncommuting fast
and constant Hamiltonians [ĤF (t ), Ĥ0] �= 0. As seen previ-
ously, the contribution ĖFF

4 [ρ] to the equation of motion is
canceled by the term −Ė2[E2[ρ]] (the calculation performed
above relies on [ĤF , K̂1] = 0 and thus still holds here).

Using Eq. (B1), the additional third-order terms to the
effective master equation correspond to

L(3)[ρ] = i[Ĥ eff , δρ (3)] + ∂τ δρ3(t, τ ) + ĖFSF
4 [ρ]. (C17)

The first term arises from the identity ρe = ρ − δρ (2) −
δρ (3) + O(ε4) in the commutator [Ĥ eff , ρe] of Eq. (C5).

Before evaluating the third-order contributions, we give the
expression for the kick operators in this case. With Ĥ0 = ω0σz
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and V̂m = �σx, the two leading kick operators read K̂1(t ) =
�

∑
m

eiωmt

iωm
σx + H.c. and K̂2(t ) = −2ω0�

∑
m

eiωmt

ω2
m

σy + H.c.
From Eqs. (A10) and (A11), one obtains the third-order kick
operator:

K̂3(t ) =
∑

m

4ω2
0�

iω3
m

(eiωmt − H.c.)σx

− 2
∑
mn

ω0�
2

iω2
m(ωm + ωn)

(ei(ωm+ωn )t − H.c.)σz. (C18)

The third-order correction (B3) reads here

δρ3(t, τ ) = K̂1(t )ρe(τ )K̂2(t ) + K̂2(t )ρe(τ )K̂1(t ) (C19)

as {K̂1(t ), K̂2(t )} = 0 in this specific case.
Let us first evaluate

∂τ δρ (3)(t, τ ) = −i[Ĥeff , δρ (3)] − i[K̂1, Ĥ0]ρK̂2

− iK̂2ρ[K̂1, Ĥ0] − iK̂1ρ[K̂2, Ĥ0]

− i[K̂2, Ĥ0]ρK̂1 (C20)

where at this order it is valid to use the equality ρe = ρ and
Ĥeff ≡ Ĥ0 in the dissipative terms. The first term of the right-
hand side yields the correct unitary dynamics. We now focus
on nonunitary terms:

ĖFSF
4 [ρ] = −1

2

{{
K̂1,

dK̂3

dt

}
, ρ

}
− 1

2

{{
dK̂1

dt
, K̂3

}
, ρ

}

+ dK̂1

dt
ρK̂3 + K̂1ρ

dK̂3

dt
+ dK̂3

dt
ρK̂1 + K̂3ρ

dK̂1

dt

+ dK̂2

dt
ρK̂2 + K̂2ρ

dK̂2

dt
. (C21)

From Eq. (A6), we infer dK̂2
dt = i[K̂1, Ĥ0] as [K̂1, ĤF ] = 0 for

the considered fast driving Hamiltonian. Hence, the terms

K̂2ρ
dK̂2
dt and dK̂2

dt ρK̂2 simply cancel part of the nonunitary
contributions of Eq. (C20). Thanks to the relation

dK̂3

dt
= i[K̂2, Ĥ0] + i

2
[K̂2, ĤF ] − Ĥ (2)

eff , (C22)

one can express the contributions of Eq. (C21) as

dK̂3

dt
ρK̂1 = i[K̂2, Ĥ0]ρK̂1 + i

2
[K̂2, ĤF ]ρK̂1 − Ĥ (2)

eff ρK̂1.

(C23)

The first member of the right-hand side cancels nonunitary
contributions of Eq. (C20). The second and third terms of the
right-hand side yield a null time average. We eventually get
the simple relation

L(3)[ρ] = − 1
2 {{ĤF , K̂3}, ρ} + ĤF ρK̂3 + K̂3ρĤF , (C24)

where we have used Eq. (A4). These contributions can be
evaluated thanks to Eq. (C18). Only the terms rotating at a

FIG. 5. Higher-order effective master equation vs full quantum
evolution. Shown are the instantaneous density-matrix population
ρee(t ) as a function of time (solid gray line, in arbitrary unit T0),
time-convoluted population ρex(t ) (solid black line) obtained from
the exact unitary evolution, and time coarse-grained density-matrix
population ρee(t ) obtained from the second-order (dotted black
line) and third-order (dashed black line) effective master equation.
Parameters: initial density matrix ρ0 = |e〉〈e|, constant and fast
Hamiltonians Ĥ0 = ω0σz and ĤF (t ) = �[cos(ω1t ) + cos(ω2t )]σx.

Results obtained for the frequencies: ω0 = 0.5 × (2π )/T0, � =
3.5/T0, and ε � 0.18. The frequencies ω1, ω2, and ωc are the same
as in Figs. 2 and 3 of the main text.

single Floquet frequency contribute to the time averaging. One
obtains L(3)[ρ] = h(t )(ρ − σxρσx ) with

h(t ) = 8ω2
0�

2
∑

m,εm,n,εn

εmei(εmωm+εnωn )t

iω3
m

δεm+εn,0. (C25)

In the bichromatic case, we find the additional third-order
nonunitary contribution

L(3)[ρ] = 16ω2
0�

2

(
1

ω3
1

− 1

ω3
2

)

× sin[(ω2 − ω1)t](ρ − σxρσx ). (C26)

This “third-order” correction is actually of fourth order in ε.
A complete treatment of the fourth-order corrections should
also include the following contributions in the right-hand
side of the effective equation: iE2[ [Ĥ0, E2[ρ]] ] − Ė3[E2[ρ]] +
∂τ δρ (4)(t, τ ) + ∂tδρ (5)(t, τ ). The derivation of these fourth-
order terms is a long but straightforward calculation, beyond
the scope of this paper.

Figure 5 represents the instantaneous (solid gray line) and
time-convoluted density-matrix population (solid black line)
as a function of time, confronted to the predictions of the
second- (black dotted line) and third-order (dashed black line)
effective master equations. The latter corresponds to the addi-
tion of the contribution L3[ρ] (C26) to the right-hand side of
the second-order effective master equation (8).

We have used an initial density matrix ρ0 = |e〉〈e| corre-
sponding to a pure eigenstate of the constant Hamiltonian Ĥ0.
This initial state is also an eigenstate of the effective Hamil-
tonian Ĥ eff (t ) in the presence of the Floquet driving. Hence,
the unitary part of the quantum dynamics leaves the initial
density matrix invariant, and the observed time dependence
in the population comes exclusively from the nonunitary
contributions. As in Figs. 1–3 of the main text, the initial
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condition for the considered effective equations is obtained
from a convolution with the instantaneous solution ρ(t ) as
ρ0 = ∫ +∞

−∞ dt f (−t )ρ(t ). Figure 5 reveals that the higher-order

correction L(3)[ρ] to the effective master equation consid-
erably enhances its accuracy in the prediction of the time
coarse-grained dynamics.
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