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Probabilistic error cancellation for dynamic quantum circuits
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Probabilistic error cancellation (PEC) is a technique that generates error-mitigated estimates of expectation
values from ensembles of quantum circuits. In this work we extend the application of PEC from unitary-only
circuits to dynamic circuits with midcircuit measurements and classically controlled (feedforward) Clifford
operations. Our approach extends the sparse Pauli-Lindblad noise model from characterizing gates to charac-
terizing target channels containing midcircuit measurements and feedforward while accounting for nonlocal
measurement crosstalk in superconducting processors. Our mitigation and monitoring experiments provide a
holistic view for the performance of the protocols developed in this work. These capabilities will be a crucial
tool in the exploration of near-term dynamic circuit applications.
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I. INTRODUCTION

Extracting the most out of near-term quantum proces-
sors requires careful consideration of noise and hardware
constraints. In recent years, the use of midcircuit measure-
ment and conditional quantum operations (feedforward) has
been shown to provide a distinct benefit over unitary-only
circuits in enabling efficient computations in experiment, en-
compassing a variety of applications in topological quantum
computing, quantum simulations, and machine learning [1–7].
However, midcircuit measurements and real-time control flow
often introduce new sources of noise that are not yet well
understood. Indeed, in the absence of practicable quantum er-
ror correction, quantum algorithms and applications must rely
on error characterization [8–13] and mitigation techniques
[14–19] to address noise in order to fully realize the benefits
of dynamic quantum circuits.

Probabilistic error cancellation (PEC) is a technique to
learn and mitigate intrinsic noise in quantum channels. As
introduced in Refs. [14,15], the protocol can compute unbi-
ased estimators of observable expectation values by sampling
noisy circuits from a probability distribution that is related to
noise in the circuit. In conventional implementations of PEC
[15,20,21], the target circuit operations have been unitary in
the absence of noise, and measurements are pushed to the end
of the computation. In this work, we extend this technique to
quantum channels where the target channel consists of mid-
circuit measurements as well as Pauli operations conditioned
on these measurements (feedforward). We enforce that these
midcircuit measurements are projective in the desired basis,
and our procedure ensures that these noise channels can be
factorized into an ideal channel and intrinsic noise suitably
twirled to yield Pauli channels. Our method characterizes the
Pauli channel by solving a full-rank inverse problem to ex-
tract unique model coefficients from measured nonzero Pauli
fidelities. Subsequently, the mitigation procedure is a direct
extension to what was presented in Ref. [15].

In what follows we outline the learning protocol for
characterizing channels with midcircuit measurements and

feedforward and present experimental results to confirm
its efficacy as a new component of the PEC framework.
Experimentally we find that, unlike two-qubit gate noise,
measurement-induced noise is not limited to nearest-neighbor
interactions. By using the appropriate readout topology to
define a sparse Pauli Lindblad noise model, we mitigate noise
for a joint channel consisting of midcircuit measurements
(on ancilla qubits) and unmeasured (data) qubits. Under a
unified PEC protocol, we further experimentally demonstrate
error mitigation for a seven-qubit Clifford circuit consisting
of unitary operations and midcircuit measurements. Moving
beyond midcircuit measurements, we learn noise for a single
feedforward operation and perform error mitigation on dy-
namic circuits.

II. BACKGROUND

The PEC framework [14] estimates noise-free observ-
able expectation values by linearly combining noisy circuits
sampled from an appropriately constructed probability distri-
bution that, on average, cancels the effect of intrinsic noise.
The protocol in Ref. [15] assumes that intrinsic noise can be
reshaped to Pauli noise via twirling [22–26]. We use a Pauli-
Lindblad parametrization of the Pauli channel where the noise
model is expressed as a product of individual, commuting
Pauli channels. Each channel is associated with a set of Pauli
terms, K indexed by l , with associated sample coefficients wl ,
and model coefficients λl � 0. Following Ref. [15], we write
a Pauli-Lindblad noise model as

�(ρ) = ©
l∈K

[wl · +(1 − wl )Pl · P†
l ]ρ, (1)

wl := 1 + exp(−2λl )

2
, (2)

where l ∈ K indexes all the Pauli terms in the noise model, ©
denotes a composition of maps, and · denotes a placeholder
such that T (·)ρ = T (ρ). Subsequently, the Pauli fidelity fq

measured in the Pauli basis specified by the set F and indexed

2469-9926/2024/109(6)/062617(13) 062617-1 ©2024 American Physical Society

https://orcid.org/0000-0002-8587-9979
https://orcid.org/0000-0001-8871-4638
https://orcid.org/0000-0003-1458-2585
https://ror.org/0265w5591
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.062617&domain=pdf&date_stamp=2024-06-24
https://doi.org/10.1103/PhysRevA.109.062617


RIDDHI S. GUPTA et al. PHYSICAL REVIEW A 109, 062617 (2024)

by q ∈ F is

fq = exp

⎛
⎝−2

∑
〈q,l〉sp=1

λl

⎞
⎠, (3)

where 〈q, l〉sp is unity if Pauli terms anticommute, {Pq, Pl} =
0, and zero otherwise. Techniques for estimating Pauli fideli-
ties of a twirled channel are well established [27–30], where
the central idea is to measure fidelities after repeated applica-
tions of the channel in some Pauli basis. An exponential decay
of the measured fidelity after k repetitions of the channel is fit
to the form A f k

q to estimate state preparation and measurement
error A and learned fidelity fq.

The model coefficients �λ are related to the Pauli fidelities
�f by the system of equations,.

− ln( �f )/2 = M�λ, (4)

where matrix elements Mq,l = 〈q, l〉sp store commutation re-
lations for Pq, Pl for all q ∈ F , l ∈ K. We fit the model by
extracting the model coefficients �λ � 0 from the list of learned
fidelities by solving a non-negative least-squared minimiza-
tion corresponding to this linear system.

Based on these learned model coefficients, PEC is carried
out by inserting random Paulis sampled from an appropriately
constructed “inverse” distribution. The inverse, �−1, of the
overall channel reduces to the product of the (commuting)
individual inverse channels,

�−1(ρ) := γ ©
l∈K

[wl · −(1 − wl )Pl · P†
l ]ρ, (5)

γ := exp

(∑
l∈K

2λk

)
, (6)

where γ is a product of individual normalizing factors for each
inverse channel. The sampling overhead required to achieve
an unbiased estimate of the noiseless expectation value to
some target uncertainty is γ 2, and γ � 1 equals unity only
in the noiseless case.

As outlined in Ref. [15], the net effect of inverting the
average evolution of the channel under noise is achieved by
inserting Pauli terms sampled from a renormalized inverse
distribution and appropriately rescaling counts data in clas-
sical postprocessing.

III. PEC FOR CHANNELS WITH MIDCIRCUIT
MEASUREMENTS AND FEEDFORWARD

In this section, we extend the learning procedure such
that one can learn joint linear channels containing unitary
operations, mid-circuit measurements and feedforward. Of
particular interest in PEC for channels with midcircuit mea-
surements and feedforward (MPEC) is an appropriate choice
of a sparse noise model via the set of noise generators K.
Unlike two-qubit gate noise in unitary PEC, measurement-
induced noise on data qubits is not naturally limited to
qubit-qubit nearest-neighbor interactions. Details about the
device readout configuration combined with calibration ex-
periments are both used to reveal the relevant topology for
defining K prior to an experiment, illustratively discussed in
Fig. 1.
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FIG. 1. Sparse noise-model topologies for gates (a and b) and
measurements (c and d) on ibm_sapporo (see Appendix B). (a) CNOT

gate on physically connected edges (black solid) characterized by
2Q randomized benchmarking with error per gate (red shaded) plot-
ted in (b). These gate interactions are typically nearest neighbor
and provide a way to impose sparsity on noise models for unitary
PEC. (c) Frequency multiplexed readout buses on the device (shaded
circles). Within a single output bus (orange circles), qubit pairs
whose measurement resonator frequencies are within <65 MHz in
resonator-frequency space (solid lines) are compared to qubit pairs
with far-detuned measurement resonators (dashed lines). The proba-
bility of the data (spectator) qubit in |1〉 state, P(1), is measured via
a pulse sequence Xπ/2-τ/2-Xπ -τ/2-Yπ/2 for a fixed delay τ , while a
concurrent, high-amplitude measurement pulse is applied on the an-
cilla qubit (e.g., Q7) during the first delay period only. Shaded edges
represent absolute error between measured and ideal P(1) for qubit
pairs in (d). (d) As an illustration, deviations from ideal P(1) = 0.5
(blue shaded) are plotted for all spectators when Q7 is measured with
fixed amplitude. Dominant pairwise measurement-induced crosstalk
is anticipated for nearest neighbors in resonator frequency space for
the same output bus (e.g., Q0,Q7). Of all edges in (a), crosstalk in
(c) is only observed for Q10,Q7 for a high measurement amplitude
on Q7.

We define an ideal channel on both data (spectator) and
ancilla (measured) qubits as

ξ (ρ) :=
∑

m

C(m)	mρ	mC†(m)
, (7)

where 	m are projectors measuring only a subset of (ancilla)
qubits satisfying 	m	m′ = δm,m′ ,

∑
m 	m = 1, and 	m =

	†
m, while C(m) is a Pauli feedforward operation associated

with classical ancilla outcomes m. In Appendix A 5 we fur-
ther argue any classically controlled Clifford circuit can be
decomposed into unitary and nonunitary PEC layers where

062617-2



PROBABILISTIC ERROR CANCELLATION FOR DYNAMIC … PHYSICAL REVIEW A 109, 062617 (2024)

(a)

(c)
Repeated     times

XI
YZ XZ
YI IZ

ZI
ZZ

(d)

(e)

(b) (f)

FIG. 2. Learning and mitigation validation for two qubits. (a) The learning protocol for a target channel with intrinsic noise �̃, midcircuit
measurement outcome m, and a feedforward operation C (m) implemented by controller f (m, P). We add a Z-gate with 50% probability (Z50%) to
completely dephase postmeasurement states and additionally perform Pauli twirling (Pi). The twirled channel is repeated k times and measured
in a Pauli basis B, yielding a measurement of eigenvalues fq, q ∈ F of a diagonalized Pauli transfer matrix. (b) Decay in A f k

q vs depth k using
256 circuit samples with 128 shots per circuit for all B with nonzero fq, A. Experimental data (fitted predictions) in markers (dashed lines)
using Q0,7 on ibm_sapporo, where Q7 is measured without feedforward. Inset (e) depicts model coefficients λl , l ∈ K from fitted fidelities
fq inverted using non-negative least squares. (c) A mitigation validation experiment, where learning circuits in (a) are modified by inserting
a mitigating layer of Paulis sampled from the inverse noise distribution (orange). (d) Decay in A f k

q vs depth k, where the number of random
circuit samples are increased exponentially ∝ γ 2k for k repeated applications. In contrast to (b), fidelity decay is suppressed by insertion of a
mitigation layer for all Pauli bases. (f) Deviations of fitted fq from unity vs Pauli basis plotted for learning circuits (blue), mitigation-validation
circuits (orange), and learning circuits interleaved during mitigation-validation circuits (gray). Error bars represent estimates of standard
deviation from bootstrapping. Batches of learning and mitigation validation experiments are repeated every 3 h for 13 trials.

feedforward operations are at most single-qubit Clifford feed-
forward operations, for which MPEC continues to hold. The
overhead of learning the noise for each conditional postmea-
surement branch [8,31] can therefore be circumvented at the
expense of inserting additional controlled NOT (CNOT) gates.
We enforce factorizability of this ideal channel with noise,

ξ̃ (ρ) := (ξ ◦ �̃)(ρ), (8)

by Pauli Z twirling [denoted by Z50% in Fig. 2(a)], which ap-
plies a completely dephasing channel to the measured qubits.
Namely, we apply a Pauli Z with 50% probability immediately
after the measurement. This procedure acts identically to an
ideal measurement in the Z basis and enforces that learning
noise generators corresponding to phase errors on the post-
measurement state [32] is not relevant to our procedure.

The resulting channel is subsequently twirled over the full
Pauli group such that the reshaped intrinsic noise is repre-
sented by a diagonalized Pauli transfer matrix. Appendix A 2
shows that Pauli twirling elements can be pushed through
measurement operations [8]. In particular, the Pauli twirl ap-
plied on either side of the measured qubit is identical, and we
additionally flip the classical outcome on each bit if the twirl
was an X or a Y . Ignoring any classical state discrimination
error during readout, one obtains from Eq. (A29) that

Tw[ξ̃ ] = �m∈MC(m)	(m)E[P†
i �̃(Pi · P†

i )Pi]i	
†
(m)C

(m), (9)

where Tw[·] represents twirling operation applied to an input
channel, Pi represent elements sampled uniformly and ran-
domly from the Pauli group, and E denotes an averaging over
these elements. In the above, we note that while the intrinsic

noise is diagonalized, the combined Pauli transfer matrix of
the channel and the noise is not diagonal. This issue can be
addressed by noting that single-qubit gates are assumed to be
noiseless. Pauli feedforward operations can thus be replaced
during learning by delays whose duration matches that of
a single-qubit gate. Even though the feedforward operations
are trivially identity, these operations trigger real-time control
flow processing on hardware, for example, introducing mid-
circuit idling times of order 700 ns on ibm_peekskill. With
C(m) ≡ I for all m, the full channel is diagonal and takes the
form

�m∈M	(m)E[P†
i �̃(Pi · P†

i )Pi]i	
†
(m). (10)

We summarize the learning protocol in Fig. 2. The learning
protocol for measuring fidelities in some Pauli basis B speci-
fied by the set F is shown in Fig. 2(a). An exponential decay
of the measured fidelity is observed after k repetitions of the
channel. These measurements are fitted with a decay curve of
the form A f k

q to estimate state preparation and measurement
error A and fidelities fq. An example of experimental fidelity
estimation is shown in Fig. 2(b). Here, we exclude Paulis
in F where fidelities are zero due to the effect of midcir-
cuit measurement. These zero fidelities correspond to infinite
model coefficients yielding an ill-defined inverse problem,
and their exclusion captures the fact that we do not attempt
to learn or mitigate the information lost during the midcircuit
measurement itself.

Measured fidelities in Fig. 2(b) are inverted to yield values
of the model coefficients in Fig. 2(e). In general, excluding
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FIG. 3. (a) A Clifford circuit with unitary (green) and nonunitary
(purple) PEC layers on ibm_sapporo; Q1,7 are measured midcircuit
via alignment barriers (black lines). Circuits are dynamically decou-
pled (DD); if applicable, DD pulses are applied within PEC layers.
For MPEC, readout topology is monitored for 12 h to define Q4,1 and
Q0,10,7 as measurement layers; Q2,6 are unmitigated. (b) Weight-3
stabilizers in the X, Z bases are measured by mitigating all layers
(purple); only unitary PEC layers (green) and an unmitigated but
twirled circuit (gray) using ∼10 000 samples collected in seven trials

zero-fidelity Pauli terms from F yields a wide M matrix with
no unique solutions. Consistent with the application of Z50%

above, we additionally exclude noise terms in K that corre-
spond to ancilla phase errors in the postmeasurement state.
Due to the absence of postmeasurement ancilla phase error
after full dephasing and excluding zero-fidelity Pauli terms in
F collectively ensures that M is square and full rank. Thus,
the solutions are uniquely obtained through a non-negative
least squares fit. For example, for a single measured qubit,
we exclude λY , λZ since phase errors are absent in the post-
measurement state. The fidelities fX , fY are omitted since they
are trivially zero, leading to a singleton matrix M = [1]. An
example for two qubits is shown in Fig. 2(e).

We perform a full characterization of the mitigation pro-
cedure using mitigation validation experiments in Figs. 2(c),
2(d), and 2(f). The learning circuits are modified such that a
mitigation layer (orange) is added before each twirled layer
(blue), yielding Fig. 2(c). Using this circuit, we scan the
performance of the mitigated layer as a function of k repeated
applications of the channel. One anticipates that unity fideli-
ties are obtained if the model coefficients are correctly learned
under ideal mitigation. Experimental results are shown in
Fig. 2(d). Under repeated application of the channel, any
errors arising from a lack of sufficient samples for mitigation
grow exponentially as γ 2k . To address this issue, the number
of random circuit samples is increased exponentially with
k for Fig. 2(d). Reduction of infidelities from unmitigated
experiments (blue, gray) to error-mitigated experiments (or-
ange) provides evidence for the efficacy of our procedure in
Fig. 2(f).

IV. DEMONSTRATIONS

We now extend the application of our protocols to circuits
with both unitary and nonunitary layers. Our first experiment
represents a foundational tile of the two-dimensional (2D) sur-
face code, as shown in Fig. 3(a). These types of circuits have
the same features as sophisticated nonunitary circuits that
appear, for example, in topological quantum computing and
many-body quantum simulations, where it is difficult to effi-
ciently prepare ground states of quantum systems via unitary
operations alone. Our demonstration represents a scaled-down
version of circuits relevant to investigating ground states of
a perturbed 2D surface code on a heavy-hex topology. In
Fig. 3(a), the X stabilizer of the surface code is satisfied by
preparing all data qubits in the |+〉 state, and two Z parity
checks are performed. This tile has the advantageous property
that site and plaquette operators are weight-3 and symmetric,
and recovery operations consist of at most two feedforward

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
over 2 days. Recovery X operations for ancilla-controlled Z-parity
checks are implemented in software. (c) γ vs trial index for PEC
layers. (d and e) Learned model coefficients for Q0,10,7 and Q4,1,
respectively. (f) Excited state population P(1) measured by a fre-
quency sweep of a Stark-shifted T1 experiment vs time [33]; dark
blue regions near Q7 frequency (red dots) show a persistent two-level
system (TLS) near Q7. Error bars show bootstrapped standard devi-
ations for all mitigation data in (b) and a randomly chosen learning
run in (d) and (e).
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single-qubit Paulis. The ideal Ô expectation value can be
computed in software, where the feedforward operation can
be implemented entirely as a sign change in postprocessing in
lieu of dynamic real-time control on hardware. That is,

〈O〉 := Tr[Ôξ (ρ)] =
∑

m

Tr[C†(m)ÔC(m)	mρ	m],

=
∑

m

(−1)〈C
(m),Ô〉sp Tr[Ô	mρ	m]. (11)

Here, 〈C(m), Ô〉sp = 1 if the observable Ô and the adaptive
operation C(m) anticommute and zero otherwise.

Using our target circuit, we compare the expectation value
of the stabilizer generators under the PEC framework. The
readout topology was monitored in a manner similar to Fig. 1
prior to commencing these experiments on ibm_sapporo. This
monitoring data was used to define Q0,10,7 and Q4,1 as
two measurement layers; meanwhile, Q2,6 are not addressed
within the PEC framework but are dynamically decoupled in
all cases. These device-monitoring activities are summarized
in Appendix B. The noise learning reveals that γ values
for unitary layers dominate those of measurement layers in
Fig. 3(c), where higher values of γ indicate greater intrinsic
noise strength. For measurement layers, these learned model
coefficients are shown for a single learning run in Figs. 3(d)
and 3(e). Notably, it is seen that for a 3Q measurement layer,
all weight-3 noise-model coefficients are nearly zero, suggest-
ing that restricting the noise model to low-weight generators
might be viable for future experiments with similar measure-
ment amplitudes.

Next, we test the efficacy of the learned noise model
and protocols for the circuit described in Fig. 3(a). Bar-
ring one observable, the Q7-controlled Z stabilizer, the other
stabilizers show good agreement with the ideal result after
MPEC [Fig. 3(b)]. In Fig. 3(f) we observe that Q7 is sub-
ject to a persistent interaction with a two-level system (TLS)
during the period of data collection. From monitoring ex-
periments reported in Appendix C, the gradual development
of an interaction between an ancilla qubit and a stray TLS
appears to correlate with the deteriorating performance dif-
ferential between mitigated and raw expectation values of the
ancilla-controlled Z stabilizer. We speculate that TLS-induced
readout error [34] increases the probability of incorrect recov-
ery operations applied on the basis of ancilla measurements.
Noting that all two-qubit ancilla outcomes are equiprobable
for the target circuit, we postselect on the “00” outcome, ob-
serving some improvement in the mitigated expectation value
of the Z stabilizer by discarding 75% of samples. These diag-
nostic observations suggest that the effects of TLS interactions
are not fully captured by the learned noise model.

Finally, we characterize fast, high-fidelity, midcircuit mea-
surement and feedforward using MPEC. These dynamic
circuit capabilities are not only a prerequisite for quantum
error correction, but can be used to generate highly entan-
gled quantum states using short-depth quantum circuits [1,6].
Dynamic circuits have widespread applications including gen-
erating resource states for fault-tolerant quantum computing
[3], performing tasks in quantum machine learning [5], as
well as topological quantum computing and many-body sim-
ulations [7]. To this end, we combine MPEC with hardware

(b) (c) (e) (f)

(d) (g)

M
od

el
C

oe
ff ff

(a)

Trial index Trial index

UL ML + FF

FIG. 4. Error mitigated feedforward (FF) operations on
ibm_peekskill qubits Q10,7 where Q7 is measured; circuits are
not dynamically decoupled. (a) Minimal target circuit comprising
a CNOT layer and hardware feedforward initialized with α = 1 for
(b)–(d) [α = 0.5 for (e)–(g)] on the left (right) column; experiments
in columns run sequentially. (b and e) Expectation value 〈Z〉 when
PEC mitigation is applied to all layers (purple); only unitary layers
mitigated (green), or the unmitigated but twirled circuit (gray). (c
and f) γ vs trial index for unitary layer (UL) and measurement layer
(ML) with feedforward for interleaved learning and mitigation trials.
(d and g) Learned model coefficients for a single learning instance.
All FF operations incur an unaddressable communication delay of
∼700 ns; a dominating phase ZI error on the data qubit is observed
in this case. Error bars represent bootstrapped standard deviation
using 2400 (3900) random circuit instances, 128 shots per circuit for
|0〉 (|+〉) initial state.

feedforward [3] in Fig. 4 employing Q10,7 on ibm_peekskill.
We consider two different target circuits during the miti-
gation step parametrized by α in Fig. 4(a). With α = 1 in
Figs. 4(b)–4(d), the CNOT application is trivial, and no clas-
sically controlled X operation is applied in the ideal case. If
instead the initial state is prepared with α = 0.5 in Figs. 4(e)–
4(g), the state on the data qubit is susceptible to phase error
and ancilla qubit outcomes are equiprobable, resulting in non-
trivial recovery operations. For all mitigation experiments, the
learning procedure is identical and unaffected by the choice
of α.

In Fig. 4, the MPEC protocol (purple) outperforms all other
experiments (green, gray) as depicted by Figs. 4(b) and 4(e).
This performance differential is further contextualized with
a higher γ for the nonunitary layer in Figs. 4(c) and 4(f).
The learned model coefficients in a single trial Figs. 4(d) and
4(g) are dominated by phase error on the data qubits, ZI ,
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confirming our sanity check that phase shifts and dephasing
noise during real-time control delays are twirled to yield phase
errors that dominate the channel. Noting that the data qubit
is projected into an eigenstate of the Z operator after the
ancilla is measured, the state of the data qubit after midcircuit
measurement is immune to phase errors introduced during
communication with the real-time controller. This observation
suggests that the performance gains accrued under MPEC
cannot be attained simply through mitigating idling error dur-
ing real-time communication.

The inclusion of midcircuit measurements and feedforward
raises the possibility that classical errors may arise on the clas-
sical wire after measurement. As an extreme example, readout
clouds for different states of the qubit may be well separated
[35,36] but rotated relative to a linear discriminator applied
in software, leading to a classical state discrimination error.
Such errors are purely classical in origin and therefore they
are not amplified and learned in our procedure. Nevertheless
these errors may affect the correctness with which recovery
operations are applied in hardware and could account for the
offset from the ideal value of unity in Fig. 4(e) under MPEC.
Signatures of classical errors on the control wire are discussed
further in Appendix D, and addressing this type of classical
discriminator error is the subject of future work.

V. CONCLUSION

Our work establishes the PEC framework as a unified
approach for error mitigation for dynamic circuits contain-
ing midcircuit measurements and Clifford feedforward. We
demonstrate a scalable, experimentally viable procedure for
learning noise in dynamic circuits. We find that by appropri-
ately characterizing the readout topology relevant for MPEC
on a particular device, the learning procedure remains scalable
while also taking into account non-nearest-neighbor inter-
actions. Our target demonstrations test the efficacy of our
protocols, and in conjunction with device-monitoring exper-
iments, provide an insight into observed nonidealities. Our
techniques present a valuable contribution to realizing benefits
of dynamic quantum computation.

The codebase and data used in this study are available upon
reasonable request.
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APPENDIX A: SUPPORTING THEORETICAL
ANALYSIS FOR MPEC

1. Definitions

We establish notation and definitions in this section for the
main text and the Appendix. As noted in the main text, the
ideal map ξ defined on a bipartite system describing unmea-
sured data qubits and measured ancilla qubits is defined as

ξ (ρ) := �m∈MC(m)	(m)ρ	
†
(m)C

(m)†, (A1)

where m is the outcome of projectively measuring the ancilla
qubit, and M is the set of all possible outcomes on ancilla
qubits, i.e., M := {0, 1} for a single qubit. The projector 	(m)

labels the state of the system after an ancilla qubit measure-
ment, 	(m)ρ	

†
(m), and C(m) is a Pauli feedforward operation

triggered by the outcome m. For clarity, both operations are
defined on data and ancilla qubits,

	(m) := I ⊗ |m〉〈m|, (A2)

C(m) := C(m)
D ⊗ C(m)

A . (A3)

As discussed in the main text, we enforce that all phase
information is lost on a postmeasurement state by adding a
Z with probability 50% immediately after each midcircuit
measurement. This action enforces that a strongly projec-
tive measurement occurs in the computational basis and
completely dephases the postmeasurement state, yielding
	mρ	†

m. Defining some intrinsic noise �̃ and applying a Z50%

directly after measurement, one writes the noisy measurement
channel ξ̃ as

ξ̃ := ξ ◦ �̃. (A4)

Performing Pauli twirling on a channel χ is defined by the
operation

Tw[χ ] := E[P†
i χ (Pi · P†

i )Pi]i, (A5)

where Pi represent elements of the Pauli group indexed by
i, and E denotes an averaging over these elements. For a
bipartite system of data and ancilla qubits, we use superscripts
to denote individual Paulis in each subsystem, for example,

Pi := P(D)
i ⊗ P(A)

i . (A6)

The Pauli transfer matrix of any channel χ shows how Pauli
coefficients of a n-qubit state transforms under the channel,
with matrix elements given by

Rχ

a,b := 1

4n
Tr[Paχ (Pb)]. (A7)

An additional function that will be useful is the classical
bitwise negation of the projective measurement outcome m
according to some condition x,

η(m|x) :=
{

m if x
¬m, if not(x) . (A8)
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This negation function will be used to describe both ideal
operations and stochastic functions on the classical wire as-
sociated with the raw measurement outcome m. Finally, the
notation δ(a,b) is the Kronecker delta function, which is unity
if a = b and zero otherwise.

2. Twirling measurements

We now describe how to push a twirl through a projective
measurement in the computational basis.

Suppose we sample Pi uniformly at random and apply it to
all qubits before a midcircuit measurement 	m is performed.
If P(A)

i on a single ancilla qubit before measurement is either
I or a Z , then the same twirl can be applied after the measure-
ment as all phase information is lost. Alternatively, if P(A)

i is
either X or a Y before measurement, then again applying Pi

after measurement undoes the twirl on the measured quantum
wires, assuming all phase information is lost perfectly. How-
ever, the ancilla outcome m also needs to be flipped and the
twirl-adjusted classical outcome is denoted by ¬m. Both of
these cases can be summarized by using η(m|x) to define a
function f (m, P),

f (m, P) := η(m|P ∈ {I, Z}), (A9)

and it is useful to note that ¬ f (m, P) = f (¬m, P) for single
qubits. Furthermore, the properties

X |m〉〈m|X = |¬m〉〈¬m|, (A10)

Z|m〉〈m|Z = |m〉〈m| (A11)

imply that a term of the form Pi	 f (m,P(A)
i )Pi reduces to the

projector 	m,

Pi	 f (m,P(A)
i )Pi = Pi	η(m|P(A)

i ∈{I,Z})Pi (A12)

=
{

I ⊗ P(A)
i |m〉〈m|P(A)

i , P(A)
i ∈ {I, Z}

I ⊗ P(A)
i |¬m〉〈¬m|P(A)

i , P(A)
i ∈ {X,Y }

(A13)

=
{

	(m), P(A)
i ∈ {I, Z}

	¬(¬m), P(A)
i ∈ {X,Y }

(A14)

= 	(m),∀Pi. (A15)

Hence, the twirl Pi is pushed through the measurement
projector,

Pi	 f (m,P(A)
i ) = 	(m)Pi. (A16)

With this notation, one can ask whether a Pauli feedforward
operation C is triggered by twirl-adjusted measurement out-
come f (m, P(A)

i ) or the original measurement outcome. One
pushes a Pauli twirl through the triggering condition in nota-
tion as

PiC
f (m,P(A)

i )	 f (m,P(A)
i ) = (

PiC
f (m,P(A)

i )Pi
)
Pi	 f (m,P(A)

i )

= (PiC
(m)Pi )	(m)Pi, (A17)

where the twirl is pushed through the measurement and the
triggering condition on the feedforward operation is adjusted
accordingly in the last step. Conjugating a Pauli feedforward

operation with Pauli twirls gives

PiC
(m)Pi = (−1)〈C

(m),Pi〉spC(m), (A18)

where 〈A, B〉sp denotes the symplectic inner product, which is
0 if A, B commute and 1 if they anticommute. Thus, pushing
a Pauli twirl through measurement and Pauli feedforward is
given by

PiC
f (m,P(A)

i )	 f (m,P(A)
i ) = (−1)〈C

(m),Pi〉spC(m)	(m)Pi. (A19)

Classical errors on the control wire may transform the
true measurement outcomes during classical processing [e.g.,
an outcome subject to state-independent and symmetric dis-
criminator error with error probability r ∈ [0, 0.5)]. We unify
these choices by writing Cg(m,Pi ), where g(m, Pi ) is a general
classical outcome to trigger classical control for each twirl
element Pi,

g
(
m, P(A)

i

)
: = η

(
f
(
m, P(A)

i

)|u < 1 − r
)
, u ∼ Uniform(0, 1)

(A20)

=
{

f
(
m, P(A)

i

)
, with prob. 1 − r

¬ f
(
m, P(A)

i

)
, with prob. r.

(A21)

=
{

f
(
m, P(A)

i

)
, with prob. 1 − r

f
(¬m, P(A)

i

)
, with prob. r.

(A22)

= f
(
η(m|u < 1 − r), P(A)

i

)
, u ∼ Uniform(0, 1),

(A23)

where u is sampled uniformly for each instance. One notes
that C f (η(m|u<1−r),P(A)

i ) → C f (m,P(A)
i ) for no discriminator error

r → 0.
With this in mind, we can perform a twirling operation on

the noisy measurement channel as follows:

Tw[ξ̃ ] = E[P†
i ξ̃ (Pi · P†

i )Pi]i = E[P†
i (ξ ◦ �̃)(Pi · P†

i )Pi]i,

(A24)

= �m∈ME
[
P†

i Cg(m,P(A)
i )	 f (m,P(A)

i )�̃(Pi · P†
i )

×	
†
f (m,P(A)

i )
Cg(m,P(A)

i )†Pi
]

i. (A25)

Using Eq. (A19), we push the twirl through the measurement
as well as the triggering condition for feedforward,

Tw[ξ̃ ] = �m∈ME
[
P†

i C f (η(m|u<1−r),P(A)
i )	 f (m,P(A)

i )�̃(Pi · P†
i )

×	
†
f (m,P(A)

i )
C f (η(m|u<1−r),P(A)

i )†Pi
]

i, (A26)

= �m∈ME
[
Cη(m|u<1−r)	(m)P

†
i �̃(Pi · P†

i )

× Pi	
†
(m)C

η(m|u<1−r)†
]

i, (A27)

where Pauli twirls are pushed through the triggering condition
as well as the measurement; the signs cancel, and the su-
perscripts on feedforward operations capture classical errors
on the control wire. The final form of the twirled channel
is

Tw[ξ̃ ] = �m∈ME
[
Cη(m|u<1−r)	(m)P

†
i �̃(Pi · P†

i )

× Pi	
†
(m)C

η(m|u<1−r)
]

i, (A28)
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= �m∈MCη(m|u<1−r)	(m)E[P†
i �̃(Pi · P†

i )Pi]i

×	
†
(m)C

η(m|u<1−r), (A29)

≡ ξ ◦ �, (A30)

where � := E[P†
i �̃(Pi · P†

i )Pi]i is the twirled noise.
While the noise is diagonalized, the full Pauli transfer

matrix of the ideal channel and noise ξ ◦ � is not diagonal,
irrespective of discriminator error rate r. We assume that there
is no feedforward operation on the ancilla qubits, yielding

RTw[ξ̃ ] = Rξ R� (A31)

R�
a,b : = faδa,b (A32)

Rξ

a,b : = 1

d
�mTr

[
PaC

η(m|u<1−r)	(m)Pb	
†
(m)C

η(m|u<1−r)
]
,

(A33)

= 1

d
�mTr

[
(−1)〈C

η(m|u<1−r),P(D)
a 〉spPa	(m)Pb	

†
(m)

]
, (A34)

= δ(P(D)
a ,P(D)

b )�m(−1)〈C
η(m|u<1−r),P(D)

a 〉sp

×〈m|P(A)
a |m〉〈m|P(A)

b |m〉, (A35)

where Tr[InA ]Tr[P(D)
a P(D)

b ]/d = δ(P(D)
a ,P(D)

b ). Meanwhile, the

terms 〈m|P(A)|m〉 are nonzero only for

〈m|I|m〉 = 1,∀m, (A36)

〈m|Z|m〉 = (−1)m. (A37)

Using the relations above, and the (data, ancilla) basis order-
ing II, IZ, XI, XZ,Y I,Y Z, ZI, ZZ, IX, IY, . . ., we find that
the top quadrant of the Pauli transfer matrix (PTM) has
nonzero values and is block diagonal with the following 2 × 2
block for each m:

(−1)〈C
η(m|u<1−r),P(D)

j 〉sp

[
1 (−1)m

(−1)m 1

]
, (A38)

appearing along the diagonal, where j indexes Paulis on the
data qubit, and zero elsewhere. The summation of these block-
diagonal regions over m will eliminate off-diagonal elements
when the feedforward operations commute with the data-qubit
Pauli basis j, and nonzero diagonal elements will be retained
for the anticommuting case.

3. Identity feedforward

We will always have a diagonalized Pauli transfer ma-
trix if Cη(m|u<1−r) ≡ I, ∀m ∈ M. In this case of identity
feedforward,

Tw[ξ̃I ] = �m∈M	(m)E[P†
i �̃(Pi · P†

i )Pi]i	
†
(m) = ξI ◦ �.

(A39)

The transfer matrix Rξ̃I = RξI R� simplifies to

RξI

a,b = δ(P(D)
a ,P(D)

b )�m〈m|P(A)
a |m〉〈m|P(A)

b |m〉, (A40)

where the sum over m eliminates the off-diagonal terms,

�m〈m|P(A)
a |m〉〈m|P(A)

b |m〉 = δ(P(A)
a ,P(A)

b ), ∀P(A)
a , P(A)

b ∈ {I, Z},
(A41)

giving a diagonal PTM with seven non-zero Pauli fidelities in
the two-qubit case, excluding identity,

Rξ̃I

a,b = faδ(a,b) ∀P(A)
a , P(A)

b ∈ {I, Z}, else 0. (A42)

4. Pauli feedforward

In using feedforward operations, we note that the domi-
nant source of noise accrues as coherent phase errors and/or
dephasing on idling qubits due to classical communication
delays in the control flow. Once the control decision from
the real-time controller has been returned, any conditional
single-qubit gates are effectively noiseless to implement in
comparison with other error rates in the circuit.

All learning benchmarking circuits are thus run by using a
conditional delay operation. By scheduling a conditional de-
lay operation with a duration matching that of the single-qubit
gate, we can trigger the actual real-time control path accruing
additional idling times of 500–900 ns in the circuit. This noise
channel has a diagonalized Pauli transfer matrix identical to
that in section Appendix A 3.

During mitigation, the original nonidentity Pauli feedfor-
ward operations are used in the mitigation layer but with no
changes to the twirling procedures. Since mitigation layers
are applied before the noise channel, we see that the Paulis
sampled from the inverse distribution, denoted by ρM , act as
an input to the diagonalized intrinsic noise in Eq. (A29),

�m∈MCη(m|u<1−r)	(m)E[P†
i �̃(PiρMP†

i )Pi]i	
†
(m)C

η(m|u<1−r).

(A43)

This mitigation procedure for nonidentity feedforward is ver-
ified in experiment in Fig. 4 of the main text.

5. Clifford feedforward

In this section we analyze whether any classically con-
trolled Clifford circuit is permitted by our procedure. Any
Clifford feedforward circuit can be decomposed into clas-
sically controlled single-qubit Clifford and CNOT gates.
However, one concern is that the inclusion of classically con-
trolled CNOT gates in Clifford feedforward circuits could lead
to an exponential growth in the number of nested, classically
controlled two-qubit gates that are unfeasible to implement.

We propose that it is possible to replace a classically con-
trolled CNOT with a dynamic circuit of increased depth as
shown in Fig. 5. In particular, a classically controlled CNOT

is equivalent to a Toffoli gate with a measurement on one of
the control wires, as shown in Figs. 5(a) and 5(b). It is well
known that the three-qubit Toffoli gate can be decomposed in
terms of five two-qubit gates, and this number increases to six
if two-qubit gates are restricted to CNOTs [37–39].

For the given decomposition of a Toffoli gate [37] in
Fig. 5(c), one can push the measurement on the first control
wire through the unitary circuit, yielding Fig. 5(d). Noting that
a T -gate followed by measurement will not affect the proba-
bility of measurement outcomes and can be safely dropped,
any CNOT controlled by the first wire can be converted to a
classically controlled X gate. We confirm that the single-qubit
T †XT and T XT †X are Clifford.

Thus, to accommodate classically controlled Clifford cir-
cuits, MPEC only needs to accommodate single-qubit Clifford
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FIG. 5. (a) A classically controlled CNOT gate. (b) Representation of a Toffoli gate followed by a measurement on a control wire, using
the principle of deferred measurements. (c) Unitary decomposition of Toffoli gate using six CNOTs [37]. (d) Resulting decomposition of a
classically controlled CNOT by pushing measurement through the Toffoli gate, yielding a control qubit wire and secondary control via single
classical register. Dashed boxes denote that the classically controlled single-qubit gates T †XT and T XT †X are Clifford and the layers L4 and
L5 can be parallelized.

operations. Instead of applying the same Pauli Pi on both sides
of the feedforward operation C in Eq. (A18), a conjugate Pauli
Qi is computed straightforwardly up to phase QiC = CPi.
Thus, single-qubit classically controlled Clifford feedforward
operations are learned with identity-feedforward, followed
by mitigation with Clifford feedforward with the appropriate
computation of the conjugate Pauli twirl. Experimentally ver-
ifying the error mitigation efficacy of MPEC for classically
controlled Clifford circuits is the subject of future work.

APPENDIX B: DEVICE CHARACTERIZATION

All experimental data in the main text was collected on
IBM Falcon processors [40]. Characterization data for all
devices used for figures of the main text are summarized
in Tables I and II. Data collection for Figs. 1–3 spanned
a total of 2 weeks on ibm_sapporo r5.11 over a single re-
gion outlined in Fig. 1 of the main text. During this time,
monitoring experiments were interleaved with data collection
trials. Device coherence times for ibm_sapporo lie in the
range ∼50–80 µs. Meanwhile, CX gates, constructed from
echoed cross-resonance pulse sequence, are specified in one

direction, with the reverse directions accessed by addition of
single-qubit gates. Error per gate (EPG) is extracted from iso-
lated two-qubit randomized benchmarking (spectator qubits
idling) and is found to range from 0.97% to 1.44%. For
Fig. 4, data was collected on ibm_peekskill r8 with dynamic
circuits.

As reported in Fig. 1, we use measurement-induced
crosstalk experiments to illustrate readout topology selec-
tion for MPEC. In each measurement-induced crosstalk
experiment, a pulse sequence Xπ/2 − τ

2 − Xπ − τ
2 − Yπ/2 is

performed on the data qubit with a fixed wait time τ = 2 µs.
Meanwhile, a measurement pulse with a fixed measurement
amplitude is applied to the ancilla qubit at the start of the
delay in the sequence. The ideal probability of the data qubit
in the excited state, P(1) = 0.5, is compared to the experimen-
tally measured probability for a sufficiently high measurement
amplitude on the ancilla qubit, i.e., 2× to 4× the calibrated
measurement amplitude. The absolute value of this P(1) error
is reported in Fig. 1. For capacitively coupled qubit pairs,
readout cross-talk is observed only for the pair Q10,Q7 when
a high-amplitude measurement pulse is applied to Q7. Finally,
it is also not essential to use measurement-induced crosstalk

TABLE I. Average single-qubit gate benchmarks on section of ibm_sapporo (top panel) used in Figs. 1–3, and two qubits on ibm_peekskill
(last row) used in Fig. 4 in the main text.

Device Qubit Qubit frequency (GHz) Anharmonicity (MHz) T1 (µs) T2 echo (µs) EPG RO fidelity (%) P(0|1) P(1|0)

ibm_sapporo 0 5.0649 −342.5 60.2 24.7 0.000 408 99.1 0.012 0.006
ibm_sapporo 1 5.2202 −340.8 72.1 40.3 0.000 385 98.8 0.015 0.009
ibm_sapporo 10 5.1142 −341.8 59.4 95.2 0.000 469 98.9 0.014 0.007
ibm_sapporo 2 5.0945 −342.3 71.3 100.2 0.000 338 98.6 0.017 0.011
ibm_sapporo 4 5.3505 −337.8 60.6 100.7 0.000 304 98.6 0.016 0.012
ibm_sapporo 6 5.2850 −339.1 61.9 109.7 0.000 345 98.9 0.013 0.009
ibm_sapporo 7 5.1854 −340.7 71.4 94.8 0.000 533 96.2 0.043 0.033

ibm_peekskill 10 4.8376 −345.0 294.2 264.5 0.000 155 99.0 0.010 0.009
ibm_peekskill 7 4.7280 −346.7 315.0 296.7 0.000 381 98.3 0.020 0.013
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TABLE II. Average two-qubit gate benchmarks on section of
ibm_sapporo (top panel) used in Figs. 1–3 and gate CX7_10 of
ibm_peekskill used in Fig. 4 of the main text.

Device Gate CX length (ns) EPG (%)

ibm_sapporo 0_1 412.4 1.440878
ibm_sapporo 1_4 440.9 1.184191
ibm_sapporo 2_1 376.9 1.311541
ibm_sapporo 6_7 277.3 0.970609
ibm_sapporo 7_10 341.3 1.044530
ibm_sapporo 7_4 647.1 1.390997

ibm_peekskill 7_10 455.1 0.520371

experiments to select an appropriate readout topology and
other metrics could be considered instead, e.g., see Ref. [9].

APPENDIX C: SUPPORTING ANALYSIS FOR FIG. 3

We review the experimental considerations in collecting
and analyzing data for Fig. 3 in the main text. In Figs. 6 to
8 approximately ∼30 000 mitigation samples were collected
over ∼22 trials and data collection was monitored over ∼5
days. In Fig. 6 we monitor coupling of ancilla qubits to TLS
defects over data collection spanning many cycles of learning

and mitigation. Monitoring experiments suggest that a long-
lived TLS interaction develops for Q1 in Figs. 6(a)–6(c). This
interaction is signaled by the increase in readout error [34] and
gradual drop in Hellinger fidelity for preparing a Bell state for
edges relevant to our circuit. For this reason, only the first
seven trials are reported in Fig. 3, noting that the resulting
number of mitigation samples sufficiently exceeds the sam-
pling requirement estimated using the total γ for the circuit.
Meanwhile, Q7 appears to be subject to a TLS interaction
for the entire period in Figs. 6(d)–6(f) and it has the highest
readout error in Table I.

In all panels of Fig. 7, the x axis represents batches of
150 mitigation samples in temporal execution order that are
bootstrapped within each batch. Meanwhile the y axis de-
picts expectation values of the ancilla-controlled Z stabilizer
computed from samples in each batch for Q1 (top) and Q7
(bottom), to be visually compared with monitoring in Fig. 6.
With software recovery in Fig. 7(a), the difference between
mitigated and unmitigated expectation values declines to zero
as readout error on Q1 increases in Fig. 6(b). For the per-
sistently high readout error for Q7 in Fig. 6(e), there is
no difference between unmitigated and mitigated values in
Fig. 7(c).

We speculate that TLS-induced readout error [34] and/or
classical state discrimination errors on ancilla qubits could
increase probability in applying incorrect ancilla-controlled

FIG. 6. Ancilla-qubit monitoring for region of ibm_sapporo where the x axis of all panels represents the same monitoring period. Data
collection in Fig. 3 of the main text approximately corresponds to the first third of monitored device time in all panels of this figure. Top
(bottom) rows represent data for ancilla qubit Q1 (Q7). (a and d) Stray coupling to undesired TLS characterization by measuring P(1) in a T1
experiment (color scale) vs sweep of stark-shifted qubit frequencies (y axis) repeated in approximately 12-h intervals (x axis) [33]. Evidence
of a persistent long-lived TLS is observed for Q1 in the second half of the monitoring period, and on Q7 for the entirety of monitoring period.
(b and e) Readout error where qubit initialization involves either unconditional (crosses) or conditional (circles) reset. Gray vertical dashed
lines approximately denote the start time of repeated cycles of learning and mitigation where a cycle can contribute a maximum of 1500
mitigation samples to the overall database. (c and f) Hellinger fidelity for the Bell-test sequence H(1)(CX(1),(2) )k for k = 5 repetitions and three
rounds of conditional resets during initialization, where (i) is an index i = 1, 2 labeling any pair of qubits. The Bell test is repeated for pairs of
qubits associated with connected edges for each ancilla qubit; edges in the same PEC layer are tested in parallel to match conditions in actual
experiment.
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(a) (b)
Software recovery Post-selection

Batch index

Q
7 parity check

Q
1 parity check

(c) (d)

FIG. 7. Expectation values from batches of 150 random circuit samples vs temporal execution index; colored data markers represent
circuits using MPEC (blue), PEC (red), and unmitigated but twirled circuits (yellow). These experiments were interleaved with monitoring
experiments in Fig. 6. Top (bottom) rows depict Z-type parity checks controlled by Q1 (Q7). (a and c) Expectation values where recovery
operations are implemented in software and all circuit samples are retained. (b and d) Expectation values after postselection, where any
random circuit sample where midcircuit measurements on any ancilla yields a “1” outcome is discarded. Expectation values and error bars
representing a single standard deviation are estimated from bootstrapping within each batch.

(a) Temporal error bars (c)

Learning index

(b) Bootstrapped error bars

Post-selectionRecovery Post-selectionRecovery

Q7 Q1 Q7 Q1 Q7 Q1 Q7 Q1

FIG. 8. Stabilizer expectation value over all trials of the monitored experiment consisting of ∼30 000 samples collected over ∼22 trials
over a period of 5 days. (a) Expectation values computed in batches of 1500 samples, where error bars represent temporal variation over
subsequent trials. (b) Expectation values bootstrapped using the full database, where error bars represent an estimate of standard deviation
from bootstrapping. In both (a) and (b), a vertical dashed line separates the case where all samples are retained (left) vs the case where samples
are postselected on the “00” outcome on both ancilla qubits (right); subscripts on x axis denote ancilla associated with each parity check. (c) γ

value per layer vs temporal execution order for each layer.
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recovery operations, as explored in the rightmost column of
Fig. 7. The case where all samples are retained (left column)
is compared with the case where samples are postselected
on the “00” outcome on both ancilla qubits (right column).
Using postselection appears to enhance the mean performance
differential between mitigated (red, blue) and unmitigated
(yellow) approaches from the same raw dataset in Figs. 7(b)
and 7(d). Since the circuit under consideration produces any
of the outcomes 00, 01, 10, 11 with probability 25% in the
noiseless case, the effect of postselection is to discard ∼75%
of the data, resulting in larger bootstrapped errors bars in the
rightmost column.

We clarify that while postselection can be a diagnostic tool
for probing the performance of dynamic circuits, postselection
not only reduces the number of eligible mitigation samples
but also increases the sampling overhead required by (non-
linearly) renormalizing the postmeasurement state. Therefore,
combining postselection for use in conjunction with (M)PEC
methods in target applications is not intended.

For completeness, we analyze the expectation value over
the full database when both Q1 and Q7 are subject to noise,
rather than just the first seven trials where Q1 appears to
be performing well. In Fig. 8(a), the expectation values and
standard deviation are computed over temporal trials, where
each trial consists of a cycle of learning and mitigation. In
this case, error bars reflect the temporal drift in the device.
In Fig. 8(b), expectation values and standard deviations are
estimated by bootstrapping the combined database over all
cycles of learning and mitigation. Here, the error bars capture
shot noise associated with the number of samples used during
mitigation. The noise strength for each cycle of learning and
mitigation is reported in Fig. 8(c).

APPENDIX D: SUPPORTING ANALYSIS FOR FIG. 4

We revisit the results of Fig. 4 by examining where explicit
recovery operations were not applied by the controller.

In Fig. 9, results of hardware feedforward in the main text
are restated and compared to the case when circuit samples are

(a) (b)

FF FFFF on '0'
outcomes

FF on '0'
outcomes

FIG. 9. Error mitigated expectation values 〈Z〉 reported in Fig. 4
for initial states α = 1, 0.5. (a and b) Using explicit feedforward (FF,
left), as reported in Figs. 4(b) and 4(e), one compares to postse-
lection, where samples are retained only if a classically controlled
X gate was never triggered (right). Observed acceptance rate (a)
0.94 ± 0.15 where ideal probability of applying an X recovery op-
eration is zero, and (b) 0.50 ± 0.05, where ideal probability for X
recovery operation is half.

postselected if no recovery operation is applied. In all cases,
circuits incur idling error associated with classical commu-
nication with the real-time controller. Figures 9(a) and 9(b)
differ by the initial state on the data qubit during mitigation,
but the choice of initial state does not impact the learning
protocol.

Focusing on the unmitigated but twirled circuits (gray),
a performance improvement under postselection is seen in
Fig. 9(a), where the ideal probability of applying a classically
controlled X operation is zero. In Fig. 9(b) the ideal probabil-
ity of applying a classically controlled X operation is exactly
half, and no such improvement in the performance of the
unmitigated but twirled circuits is observed. Noting that the
measurement channel is twirled, and readout errors on ancilla
measurements are symmetrized, we speculate that classical
errors on the feedforward control wire for the unmitigated
case may give rise to such a signature, and investigating these
errors remains the subject of future work.
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