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We theoretically study the dynamical regimes of the observables that govern the operating conditions of
continuous-variable (CV) quantum-key-distribution (QKD) systems, depending on quantum-channel-induced
intermode interactions. In contrast to the widely used approach in which losses and thermal broadening are
introduced through a beam-splitter transformation, our analysis uses the exactly solvable quantum channel
model describing the Lindblad dynamics of multimode bosonic systems interacting with a heat bath and
additionally takes into account imperfections of the homodyne-detection scheme. The analytical results for the
photon-count difference and the quadrature probability distributions are used to derive the expression for the
mutual information between legitimate parties, which explicitly links the information properties of CV QKD
and the parameters of the channel. For the important special case of a two-mode photonic system propagating in
a fiber channel, the latter can be conveniently parameterized using the frequency and the relaxation-rate vectors
that characterize the coherent (dynamical) intermode couplings and the incoherent (environment mediated)
interaction between the bosonic modes, respectively. It turns out that these vectors determine four qualitatively
different dynamical regimes of the mutual information and the phase difference between the signal and the local
oscillator that may significantly affect the operation of CV QKD.
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I. INTRODUCTION

Over the past decade, there has been a considerable surge
of interest in the field of quantum information theory, espe-
cially quantum key distribution (QKD) [1–3]. Two distinct
approaches for information encoding have emerged: dis-
crete variables (DVs) that involve a discrete set of quantum
states [4–11] and continuous variables (CVs) that exploit
the continuous properties of quantum systems, such as the
quadrature amplitudes of electromagnetic fields [12–22]. For
both the DV and CV systems, the study of quantum state
propagation in fiber channels faces notable challenges, pre-
dominantly stemming from decoherence and the intricacies of
dynamical multimode interaction.

Decoherence arising from the interaction of quantum sys-
tems with the surrounding environment is known to be the
principal source of disturbance (details can be found in foun-
dational theoretical articles [23–25] and books [26,27] on the
subject, along with papers dealing with fiber optics [28–32]).
Quantum states propagating in fiber channels are influenced
by a variety of effects. They include scattering, absorption,
phase fluctuations, noise, and losses. In the context of mul-
timode systems in which multiple modes are utilized to
encode quantum information, phenomena like mode mix-
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ing and mode-dependent losses will additionally complicate
the propagation dynamics. The intricate interplay between
the quantum states and the environment can lead to mode-
dependent decoherence (see, e.g., Ref. [33]), resulting in the
degradation of the encoded information. Furthermore, deco-
herence phenomena impose limitations on the distance over
which quantum states can be reliably transmitted through fiber
channels.

In this paper, we focus our attention on the propagation
of quantum states related to CV QKD observables through
fiber channels [17,21,34–36]. In contrast to conventional
approaches, in which losses and thermal broadening are in-
troduced by a beam splitter, the model under consideration, a
successor of our previous studies [31–33,37] on the dynamics
of quantum states in the DV case, aims to investigate dynam-
ical regimes of CV QKD observables governed by coherent
(dynamical) intermode couplings and incoherent (environ-
ment mediated) interactions between the bosonic modes. To
this end, we employ the general approach to the evolution of
the Glauber-Sudarshan quasiprobability distribution (P func-
tion) [38,39] adapted to the fiber-channel framework.

In order to accurately characterize the interaction between
the open quantum system and its surrounding environment,
we employ the two-mode Liouville equation in the general-
ized Gorini-Kossakowski-Sudarshan-Lindblad form [40,41].
This equation enables us to model the dynamics and evolution
of quantum states as they propagate through the fiber channel,
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accounting for diverse environmental influences. Through this
methodology, our objective is to attain a comprehensive un-
derstanding of the complex interaction between the quantum
system and its environment. This endeavor will facilitate the
enhancement of our knowledge of CV quantum state propaga-
tion and the development of effective strategies to mitigate the
adverse effects introduced by the fiber-channel environment.

The structure of this paper is as follows. Preliminaries are
provided in Sec. II, where we discuss the homodyne ker-
nel, Liouville equation, and dynamics of the characteristic
function. The main result is presented in Sec. III, which pro-
vides theoretical descriptions of the superpropagator, optical
scheme of the CV QKD system, and the resulting dynamical
model. The estimation of mutual information and analysis
of dynamical regimes are described in Sec. IV. Section V
concludes the paper.

II. PRELIMINARIES

In this section, we introduce essential concepts and def-
initions. This part of the paper provides building blocks for
understanding subsequent theoretical considerations.

A. Homodyne kernel

In order to examine quadrature distribution, it is convenient
to use the Glauber-Sudarshan P representation:

ρ̂ =
∫

P(η)|η〉〈η|d2η, (1)

where ρ̂ is the density matrix, P(η) is the Glauber-Sudarshan
quasiprobability distribution (P function), |η〉 is the coher-
ent state with the complex-valued amplitude η ∈ C, and
the integral is performed over the complex plane, d2η =
dRe(η)dIm(η). The quadrature distribution is closely related
to the probability distribution of the photon-count difference
Wn21 , which is measured using a homodyne-detection scheme
and is given by [42]

Wn21 =
∫

Kn21 (α, β )PS (α)PLO(β )d2α d2β, (2)

where Kn21 (α, β ) is the kernel of homodyne detection and PS

and PLO are P functions of the signal and the local oscillator,
respectively. We can now use standard derivation technique to
transform the kernel Kn21 into the Gaussian form:

Kn21 (α, β )

=
∞∑

n1=0

|〈n1|(cβ − sα)k〉|2|〈n21 + n1|(sβ + cα)r〉|2

=
∞∑

n1=0

e−μ μn1

n1!
e−λ λn21+n1

(n21 + n1)!

→
∫ ∞

−∞

1

2π
√

μλ
e

−(n1−μ)2

2μ e
−(n21+n1−λ)2

2λ dn1

= 1√
2π (μ + λ)

e− [n21+(μ−λ)]2

2(μ+λ) , (3)

where n1 and n2 = n21 + n1 are the photon counts registered
by the corresponding detectors; c = cos θ and s = sin θ are

the coefficients of the beam splitter, where the angle 0 < θ <
π
2 takes the value θ = π/4 for the case of a symmetric beam
splitter; the coefficients k � 1 and r � 1 are related to imper-
fect detection so that k2 and r2 are the quantum efficiencies of
the detectors; and the amplitudes μ and λ are given by

μ = |cβ − sα)k|2, λ = |(sβ + cα)r|2. (4)

In Eq. (3) we utilized the Gaussian approximation for the Pois-
son distribution, which is justified provided the amplitudes μ

and λ are sufficiently large. The latter holds in the case of
a strong local oscillator (LO). It should be emphasized that
another standard technique, where Gaussian approximation is
applied to modified Bessel functions of the first kind, fails
when detection imperfections and the asymmetry of the beam
splitter are taken into account. After algebraic simplifications,
the final form of the kernel is as follows:

Kn21 (α, β ) =
exp

( − [n21−Y |β|2−Z|β|(αe−iφ+c.c.)]2

2X |β|2
)

√
2πX |β|2 , (5)

where

X = (k cos θ )2 + (r sin θ )2,

Y = (k cos θ )2 − (r sin θ )2,

Z = sin(2θ )(k2 + r2)

2
. (6)

B. Liouville equation

Our task now is to investigate the effects of physical
channel parameters on the probability distribution of the
photon-count difference Wn21 . We also intend to establish a re-
lation linking the probability distribution of the photon-count
difference Wn21 and the quadrature probability distribution WQ.

To this end, we consider the two-mode Liouville equation:

∂ρ̂

∂t
= L̂ρ̂ = −i

∑
n,m

�nm[â†
nâm, ρ̂]

−
∑
n,m

�nm[(nT + 1)(â†
nâmρ̂ + ρ̂â†

nâm − 2âmρ̂â†
n)

+ nT (âmâ†
nρ̂ + ρ̂âmâ†

n − 2â†
nρ̂âm)], (7)

where the indexes m, n ∈ {1, 2} label the modes and the dag-
ger denotes Hermitian conjugation; ρ̂ is the density matrix
representing a quantum state; â†

n (ân) is the creation (annihila-
tion) operator of the nth mode; [Â, B̂] = ÂB̂ − B̂Â stands for
the commutator; � (�) is the frequency (relaxation) matrix;
and nT is the mean number of thermal photons, given by

nT = 1

e
h̄�0
kBT − 1

, (8)

where �0 is the free-space (bare) frequency, h̄ is the re-
duced Planck constant, kB is the Boltzmann constant, and T
is the temperature of the environment. Frequency and relax-
ation matrices are both Hermitian, � = �† and � = �†, and
describe the coherent (dynamical) intermode coupling and
incoherent (environment mediated) interactions between the
bosonic modes, respectively. In the two-mode (polarization)
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case, they can be defined using the Pauli matrices as follows:

� = 1
2 [ω0σ0 + (ω, σ )], � = 1

2 [γ0σ0 + (γ, σ )], (9)

where ( · , · ) stands for the scalar product; σ0 is the identity
matrix; ω0 and γ0 are the mean bare optical frequency and the
mean relaxation rate, respectively; σ = (σ1, σ2, σ3), where σi

is the Pauli matrix; and ω = (ω1, ω2, ω3) [γ = (γ1, γ2, γ3)] is
the frequency (relaxation) vector. The vectors ω and γ encode
channel anisotropy parameters: the eigenvectors and eigen-
values of the anisotropic part of the matrix � (�) determine
the orientation of the principal axes and the principal values
describing the birefringence (the dichroism or polarization-
dependent losses). In addition, the relaxation matrix � giving
the rates of thermalization should be positive definite, � > 0.
It is not difficult to show that the latter can be equivalently
formulated as the inequality for the relaxation rates: γ0 > |γ|.
An important point is that the matrices � and � both depend
on the basis in the two-dimensional space of the polarization
vectors and at least one of them may be diagonalized by
choosing an appropriate basis.

C. Dynamics of characteristic function

In this section, closely following Ref. [43] [see Eqs. (16)
and (24)], we present analytical results describing the evolu-
tion of normally ordered characteristic functions. According
to Ref. [43], for the characteristic function of the initial state
ρ̂0,

χ0(α) = Tr(e(α,â† )e−(α∗,â)ρ̂0)

=
∫

dg(β)e(α∗,β)−(α,β∗ )P(β, 0), (10)

where

α = {α1, α2, . . . }, f (α) = f (α1, α2, . . . , α
∗
1 , α

∗
2 , . . . ),

(11)

(a, b) =
∑

i

aibi, dg(β) =
∏

i

d2βi

π
, (12)

ρ̂0 =
∫

P(β, 0)|β〉〈β|dg(β), (13)

the temporal evolution of the characteristic function is gov-
erned by the following relation:

χ (α, t ) = Tr[e(α,â† )e−(α∗,â)ρ̂(t )]

= e−[α∗,B(t )α]χ0(A(t )α), (14)

where

A(t ) = e(i�−�)t , B(t ) = nT [I − A(t )†A(t )], (15)

and I is the identity matrix of appropriate size. For the two-
mode bosonic system, it is not difficult to obtain the explicit
expression for the matrix A(t ):

A(t ) = e−(iω0+γ0 )t

(
cosh(qt )σ0 − sinh(qt )

q
(γ + iω, σ )

)
,

(16)

where

q =
√

(γ + iω, γ + iω) =
√

|γ|2 − |ω|2 + 2i(γ,ω). (17)

III. DYNAMICS OF PHOTON-COUNT DIFFERENCE AND
QUADRATURE PROBABILITY DISTRIBUTION

In this section, we derive the general form of the super-
propagator and describe a generic CV QKD system, using it
as an illustrative example. Within the proposed framework, we
make an original contribution by providing a comprehensive
description of the impact of environment-mediated effects on
the information properties of continuous-variable quantum
states.

A. Green’s function

Now we can use Eq. (14) to derive the phase-space repre-
sentation for the kernel of the Green’s function, also known
as the superpropagator, which governs the temporal evolution
of the Glauber-Sudarshan P function given by Eq. (13). The
Green’s function is defined through the relation

P(α, t ) =
∫

G(α,β, t )P(β, 0)dg(β), (18)

where G(α,β, t ) is the kernel of the superpropagator. The
Glauber-Sudarshan quasiprobability distribution is known to
be related to the normally ordered characteristic function χ

by the Fourier transformation [the inverse relation is given by
Eq. (10)]

P(α, t ) =
∫

e(η,α∗ )−(η∗,α)χ (η, t )dg(η). (19)

We can now substitute Eq. (14) into Eq. (19) and use re-
lation (10) to derive the Fourier transform of the kernel
G̃(η,β, t ), given by

G̃(η,β, t ) = enT [|A(t )η|2−|η|2]+(A∗(t )η∗,β)−(A(t )η,β∗ ), (20)

where |α|2 = (α∗,α) = ∑
i |αi|2. After performing the Gaus-

sian integral

G(α,β, t ) =
∫

e(η,α∗ )−(η∗,α)G̃(η,β, t )dg(η), (21)

we arrive at the final result for the Green’s function:

G(α,β, t ) = det[B(t )−1]e−(A(t )T β∗−α∗,B(t )−1(A(t )†β−α)). (22)

This expression can now be used to study how the parameters
of the channel that determine the matrices A(t ) and B(t ) will
influence the probability distribution of photon-count differ-
ence Wn21 and the quadrature distribution WQ of homodyne
detection. As an example, we concentrate on the CV QKD
setup in which homodyne detection is the cornerstone techno-
logical solution.

B. Continuous-variable quantum-key-distribution setup

We consider the generic CV QKD setup illustrated in Fig. 1
(see, for instance, Refs. [3,44,45]). A laser is a source pro-
ducing light in the horizontally polarized coherent state that
splits on an unbalanced beam splitter (UBS) into two paths: a
short path, where modulation of the signal takes place, and a
long path, where the LO changes its polarization to orthogonal
after passing through a half-wave plate with the axis aligned
at 45◦ [in Fig. 1, it is indicated as a wave plate (WP)]. A
polarization beam splitter (PBS) combines the signal and the
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FIG. 1. Generic CV QKD scheme, where Alice (sender) and Bob (receiver) are outlined by the dotted lines, L is a laser, UBS is an
unbalanced beam splitter, WP is a wave plate (specifically, it is a half-wave plate adjusted at 45◦), M is a modulation device, PBS is a
polarization beam splitter, and BS is a beam splitter. Also, polarization states of the signal and the LO (without scaling) are highlighted
at several critical points of the scheme: Box 1 demonstrates the optical power of prepared states of the signal (denoted as SH ) and the LO
(denoted as LOV ) at the entrance of a quantum channel. Box 2 demonstrates the signal and the LO at the entrance of the receiver; note
that the polarization of the signal and the LO are perturbed during propagation, and we have designated additional parasitic fractions with
an overline (i.e., SV and LOH ). Boxes 3 and 4 demonstrate optical signals for the long and short paths, respectively, at the entrance to the
homodyne-detection scheme, where the detectors’ time gate is shown by a thick dashed line. Only optical pulses within the time gate are
detected and contribute to the interference.

LO, which is delayed in time. After the PBS, the beams travel
to the entrance of a quantum channel. So the input states of
the quantum channel are given by (see Fig. 1, box 1)

ρ̂S = |α0〉H 〈α0| ⊗ |0〉V 〈0|,
ρ̂LO = |0〉H 〈0| ⊗ |β0〉V 〈β0|, (23)

where the limiting case of the strong LO with |β0| � |α0| is
realized using a UBS with a sufficiently high transmission-to-
reflection ratio.

In the quantum channel, both the signal and the LO are
affected by fluctuations related to the anisotropy of the propa-
gating medium (see Fig. 1, box 2). After the quantum channel,
the signal and the LO arrive at the receiver, where a PBS
separates them into the short and long paths as well. Now the
LO travels along the short path, and its polarization is rotated
back to its initial state by a WP, whereas the signal propagates
through the long path. Finally, the signal and the LO are
combined on a beam splitter so that they can be detected by
the homodyne-detection scheme (electrical signals registered
by two detectors are subtracted).

It should be noted that the detectors apply a time gate to cut
off noninterfering parts of the signal and the LO, as shown in
boxes 3 and 4 in Fig. 1. In other words, only the H component
of the signal and only the V component of the LO that arrive
at the receiver (Fig. 1, box 2) should be taken into account
in order to reduce the noise. Mathematically, this means that
contributions of other polarization components to the density
matrix should be traced out.

In what follows, we will concern ourselves with the case
where |β0| � |α0| and |β0| � √

nT . So the propagation of
the LO can be approximated using the zero-temperature limit
nT → 0, whereas the evolution of the weak signal is affected
by thermalization.

The initial states of the signal and the LO are pure coherent
states (23). According to Eq. (18), in this case, the P function
is equal to the Green’s function. After tracing out the contribu-
tion of vertically (horizontally) polarized components to the P
function of the signal (the LO) PS (PLO), we have

PS (α, t ) = G(α, α0, t )

=
∫

G(α,α0, t )d2αV ,

PLO(β, t ) = G(β, β0, t )

=
∫

G(β,β0, t )d2βH |nT →0

= δ[A†
22(t )β0 − β], (24)

where α=(αH , αV )≡(α, αV ), α0 = (α0, 0), β = (βH , βV ) ≡
(βH , β ), and β0 = (0, β0). Note that we have utilized the
following partial trace identity:

Tr1(ρ̂12) = Tr1

(∫
P(η1, η2)|η1〉〈η1| ⊗ |η2〉〈η2|d2η1d2η2

)

=
∫

P′(η2)|η2〉〈η2|d2η2, (25)

P′(η2) =
∫

P(η1, η2)d2η1. (26)

Note that the above-discussed scheme primarily serves as
an example illustrating the potential of the proposed approach.
An important point is that our approach is applicable to al-
ternative configurations that may involve modifications, for
example, to the local LO and different mutual polarization of
the signal and the LO. So other optical schemes may be re-
garded as derivatives of the configuration under consideration.
For instance, in the case of the local LO, the P function of the
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local oscillator given by Eq. (24) should be replaced with its
time-independent version: PLO(β, t ) ≡ δ(β0 − β ). Similarly,
generalization to different mutual polarizations of the signal
and the LO requires using the modified P function of the LO:
PLO(β, t ) ≡ δ[(UA†(t )U †)22β0 − β], with a suitably chosen
unitary U .

We conclude this section with remarks concerning the
time and polarization multiplexing employed in the scheme.
Specifically, time multiplexing is used to separate out parasitic
polarization components of the signal and the LO, which are
marked by an overline in boxes 3 and 4 in Fig. 1. In the worst-
case scenario, the modes may interact due to polarization
deviations in such a way that the powers of the signal and the
LO become comparable. In this case, the strong LO approxi-
mation breaks down, and analysis of the problem may require
more sophisticated analytical and numerical tools. Neverthe-
less, certain results of the paper, such as the expression for the
kernel of the superpropagator and the general approach for
the evaluation, could still be useful beyond the scope of the
strong-LO limiting case. As far as polarization multiplexing
is concerned, it represents the most straightforward and ef-
ficient method for separating the signal and the LO. The raw
key-generation rate without polarization multiplexing is either
constrained by the operational rate of an optical switch or will
suffer an additional 3-dB loss introduced by the beam splitter.

C. Resulting model

We can now insert the expressions for the homodyne ker-
nel (5) and the P functions (24) into Eq. (2) to evaluate the
temporal dependence of the probability distribution of the
photon-count difference The result is given by

Wn21 (t ) = 1√
2πσ 2

exp

(−(n21 − � − μ)2

2σ 2

)
, (27)

where

μ = Z|β̃|(α̃e−iφ + c.c.), � = Y |β̃|2,
σ = √

a|β̃|, a = X + 2Z2B11(t ), (28)

α̃ = A†
11(t )α0, β̃ = A†

22(t )β0, φ = arg[A†
22(t )].

The distribution (27) is the Gaussian function of n21, with the
mean and the variance equal to � + μ and σ 2, respectively.

It is easy to verify that

lim
t→0

Wn21 (t ) = Kn21 (α0, β0), (29)

as it should for the initial coherent states since

lim
t→0

Aii(t ) = 1, (30)

lim
t→0

a = lim
t→0

[X + 2Z2B11(t )] = X. (31)

Also, note that

lim
t→∞ a = X + 2Z2nT . (32)

As we mentioned before, the photon-count-difference
probability distribution is closely related to the quadra-
ture distribution. After performing renormalization as in
Refs. [46,47], we derive the distribution in the following

Gaussian form:

WQ(t ) = 1√
2π (σ ′)2

exp

[
−1

2

(
Q − �′ − μ′

σ ′

)2
]
, (33)

where

Q = n21

Z|A†
11(t )β̃| , �′ = �

Z|A†
11(t )β̃| ,

μ′ = α0ei[arg(A†
11(t )A22(t )] + c.c.,

(σ ′)2 = 2B11(t )

|A†
11(t )|2 + X

Z2|A†
11(t )|2 . (34)

IV. INFLUENCE OF ANISOTROPY ON MUTUAL
INFORMATION

In this section, we apply our theoretical results to assess the
impact of the environment on the mutual information between
the sender and the receiver. We also investigate the dynam-
ical regimes of the relaxation rate and the phase difference
between the signal and the LO.

A. Mutual information

For the protocol behind the CV QKD scheme, we assume
that instead of a single initial coherent state |α0〉, Alice pre-
pares an ensemble of coherent states that has the Gaussian
distribution with variance Vα . Averaging WQ over the Gaussian
random variable α0 results in the Gaussian distribution with
the variance V given by the sum of variances:

V = Vα + (σ ′)2, (35)

where the term (σ ′)2 is associated with the excess noise. It
should be emphasized that, owing to the additive property
of Gaussian variances, the noise may contain additional con-
tributions that, for instance, could be related to electronics.
However, in order to highlight the impact, we consider only
the noise induced by the fiber. According to the Shannon-
Hartley formula (for instance, see [48]), mutual information
is given by

IAB = log2(1 + RSN) = log2

(
1 + Vα

(σ ′)2

)
, (36)

where RSN is the signal-to-noise ratio. Given the value of Vα ,
we can insert the variance given by Eq. (34) into formula (36)
to deduce the expression for the mutual information:

IAB = log2

(
1 + |A†

11(t )|2Vα

1 + 2B11(t ) + (
X
Z2 − 1

)
)

, (37)

X

Z2
=

(
k2

sin2 θ
+ r2

cos2 θ

)
(k2 + r2)2

, (38)

where the denominator is written as the sum of three terms:
the first term is the vacuum noise, the second term de-
scribes thermal broadening [recall limt→∞ B(t )11 = nT ], and
the last term arises from imperfections in the detection
scheme. Formula (37) agrees very well with the well-known
phenomenological model, giving mutual information in the
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FIG. 2. Typical dependences of the relaxation rate |A†
11(t )|2, defined by Eq. (40), and the phase difference between the signal and the LO

arg[A†
11(t )A22(t )], defined by Eq. (41), drawn as a sketch (without scaling) in order to highlight the principal differences between dynamical

regimes. (a1) Relaxation rate when |ω| � |γ|: exponential decay (shown as a solid gray line) modulated by harmonic oscillations (minimum
coincidence with rapid phase-difference growth at the positions of the dashed gray lines). (a2) Nonlinear phase-difference growth (between
−π and π ) when |ω| � |γ|, equivalent to the phase of an ellipse. (b1) Relaxation rate when |ω| � |γ|: multiexponential decay. (b2) The
phase-difference growth when |ω| � |γ|: almost linear dependence at the beginning (shown by the dash-dotted gray line), defined by Eq. (45),
which then approaches the stationary value (shown by a solid gray line), defined by Eq. (46); it should be noted that the signs of the slope
and stationary value may be coincident or not, as in this example. (c1) Relaxation rate when |ω| is comparable to |γ|, the intermediate case
between the previous two with a smaller modulation depth. (c2) The phase difference when |ω| is comparable to |γ|: the same behavior as in
the first case, approaching some stationary value after a time, defined by Eq. (48). (d1) Relaxation rate at the exceptional point when |γ| = |ω|
and γ ⊥ ω; nonexponential terms may result in nonmonotonic time dependence, leading to the presence of local extrema at t = t±, denoted as
dashed lines, according to Eq. (57). (d2) Almost linear growth of the phase difference at the beginning (shown by the dash-dotted gray line)
with the rate −2|γ|t sin(ϕ) and saturation values at ±π (here a positive value is shown by the solid gray line).

form

IAB = log2

(
1 + e−�0tVα

1 + 2nT

)
, (39)

which represents the limiting case where effects of channel
anisotropy and detection imperfections can be disregarded.

B. Dynamical regimes

According to Eq. (34), the dynamics of the quadrature
distribution WQ is determined by time-dependent parameters
μ′ and (σ ′)2. The dynamics of these parameters is governed by
the relaxation rate |A†

11(t )|2 and the phase arg[A†
11(t )A22(t )]

that gives the phase difference between the signal and the LO.
In this section, dynamical regimes of the relaxation rate and
the phase will be our primary concern. It is generally expected
that dynamics will reveal effects such as a deviation from ex-
ponential relaxation (a kind of modulation or multiexponential
behavior) and nonlinear growth of the phase.

We begin with the explicit expressions for the rate and the
phase, derived using Eq. (16). Let us take a closer look at these
expressions:

|A†
11(t )|2 = e−2γ0t [c1 cos(2bt ) + c2 cosh(2at )

+ c3 sin(2bt ) − c4 sinh(2at )], (40)

A†
11(t )A22(t ) = e−2γ0t {c2 cos(2bt ) + c1 cosh(2at )

+ i[c4 sin(2bt ) + c3 sinh(2at )]}, (41)

where

a = Re(q), b = Im(q), (42)

c1 = 1

2

(
1 − ω2

3 + γ 2
3

|q|2
)

, c2 = 1

2

(
1 + ω2

3 + γ 2
3

|q|2
)

, (43)

c3 = aω3 − bγ3

|q|2 , c4 = bω3 + aγ3

|q|2 , (44)

and q is given by Eq. (17). Clearly, the dynamical regime is
governed by the following parameters: the relative lengths of
the ω and γ vectors, the angle between them, and the compo-
nents ω3 and γ3. Investigation of the parametric dependence of
Re[A†

11(t )A22(t )] and Im[A†
11(t )A22(t )] on time may provide

useful insights into the arg{Re[A†
11(t )A22(t )]} behavior (the

common factor e−2γ0t does not affect the phase and can be
ignored).

Now we consider the following special dynamical regimes
and related effects:

(1) The first case occurs when b � a or, alternatively,
|ω| � |γ| (at least by 1 order). The parametric dependence
of Re[A†

11(t )A22(t )] and Im[A†
11(t )A22(t )] becomes an ellipse;

then we expect to observe nonlinear growth of the phase,
as shown in Fig. 2(a2). As eccentricity approaches unity,
the relaxation oscillating “modulation” [shown in Fig. 2(a1)]
becomes deeper. However, it may be observed only in the case
of rather strong frequency anisotropy: |ω| > γ0; otherwise, the
effect is weak.

(2) The second case takes place when a � b or, alter-
natively, |γ| � |ω| (at least by 1 order). Initially, the phase
grows almost linearly [shown in Fig. 2(b2) as a dash-dotted
gray line] as

2

(
ω3 − 2bγ3

a

)
t (45)
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and then becomes stationary with the approximate value
[shown in Fig. 2(b2) as a solid gray line]

arctan

(
2(aω3 − bγ3)

a2 − γ 2
3 − ω2

3

)
. (46)

The relaxation rate can be approximately described by the
following three terms:

|A†
11(t )|2 ≈ 1

4|γ|2
[
2
(|γ|2− γ 2

3

)
e−2γ0t + (|γ|− γ3)2e−2(γ0−|γ|)t

+ (|γ| + γ3)2e−2(γ0+|γ|)t], (47)

where multiexponential behavior is clearly seen [shown in
Fig. 2(b1)]. Also, it should be noted that the contribution of γ3

to the length of γ plays a crucial role; it governs the proportion
of each relaxation rate. At the same time, the relation between
γ0 and |γ| determines the visibility of the multiexponential
behavior.

(3) The third case, where |γ| is comparable to |ω|, is
intermediate. Combination of the two motives of the previ-
ous cases regarding relaxation rate is quite obvious [shown
in Fig. 2(c1)]. However, the same cannot be said regarding
the phase difference behavior. The parametric dependence
of Re[A†

11(t )A22(t )] and Im[A†
11(t )A22(t )] becomes a spiral,

where harmonic terms define elliptic rotation and hyperbolic
ones determine the position of the center of the ellipse. In
other words, at small t we may observe nonlinear phase
growth as in the first case because there are still windings
around the coordinates center, and for a larger t it approaches
some stationary value as in the second case, as shown in
Fig. 2(c2). One may define the transition time between two
regimes by solving the following equation:

[c1c2 cosh(2at ) + c1]2 + [c3c4 sinh(2at )]2 = 1. (48)

(4) Finally, we consider the case where q vanishes, q =
0, which takes place when |γ| = |ω| and γ ⊥ ω. This is the
special regime known as the exceptional point [49]. In this
limit, the matrix A takes the form

A(t ) = e−(iω0+γ0 )t [σ0 − (γ + iω, σ )t], (49)

giving the relations

|A11(t )|2 = e−2γ0t
[
1 − 2γ3t + (

γ 2
3 + ω2

3

)
t2

]
, (50)

A†
11(t )A22(t ) = e−2γ0t

[
1 + 2iω3t − (

γ 2
3 + ω2

3

)
t2

]
, (51)

which can be rewritten as follows:

|A11(t )|2 = e−2γ0t (1 − 2|γ|t cos ϕ + |γ|2t2), (52)

A†
11(t )A22(t ) = e−2γ0t (1 − 2i|γ|t sin ϕ − |γ|2t2), (53)

where we have used the angular parametrization for the vec-
tors γ and ω, given by

γ = |γ|(sin ϕ cos ξ, sin ϕ sin ξ, cos ϕ), (54)

ω = |γ|(cos ϕ cos ξ, cos ϕ sin ξ,− sin ϕ). (55)

Nonexponential terms in Eq. (50) may result in nonmono-
tonic time dependence of |A11(t )|2, leading to the presence of
local extrema. The loci of the latter can be found by solving

the stationary point equation

d

dt
|A11(t )|2 = 0, (56)

with the roots, t− and t+, expressed as follows:

t± =
|γ| + 2γ0 cos ϕ ±

√
|γ|2 − 4γ 2

0 sin2 ϕ

2γ0|γ| . (57)

At |γ| > 2γ0| sin ϕ| and cos ϕ > 0 (cos ϕ < 0), we have two
different real positive (negative) roots representing the local
minimum and maximum located at t = t− and t = t+, re-
spectively. The roots coalesce into the point γ0t− = γ0t+ =
1 +

√
4γ 2

0 /|γ|2 − 1 provided that 2γ0| sin ϕ| = |γ|. Also, the
special solution is t = t+ = 0 if ϕ = ±π and |γ| = γ0. In the
case of two positive roots illustrated in Fig. 2(d1), the longest
time interval with a positive time derivative of |A11(t )|2 ranges
from t− = |γ|−1 to t+ = |γ|−1 + γ −1

0 at ϕ = 0. Qualitatively,
the phase behavior looks similar to that in the previous case:
almost linear growth at the beginning, with the rate being
approximately −2|γ|t sin ϕ and the saturation value at ±π

[see Fig. 2(d2)], except when sin ϕ = 0 and the saturation
value equals zero.

V. CONCLUSION AND DISCUSSION

In this paper, we have presented a derivation encompassing
a comprehensive representation of the general form of the su-
perpropagator G(α,β, t ) given by Eq. (22). The superoperator
profoundly governs the temporal evolution of the Glauber-
Sudarshan P function in the context of intricate relaxation
processes described by the Liouville equation (7). This result
might be helpful in various fields of quantum optics.

We applied the superpropagator to P functions of the sig-
nal and the LO of the generic CV QKD scheme shown in
Fig. 1 and deduced the expressions for the probability dis-
tribution of the photon-count difference Wn21 [see Eq. (27)]
and the corresponding quadrature probability distribution WQ

[see Eq. (33)]. These expressions incorporate effects induced
by both the imperfections of a homodyne-detection scheme
and the dynamics of a quantum channel. For instance, this
model can predict changes in the mean μ + � (μ′ + �′) and
the variance σ 2 [(σ ′)2] of the probability distribution of the
photon-count difference (the quadrature probability function)
representing the cornerstone parameters of a CV QKD system
as follows:

(1) The efficiencies k2 and r2 that enter the parameters
X , Y , and Z given by Eqs. (6) take into account detection
efficiency mismatch.

(2) The angle θ which enters X , Y , and Z describes the
unbalanced beam splitter in the homodyne-detection scheme.

(3) The relaxation and polarization deviation of the sig-
nal amplitude (|α0|) and the LO (|β0|) are characterized by
|A†

11(t )| and |A†
22(t )| [the matrix A(t ) is given by Eq. (15)],

respectively, and their values are directly connected to charac-
teristics of the channel given by Eqs. (9) and (16).

(4) The dynamics of the phase difference between the
signal and the LO is governed by the angle arg[A†

11(t )A22(t )].
(5) The mean of the distribution should be rearranged by �

or �′.
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(6) The term 2B11(t ) describes thermal broadening of the
variance.

Thus, according to the model, a joint impact of the imper-
fections of a homodyne-detection scheme and relaxation in
the channel may be estimated.

Like in our previous papers [31–33,37], the investiga-
tion of how the information properties of the considered
CV QKD system are connected to the physical parameters
of the channel continued to be a subject of interest. For-
mula (37) gives the mutual information between the sender
and the receiver as a function of |A†

11(t )| and B11(t ) and
explicitly shows the above connection. This result agrees very
well with conventional models and provides generalization to
the cases in which various anisotropic effects are taken into
consideration.

The stated above motivates our study of dynamical
regimes. For this purpose, we chose the relaxation rate gov-
erned by |A†

11(t )|2 and the phase difference between the signal
and the LO determined by the angle arg[A†

11(t )A22(t )]. These
parameters play an important role in the estimation of the
CV QKD performance. From Eq. (37) the relaxation rate de-
scribes the decay of the mutual information. As for the phase
difference, it is preserved for an ensemble of initial states; i.e.,
any initial state obtains the same phase shift after a propaga-
tion. However, it may be crucial when discretization of the
measurement outcomes takes place. Thus, predictions regard-
ing the phase shift may be useful. We have found that there
are four qualitatively different dynamical regimes: (1) the
regime dominated by coherent interaction at |ω| � |γ| with
prevailing oscillatory behavior [see Figs. 2(a1) and 2(a2)]; (2)
the regime dominated by incoherent interaction at |ω| � |γ|
with prevailing exponential-decay behavior [see Figs. 2(b1)
and 2(b2)]; (3) the intermediate regime where ω is comparable
to γ and one may observe a dynamical transition between
the above two cases [see Figs. 2(c1) and 2(c2)]; and (4) the
regime at the exception point where |γ| = |ω|, with γ ⊥ ω,
and the multiexponential function appears to be replaced by
a combination of exponential and nonexponential functions
[see Figs. 2(d1) and 2(d2)]. As a result, there is a variety
of channel anisotropy configurations, leading to distinct dy-
namical regimes and nontrivial dependence of the CV QKD
characteristics on the channel parameters. It should be men-

tioned that, for a more complicated CV QKD setup such
as measurement-device-independent QKD (see, for instance,
Refs. [3,50–55]), the influence of channel anisotropy might
be even more crucial since signals that have evolved in time
should interfere with each other.

We selected the CV QKD framework primarily for illus-
trative purposes in this study. This paper aims more towards
fundamental aspects. This paper predominantly focused on
the fundamental aspects within this framework. However, we
believe that the proposed model has broader implications
and potential applications beyond CV QKD, as the observ-
ables considered in our model may have relevance in various
fields. For instance, the results could be beneficial for future
metrological investigations of fiber-optic channels or quantum
hacking attacks, particularly in light of the recent work in [56].
Regarding CV QKD, our previous study [33] investigated
the dynamics of a covariance matrix, which is an essential
element for estimating the secret key rate of CV QKD. Com-
bining these results with the current research could lead to
tighter bounds in the security analysis.

As shown above, the applicability of Lindblad-type models
for studying quantum dynamics in the presence of correlations
between the system and an environment suggests that they
form a natural basis for a connection between the physical
effects of an environment and the information properties of
quantum states. In particular, the derived form of the super-
propagator combined with a mathematical toolbox of bosonic
channels can be extended well beyond the scope of a generic
CV QKD protocol.
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