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Experimental demonstration of a Maxwell’s demon quantum battery
in a superconducting noisy intermediate-scale quantum processor
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Entering the era of post-quantum supremacy has given one the ability to precisely control noisy intermediate-
scale quantum (NISQ) processors with multiqubits and extract valuable quantum many-body correlation
resources for many distinct quantum applications. We here construct quantum many-body thermalized states on a
62-qubit superconducting quantum processor and use them to demonstrate the principle of Maxwell’s demon. We
further demonstrate the direct effect caused by Maxwell’s demon on the charging process of a quantum battery
(QB). We depicted the nonequilibrium transportation in our QB through measuring the dynamics of the Shannon
entropy to explore its working conditions. Finally, we evaluate the information-to-work conversion by varying
the readout fidelity to verify the validity of the Sagawa-Ueda equality within the NISQ processor environment
and evaluate the qubit-environment interaction such as the measurement backaction. Our experiment suggests
that the superconducting NISQ processor with appropriate error mitigation methods will be an ideal platform for
studying quantum information thermodynamics through quantum many-body simulations.

DOI: 10.1103/PhysRevA.109.062614

I. INTRODUCTION

In the mid-19th century Maxwell conceived a thought
experiment that could hypothetically violate the second law
of thermodynamics [1]. A demon (Maxwell’s demon) would
control a small door between two atom-filled chambers such
that the door opens only for fast-moving atoms to pass through
in one direction and slow-moving ones in the other. Over
time, one chamber heats up while the other cools down as
shown schematically in Fig. 1(a). This violation of the second
law of thermodynamics as the entropy of the total system
decreases has been solved by introducing Landauer’s prin-
ciple [2], which states that erasing information also needs
work. Maxwell’s demon has been implemented experimen-
tally in various quantum systems including NMR systems
[3], photonic systems [4], single-electron transistors [5,6],
neutral atoms [7,8], and few-qubit superconducting systems
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[9–12]. These experiments have provided a deeper under-
standing of the relationship between quantum information and
thermodynamics—spawning the new field of quantum ther-
modynamics [13,14]. On the other hand, quantum batteries
(QBs) [15–20] assisted by measurement and feedback control
[21–25] extend the application scenarios of Maxwell’s demon
in quantum thermodynamics even further.

Thermodynamics is generally built around the concept of
equilibrium states involving multiple particles, and this was
especially true of the original Maxwell’s demon thought ex-
periment. The recent experimental exploration of Maxwell’s
demon in the quantum regime has generally been limited to
few-qubit systems or the rearrangements of particles on the
fixed lattice. However, when it comes to multiqubits, urgent
attention is required for the investigation within the quantum
many-body regime due to unique many-body features such as
the eigenstate thermalization hypothesis (ETH), which states
that a nonintegrable isolated quantum many-body system
thermalizes for any initial state [26–31]. Therefore, quantum
many-body systems are beneficial for experimentally studying
quantum information thermodynamics.

The focus of our article will be to investigate a quan-
tum battery (QB) assisted by Maxwell’s demon operated
within a quantum many-body system formed from a 62-qubit

2469-9926/2024/109(6)/062614(26) 062614-1 ©2024 American Physical Society

https://orcid.org/0000-0002-5534-2177
https://ror.org/01jeedh73
https://ror.org/04c4dkn09
https://ror.org/04c4dkn09
https://ror.org/04c4dkn09
https://ror.org/04gwtvf26
https://ror.org/04c4dkn09
https://ror.org/02qg15b79
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.109.062614&domain=pdf&date_stamp=2024-06-20
https://doi.org/10.1103/PhysRevA.109.062614


JIALE YU et al. PHYSICAL REVIEW A 109, 062614 (2024)

FIG. 1. (a) Schematic illustration of the Maxwell’s demon thought experiment where the demon extracts work and controls heat transfer
direction [38] through information of the microscopic state in gas molecules. (b) The application of Maxwell’s demon in the QB scenario.
The Maxwell’s demon should choose a reasonable time when charging the battery. (c) Schematic diagram of Maxwell’s demon with the 2D
superconducting qubit processor to move the excitation gradually from subsystem B to A. The bottom layer of Maxwell’s demon includes
erase, write, logic operation, and result classification, where erasing the last information with an irreversible logic operation will increase the
entropy cost [40]. The processing method of measurement outcomes by Maxwell’s demon determines that the entropy cost in our feedback
protocol is still bounded by the Landauer limit.

superconducting quantum processor [32]. Using quantum
error mitigation method [33], our NISQ processor is pro-
grammable under accurate control with an efficient readout of
every single qubit, which provides the ability to construct in-
teraction adjustable systems of different scales, thus providing
an excellent platform for exploring quantum many-body sys-
tems with Maxwell’s demon. So we study experimentally the
stored work after charging a QB through Shannon entropy dy-
namics to evaluate the working conditions of QB in Fig. 1(b)
and measure the information-to-work conversion efficiency to
verify the Sagawa-Ueda equality [34], namely, the fluctuation
theorem valid for Maxwell’s demon under NISQ environment
and sequential measurements [35–37].

II. EXPERIMENTAL APPROACH

As a many-body generalization of the single-qubit exper-
iment done in Ref. [11], the concept behind our experiment
is depicted in Fig. 1(c). We implement two mutually isolated

3 × 4 qubit array subsystems A and B without coupling to an
external heat bath. We mention that Maxwell’s demon with
an isolated working agent rectifies pure quantum fluctuations
rather than the conventional thermal fluctuations, and this
feature is unique to a genuinely quantum Maxwell’s demon,
which has attracted more and more attention [22,25,38]. The
Hamiltonian of each subsystem is approximately a 2D hard-
core Bose-Hubbard model, thus ensuring the ETH while the
system size is large enough (larger than 3 × 4 for our case).
Due to the ETH, Maxwell’s demon with a larger size can
be regarded as rectifying thermal fluctuations because they
cannot be distinguished from quantum fluctuations.

We divide our 2D superconducting qubit array into two
subsystems labeled as A and B, in analogy to the two cham-
bers in the original Maxwell’s thought experiment shown
in Fig. 1(a). As shown in Fig. 1(c), the feedback loop is
designed as follows. (1) The initial state of subsystem A is
prepared to be the ground state while that of B contains sev-
eral excitations. (2) We let both subsystems undergo unitary
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FIG. 2. The energy transfer process from subsystem B to subsystem A of size 3 × 4 each round. (a) The initial state of the total system
where two qubits were excited. (b) The σz measurement probability distribution using 3 million results of each qubit after evolution. (c)–(h)
Plots of the probability distributions after round 2, 3, 4 without or with the action of Maxwell’s demon, respectively. In (c)–(e) we use an iSWAP

gate to connect the subsection without the feedback protocol, while in (f)–(h) we use Maxwell’s demon qubits that are measured with only the
|0〉 state for target qubit A and |1〉 state for target qubit B being retained. (g) The temperature in different rounds of each subsystem.

time evolution in an isolated manner for a fixed time period
tevol. (3) Next, we realize σz projective measurements on ev-
ery qubit independently and simultaneously with two-point
measurement (TPM) protocols using sequential dispersive
measurements [39] to determine the state of the subsystems
ξ1 ⊗ ξ2 ⊗ · · · ξn, where ξi ∈ 0, 1. (4) If “q11” (labeled as tar-
get qubit A) is found to be 0 and “q15” (labeled as target qubit
B) is found to be 1, we swap them through the two-qubit iSWAP

gate selectively. We then start the next cycle with this final
state being the new initial state. Full details are described in
the Appendixes.

III. DEMONIC EFFECTS

We explore the effect of Maxwell’s demon on the QB by
running k feedback loops for k qubits excited initially. Posts-
election is used to keep only events where the total excitation
number is conserved in this experiment. The error of swap
operation is 0.025 with swapping time 105 ns. The average
readout fidelity of the qubit for |0〉 and |1〉 is 0.954 and 0.909
respectively. For a single isolated qubit, we define the “effec-
tive temperature” as Ts = h̄ωq/[kB ln(P0/P1)] and occupation
number as ns = 1/{1 + exp[〈Ĥs〉/(kBTs)]} where ωq/2π is the
frequency of the qubits, kB is the Boltzmann constant, 〈Ĥs〉 is
the energy level, and P0,1 the probabilities of qubits being in

the |0, 1〉 state respectively [11]. For N qubits, to quantify the
energy level in a many-qubits system, the average “effective
temperature” Tave can be defined according to the mean photon
number

∑
j n j/N ,

Tave = h̄ω j/

⎧⎨
⎩kB ln

⎡
⎣N

/⎛⎝∑
j

n j

⎞
⎠
⎤
⎦− 1

⎫⎬
⎭, (1)

where nj is the occupation number for the jth qubit (details
are shown in the Appendixes).

To be specific, in Fig. 2, we show the dynamics of our
Maxwell’s demon QB beginning in Fig. 2(a) by exciting two
qubits (1,3) and (3,2) in subsystem B. Then we wait for an
appropriate period of time for those excitations to be more
uniformly distributed in B by unitary evolution as shown in
Fig. 2(b). The temperatures of A and B after the subsys-
tem thermalizes are 65 mK (due to environmental thermal
excitations and readout errors) and 139 mK, respectively.
The acceleration of energy flow between two subsystems by
Maxwell’s demon can be understood as follows. If there is no
feedback control, namely, if we always switch on the iSWAP

gate on the two target qubits regardless of the measurement
results, then in the second round [Fig. 2(c)], the iSWAP gate
allows a small amount of energy (excitations) to flow from
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B to A, and the temperature of A rises to 76 mK while that
of B decreases to 130 mK. On the other hand, a significantly
larger amount of energy is transferred to A from B through
the feedback control in [Fig. 2(f)], causing the probability
distributions of the excitation numbers of A and B to become
close to each other. The temperatures of A and B are now
102 mK and 105 mK respectively. The effect of Maxwell’s
demon is even more significant in the third and fourth rounds.
The energy flow without feedback control is still small result-
ing in the temperature of 80 mK in A, 126 mK in B in the third
round and 83 mK in A, 123 mK in B respectively in the fourth
round. However, the situation is very different under feedback
control shown in Figs. 2(g) and 2(h), where the excitation
number of A has exceeded B with the temperature of A being
109 mK and B being 98 mK in the third round and A at
112 mK, B at 95 mK in the fourth round. Finally, subsystem
A is 17 mK higher than B. It’s clear that the feedback protocol
has significantly accelerated the heat-transport process from B
to A and even can pump heat from a lower-temperature system
to a higher-temperature one if we considered the temperature
reversal phenomenon between A and B.

IV. QB WORKING CONDITIONS

Next, we explore the suitable time to start the feedback
control in our QB with different system sizes from the per-
spective of thermodynamics. For a QB with multiqubits,
researchers have found that the dynamic ergodicity [41] is
highly correlated with its ergotropy, which is a key indicator
[42–47] to evaluate its work extraction capabilities. To depict
this nonequilibrium transportation process, we use the Shan-
non entropy of the state after charging our QB to describe the
ergodicity. So we define

ηSh(tevol, r) = SSh(tevol, r) − max[SSh(r − 1)]

max[SSh(r)] − max[SSh(r − 1)]
(2)

to calculate the ratio of the stored work to the ergotropy occu-
pied in phase space after the feedback loops, where r is rounds
of readout. The maximum entropy max[SSh(r)] = log2 Cr−1

n
corresponds to the maximum number of microstates � recon-
structed by Shannon entropy through � → E in phase space,
Cr−1

n is the dimension of the Hilbert space in the rth readout,
and n is the number of qubits.

In our setup, we executed the quantum circuit correspond-
ing to Fig. 1(c) with different tevol and various system sizes
to observe the dynamical behavior of ηSh(tevol, r). The results
are shown in Fig. 3 for the 2 × 2 1D periodic chain and
3 × 4 2D lattice (while 2 × 3 and 3 × 3 sizes are shown in
the Appendixes). We also tested the same conditions when
the iSWAP gate is closed (background test). Our results show
that the postselection rate of background is obviously smaller,
indicating that most of the measurements are certainly driven
by Maxwell’s demon (see the Appendixes).

In Figs. 3(a) and 3(b), we plot ηSh vs tevol for the 2 × 2
and 3 × 4 subsystem sizes, respectively. We clearly observe
significant oscillations for the 2 × 2 subsystem while the
3 × 4 subsystem almost stabilizes in the range 0.8–0.93. Fur-
ther, the averaged value ηSh(tevol, r) in subsystem 2 × 2 after
50 ns is much lower than that in subsystem 3 × 4. It is also
noticeable that ηSh(tevol, 3) < ηSh(tevol, 2) in both subsystem

FIG. 3. Dynamics of the Shannon entropy rate related to maxi-
mum entropy ηSh in the Maxwell’s demon QB for subsystem 2 × 2A
and 3 × 4A in (a) and (b) respectively. The averaged values in (a) af-
ter 50 ns are 0.744 and 0.508 for r = 2 and r = 3, respectively, while
those in (b) are 0.888 and 0.809, respectively. The maximum peak
values of experimental data are noted with corresponding colors.
Also shown with solid lines are the results from the numerical simu-
lation. Full details are given in the Appendixes.

sizes, reflecting the fact that the acceleration effect in the
heat-transport process is easier to achieve than the effect of
the heat-pumping process. Finally, it seems that ηSh is strongly
influenced by the finite-size effect. An intuitive understand-
ing may be that the small-size system never thermalizes and
remains out of equilibrium. The rectification of fluctuations
is harder than a larger system. As a conclusion, the result
suggests that a QB with a higher degree of thermalization
seems better for charging stability, while a QB with a smaller
size might be a better choice of a higher ηSh (nearly 0.99)
with an appropriate operation time. We also explored vari-
ous other metrics such as Kullback-Leibler divergence [48],
Krylov complexity [49,50], and Kolmogorov-Sinai entropy
[51] to finely characterize the ergodicity inside the QB as
supporting materials. These are presented in the Appendixes.

V. INFORMATION-TO-WORK CONVERSION

We finally evaluate the information-to-work conversion
efficiency and test the Sagawa-Ueda equality [34,52,53],
namely, 〈eβ(�F−W )−I〉 = 1 with 〈W 〉 the useful work extracted
from the heat reservoir and 〈I〉 the average mutual information
obtained by Maxwell’s demon from the target qubit while
β = 1/(kBT ). The modified second law of thermodynamics
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can be derived from the Sagawa-Ueda equality as −(〈W 〉 −
�F ) � kBT 〈I〉. It means that the excess extractable work
by Maxwell’s demon is bounded from above by the mutual
information gained in the measurement process.

Using our 3 × 3 subsystem, we initially excited one qubit
in B and measured the target qubit B with different read-
out fidelity sequences to obtain different measurement error
sequences (details are shown in the Appendixes). First, we
investigate the modified second law. It is straightforward to
show that −〈W − �F 〉 of a quantum system is [5,54]

〈�F − W 〉 = tr

(∑
m

UmMĤM†U †
m − Ĥ

)
ρ ⊗ P(|ξ 〉), (3)

where |ξ 〉 is the initial state of subsystem, P(|ξ 〉) is the pro-
jection operator of |ξ 〉, Ĥ the Hamiltonian of subsystem, M is
the measurement operator with outcome m ∈ {0, 1}, and Um is
the conditional unitary evolution operator used in the feedback
control. Previous work have shown that 〈Wε=0〉 can be mea-
sured by TPM protocol [55–58]. Specifically for subsystem
A, the measurement error ε influences the 〈�F − WA〉, since
the results of |0〉 will be incorrectly identified as |1〉. This can
be recalculated as [59,60]

〈�F − WA〉ε=0 = kBTA
[

ln 2 − ln
(
1 + e− �EA

kBTA

)]
, (4)

〈�F − WA〉ε = 〈�F − WA〉ε=0 − ε1→0�EA, (5)

where �EA =∑i∈{A} �Pih fi is the energy change in subsys-
tem A, determined from the probability change �Pi(|1〉) of
each qubit in A, and TA is the temperature of A at the second
readout round. Now as seen in Fig. 4, 〈�F − WA〉 decreases
when ε of Maxwell’s demon qubit increases. We also notice
that the information-to-work efficiency η has a maximal value
as high as 88%, which is close to unity and much higher than
previous experiments [11,53]. The reason is that the saturation
of the modified second law is satisfied only by the Szilard-type
engine that operates quasistatically while the systems in previ-
ous experiments are generally out of equilibrium. Differently,
the ETH obeyed by our larger-size systems ensures near-
equilibrium states, and the unitary evolution simply brings
the subsystems to the new near-equilibrium states. Due to
the limitations of the system size, the finite-size effect affects
the thermalization to prevent the efficiency from being unity.
Furthermore, β〈I〉 decreases from Shannon entropy to 0 as
the measurement error increases. Finally, the converted energy
is always lower than the mutual information. Therefore, we
have verified the validity of the modified second law of ther-
modynamics in our quantum many-body Maxwell’s demon,
and we have obtained a high information-to-work conversion
efficiency compared with existing experiments.

Next, we verify the validity of the Sagawa-Ueda equal-
ity, which is more refined than the second law and also
attractive experimentally [61,62]. We can then determine the
mutual information between the target qubit B and the demon
with different readout fidelity (details are shown in the Ap-
pendixes). We observe in Fig. 4(b) that without Maxwell’s
demon, 〈eβ(�F−WA )〉 decreases as the ε increases. Next we
consider the mutual information I , 〈eβ(�F−WA )−I〉 doesn’t fluc-
tuate around 1 but 0.8 due to an additional reduction 〈Ĥq−env〉
in �EA which is not included in the original theory of the

FIG. 4. Verification for the second law of thermodynamics and
Sagawa-Ueda equality in a single-excitation quantum many-body
environment. (a) Modified second law verification where the blue
hollow square, dark green circle, and gray diamond dots show
the relationship between mutual information 〈I〉, 〈�F − WA〉, and
conversion efficiency η = 〈�F − WA〉ε/(β〈I〉) vs the measurement
error of target qubit B. The blue dashed line shows the Shannon
entropy of target qubit B, S(tevol ) ∼ 0.613 ln 2, which is the upper
bound of 〈�F − WA〉. (b) The Sagawa-Ueda equality where the dark
blue, green, and purple circles plot 〈eβ(�F−WA )〉, 〈eβ(�F−WA )−I〉, and
〈eβ(�F−WA+〈Ĥq−env 〉)−I〉, respectively.

Sagawa-Ueda equality. When we include our experimental
data 〈Ĥq−env〉 in the exponent, specifically the measurement
backaction (0.283 kBTA), the decoherence (−0.086 kBTA), and
the thermal excitations (0.517 kBTA), 〈eβ(�F−WA+〈Ĥq−env〉)−I〉
fluctuate near 1. Hence, if we take the qubit-environment
interaction into account, we have verified the validity of the
Sagawa-Ueda equality.

VI. CONCLUSION AND OUTLOOKS

In this work, we have demonstrated Maxwell’s demon-type
QB on a NISQ processor, which has extended the application
of quantum correlation resources [21,63–66] into new NISQ
regimes [67]. In particular, using a 2D superconducting ar-
ray divided into two subsystems each containing 12 qubits,
we explored the Shannon entropy dynamics after charging
one of the subsystems (the battery) with Maxwell’s demon,
and studied the information-to-work conversion mechanism
under qubit-environment interaction. It turns out that our
NISQ processor with appropriate error mitigation methods
is an ideal platform for investigating quantum information
thermodynamics, especially the many-body systems in which
many unique features [30,68,69] arise such as the ETH or
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FIG. 5. (a) Layout of the qubits in experimental area of the quantum processor where the numbers under qubit in the nonexperimental area
are frequency in GHz. Red dashed line marks the proximity and subproximity qubits of experimental area, which are biased to 5.0 GHz. Qubits
outside of the red dashed line were not used in this experiment. (b) The waveforms corresponding to each step in Fig. 1(c).

finite-size effects which help us study the conventional
Maxwell’s demon even using a pure quantum system.

The high programmability of our NISQ processor may
also allow scaling up to implement a macroscopic quantum
Maxwell’s demon which is extremely nontrivial even for clas-
sical systems [70]. We can also explore how our system can be
used to both build a quantum heat machine [71,72] as well as
extract entropy from a system as a means to perform quantum
error correction [73–75]. The relationship between Maxwell’s
demon and integrability [76–79] might be an intriguing ques-
tion as well.
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APPENDIX A: BASIC PARAMETERS OF QUANTUM
PROCESSOR

We use a superconducting qubit-based quantum possessor
as shown in Fig. 5(a) to demonstrate the Maxwell’s demon
experiment. Here the quantum processor was cooled to 20 mK
using a BlueFors XLD400 [32]. The processor consists of a
8 × 8 array of 64 qubits, two of them are nonfunctional. Each
qubit has a separate readout cavity and an XYZ control line,
while every four qubits share a readout filter and line. Next
every two adjacent qubits are coupled to each other through a
λ/2 coplanar waveguide resonant cavity. Given that processor
layout in our experiment we use 24 qubits located in the lower
left corner of the processor away from the nonfunctional ones
configured as a two-dimensional array of 4 × 6 containing six
readout units. The coupling between U10Q0 and U10Q3 is
disabled.

The characterization parameters of the 24 qubits are shown
in Fig. 6 and summarized in Table I.

APPENDIX B: SYSTEM CALIBRATION PROCESS

The key steps in our Maxwell’s demon demonstration are
as follows:

(i) Step 1, Initialization: The experimental qubits array are
divided into two parts: subsystem A and B where we excite
several qubits in B to prepare our initial state. U21Q0 (labeled
as target qubit A) and U21Q3 (labeled as target qubit B) are
selected as the target qubits of the two subsystems A and B,
respectively. All qubits are biased to the idle frequency by Z
control. The XY microwave drive pulse should regulated to
40–45 ns for multiqubit timing alignment.

(ii) Step 2, Evolution: Subsystem A is aligned at 5.2 GHz
while B is aligned at 5.13 GHz to evolve for a time tevol,
respectively.
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FIG. 6. Qubit parameter distributions, including qubit maximum frequency, qubit idle frequency, anharmonicity, dipersive shift, qubit
readout drive frequency, resonator line width, readout fidelity, coupling strength between qubit and resonator, qubit energy relaxation time T1

at the idle/work point, qubit dephasing time T ∗
2 at the idle point, effective temperature, and distribution of the coupling strengths between

neighboring qubits. Each square in the diagrams represents a qubit; the number and color in the square show the value of the corresponding
parameter. The square connecting two qubits shows the effective coupling strength between them when these two qubits are tuned to the
interaction frequency of 5.13 GHz in subsystem A and 5.2 GHz in subsystem B.
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TABLE I. Statistics of qubit parameters.

Parameters Median Mean Std. dev.

Qubit maximum frequency (GHz) 5.508 5.501 0.099
Qubit idle frequency (GHz) 5.326 5.344 0.137
Qubit anharmonicity η/2π (MHz) 245.7 244.4 6.5
T1 at idle frequency (µs) 11.4 13.0 5.1
T1 at work frequency (µs) 9.1 9.9 3.4
T ∗

2 at idle frequency (µs) 1.2 1.3 0.5
Coupling strength between qubit and readout resonator (MHz) 93.6 94.2 5.2
Effective coupling strength between neighboring qubits (MHz) 2.3 2.3 0.2
Half of dispersive shift χ/2π (MHz) 1.2 1.3 0.3
Readout drive frequency (GHz) 6.781 6.784 0.071
Resonator line width κ/2π (MHz) 4.7 5.0 1.6
Readout fidelity of |0〉 0.964 0.954 0.031
Readout fidelity of |1〉 0.910 0.909 0.039
Effective qubit temperature (mK) 64.5 62.6 15.8

(iii) Step 3, Measurement: The σz projection is measured
for all qubits by cavity readout, and the one-state dispersive
shift method is strictly used in the data acquisition in order to
reduce the effect of high energy leakage.

(iv) Step 4, Swap operation: Our two target qubits are
biased to 5.15 GHz by Z to construct the iSWAP gate. In this
experiment, the coupling strength of the two target qubits is
2.323 MHz, while the duration of the iSWAP gate is 120 ns.
Cross-entropy benchmarking (XEB) shows a gate fidelity is
99.21%.

Steps 2, 3, and 4 are repeated n + 1 times with the continu-
ous readout technique. No swap operation is performed for the
last time, and the system is measured directly after evolution.
Considering the AC stark shift, we wait 125 ns after each
readout (except the last round) to control qubits again. Next
let us give a few more details about the calibration process
beginning with our system preparation.

1. Preparation

Before arranging the idle points of qubits we need to deter-
mine the relationship between f01 and z-bias for all the qubits.
Here we selected 24 qubits in the lower-right orientation of the
qubit processor as our experimental zone. To reduce the cou-
pling or crosstalk effect brought by qubits outside this zone,
we apply a bias to the proximity and subproximity qubits of
the experimental zone to 5.0 GHz, as shown in Fig. 5(a).

2. Determining the idle point

After our basic qubit calibration, we need to determine the
idle points of those qubits. To minimize the coupling effects
of qubits due to their frequency proximity, all the qubits
idle points in the experimental zone need to be determined.
According to the energy spectrum’s decoherence time T1 vari-
ation with z-bias and with a circuit duration for the Maxwell’s
demon experiment of about 0.5 ms per cycle, we select all
frequency point where T1 is greater than 5 ms (10 times the
Maxwell’s demon cycle time) as alternative points. We then
filter those points according to the following rules: The idle
frequency of the qubits is staggered by more than 50 MHz,

but avoids 234–250 MHz because of the two-level qubit state.
Further the maximum frequency difference should not exceed
310 MHz. Next the secondary proximity coupling qubits are
staggered by more than 10 MHz while the diagonal proximity
coupling qubits are staggered by more than 30 MHz. After the
above steps, we get an initial set of idle points for every qubit
in our experimental zone.

We need to remember that the solution of idle points
is not unique, and so the performance parameters such as
T1, T ∗

2 , readout fidelity for our experimental qubits need to
be verified one by one. If there are any problems caused by
TLS, defects, or electromagnetic pattern caused by slotted
line, etc., this qubit is unqualified. Then we adjust the unqual-
ified qubit and its adjacent and subadjacent qubits to find a
new idle frequency. We then recalibrate the qubits and repeat
the scheduling until all qubits at the idle frequency meet the
experimental requirements.

After establishing the appropriate idle frequencies, the next
procedure is associated with readout optimization and z-pulse
distortion correction for all the experimental qubits. The read-
out optimization process requires adjusting the parameter of
readout pulse and Josephson parametric amplifier (JPA) to im-
prove the readout fidelity as high as possible, while the z-pulse
distortion correction requires calibrating the additional phase
generated by the difference between the actual z-waveform
and the standard square waveform to improve the accuracy of
qubit control. Finally, the frequency, length and amplitude of
the X gate and pulse shaping through derivative reduction by
adiabatic gate (DRAG) of all qubits are carefully performed.
When the above steps allow to reach F00 > 0.95 and F11 >

0.90 we can move to the next stage: the frequency alignment
process.

3. Frequency alignment and optimization

To allow subsystems A and B to evolute independently,
we align the qubit frequencies within subsystems A and B
respectively. Subsystem A is set to 5.13 GHz, while B is set
to 5.2 GHz. Since there is inevitably small detuning amount
caused by imperfect conditions, we eliminate such detunings
by applying a correction to the frequency of each qubit. As
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FIG. 7. Schematic diagram of our subsystem frequency align-
ment process. (a) One step of the subsystem B frequency alignment
process for qubits U30Q1, U30Q2, U20Q2, U30Q0, U31Q0, where
the excited qubit marked with red is U30Q1. (b) Experimental and
simulated value of the probabilistic evolution of the qubits in (a). This
is the basis for calculating the distance and updating the frequency
correction matrix.

such the purpose of frequency alignment is to determine the
size of this correction that needs to be applied to each qubit
relative to the frequency alignment point. To measure the size
of this detuning, the qubits in subsystems A and B are coupled
in groups of two at 5.2 GHz and 5.13 GHz, respectively, while
the remaining qubits are biased by 70 MHz to measure the
coupling strength between those two qubits. Then we apply
a correction value based on the actual frequency of the two
qubits at the maximum coupling strength point.

Let us take subsystem A as an example. We choose an
initial qubit and select its adjacent qubit. Then we excite one
of them to the one state to measure the experimental value of
the probabilistic evolution of the qubit for 500 ms. We then
calculate the simulated value under the same conditions (the
qubit coupling strength is known), noting that the disorder of
qubits is calculated according to the Neld-Mead algorithm.
The distance between the experimental simulated values is
then defined as the sum of the squares of the differences
between the data points of all the experimental and simulated
values, as shown in Fig. 7. The qubit is adjusted one after
another though this method with the new disorder of this
qubit being updated. The above schedule is repeated until all
the qubits in subsystem A are covered. We continue updat-
ing qubits until the distance does not change obviously with
increasing the number of rounds. At this stage we stop the
optimization.

Finally, each qubit forms a group with its upper, lower,
left, and right four qubits. The number of groups is reduced

accordingly for the qubits at the boundary. At this point the
same test evolution of another qubit with the remaining unreg-
ulated qubits in the adjacent qubits is also carried out for 500
ms for the experimental value and the simulation value under
the same conditions to obtain the highest to 55 group of qubits
disorder matrix with distance. The value of this matrix will be
used as the initial disorder matrix for a numerical simulation
process.

For subsystem B, the above operation is also performed. As
crosstalk between qubits located in the boundary of subsystem
A and subsystem B, the correction of the Z pulse waveform in
subsystem A will affect subsystem B to a certain extent. Sim-
ilarly, the correction of the Z pulse waveform in subsystem B
will also affect subsystem A. This means those qubits at the
boundary need to be handled carefully, and it’s necessary to
fine-tune the frequency correction matrix of optimized sub-
systems A and B several times repeatedly and alternately.

Since this frequency alignment process is never perfect, we
terminate the frequency alignment process when both sub-
systems A and B are able to describe the multiqubit system
dynamics entropy property accurately with a higher ETH de-
gree for larger system. Meanwhile, one to two qubits of the
subsystem can be selected for excitation at any time during
the frequency alignment process to observe the probabilistic
evolution of the system and ensure that every qubit is involved
in the evolution process.

4. Maxwell’s demon parameter optimization

The main parameters during Maxwell’s demon experiment
are the swap frequency fswap; the swap time tswap required
for the target qubits to completely transfer the energy and
the waiting time twait after each Maxwell’s demon readout
operation because of AC stark effect. After the frequency
alignment, these parameters should be optimized and the fi-
delity of the iSWAP gate composed of target qubits determined.
The schematic diagram of each experimental circuit waveform
for Maxwell’s demon parameter calibration process in this
section is shown in Fig. 8.

a. Optimization of tswap and twait

Initially, we set the exchange frequency point for tar-
get qubits to 5.15 GHz while keeping the frequency point
of U21Q0 unchanged. Exciting qubit U21Q3 to |1〉 we the
conditional probability of U21Q0 being |0〉 under condition
“U21Q3 is |1〉.” According to the darkest color operating point
in Fig. 9(a), the best exchange frequency and time for tar-
get qubits can be obtained. When running Maxwell’s demon
circuit, it is also necessary to fine-tune and optimize the fre-
quency within the range of ±3 MHz and exchange time within
±5 ns according to the actual situation. We need to select
the appropriate value to build the iSWAP gate and maximize
the fidelity in the Maxwell’s demon experiment. Finally, this
experiment determines the target qubits exchange frequency
point as U21Q0 for 5.1500 GHz, U21Q3 for 5.1567 GHz and
the swap time as 105 ns.

Due to the AC Stark effect, the number of residual photons
in the cavity from the last readout round has an effect on the
qubit frequency, so after each readout (except the last round)
it is necessary to wait for some time to let those residual
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FIG. 8. Waveform schematic diagram of the each experimental
circuit of the Maxwell’s demon swap process parameters calibration
process. (a) The waveform to determine the exchange operation
frequency point between target qubits of the two subsystems. (b) The
waveform to determine the shift of working point on target qubits
after continues readout caused by AC Stark effect. (c) The waveform
of the two-qubit gate XEB test for iSWAP gate composed of target
qubits.

photons in the cavity leak out before we control the qubits
again. The waiting time twait is slightly higher than the time
when the photon of readout cavity leakage to 1/e portion of
initial count. Taking U21Q3 as an example, according to the
blue dashed line in Fig. 9(b), U21Q3 is stable at 5.217 GHz
with a half-peak width of ±4.13 MHz. The red dashed line is
the dividing line between U21Q3 from being affected by the
photon number in the cavity and the stable state. According to
the Gaussian fitting results of the red dashed line in Fig. 9(b),
the jitter of U21Q3 is 876.2 kHz, which is less than 1 MHz
and meets the experimental requirements. The photon number
decay of the remaining qubits is evaluated according to this
way. Given this we set twait = 125 ns.

b. Fidelity calibration for the iSWAP gate

Next, we calibrate the iSWAP gate fidelity consisting of
target qubits U21Q0 and U21Q3 according to fswap and
tswap using the cross-entropy benchmarking (XEB) method.
The two-qubit iSWAP gate belongs to the fermion universal
two-quantum-qubit logic gate type characterized by photon
number conservation. Its unitary matrix can be written as

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 cos θ −i sin θ 0

0 −i sin θ cos θ 0

0 0 0 e−iφ

⎤
⎥⎥⎥⎥⎦,

where θ is the swap angle and φ is the conditional phase. Since
our experiments use transmon qubits and there is dynamic
phase accumulation during the control process of qubit, we
use five kinetic factors δ+, δ−, δoff , θ , φ to fit the iSWAP

FIG. 9. (a) Calibration of time and frequency on target qubit
B. The center of pentagram is the minimal value of P01, which
corresponds to the point with the best energy exchange. This point
corresponds to the U21Q3 frequency of 5.1544 GHz with a swap
time of 105 ns. (b) Calibration of the waiting time twait where we plot
the frequency of U21Q3 vs twait after readout. Here the red dashed
line is the marker line of 120 ns, while the blue dashed line marks
the mean peak frequency value of U21Q3 (5.217 GHz).

gate [80,81],

⎡
⎢⎢⎢⎢⎣

1 0 0 0

0 ei(δ++δ− ) cos θ −iei(δ+−δoff ) sin θ 0

0 iei(δ++δoff ) sin θ ei(δ++δ− ) cos θ 0

0 0 0 ei(2δ+−φ)

⎤
⎥⎥⎥⎥⎦.

In our experiments, the target qubits were first calibrated with
a single-qubit gate sampled 100 times from eight random
single-qubit gate groups ±X , ±Y , ±(X ± Y ), uniformly to
obtain a single-qubit gate sequence, which was used to operate
on the qubits for a single-qubit cycle operation. The experi-
ments were performed in 18 groups, as shown in Fig. 8(c), and
the number of cycles in each group was sequenced according
to an exponentially increasing sequence m ={5 6 8 13 17 21
28 35 45 57 73 94 119 152 194 248 316}. Then we calculate
the probability of theoretical value and measure the proba-
bility of the actual qubit under its corresponding operation.
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FIG. 10. Fidelity calibration of the iSWAP gate constructed by two target qubits. (a) The XEB alpha factor fitting procedure for a two-qubit
gate constructed for target qubits. (b) The process of optimizing five kinetic phase factors using the Nelder-Mead method with Pauli XEB error
as the objective function. (c) The variation of XEB error with the number of iterations during the optimization of the kinetic phase factors.
(d) The iteration process of fitting the two-qubit iSWAP gate SPB alpha factor.

Using

αXEB,singleQ(i) = 1

k

∑
mi

∑
Pi

Piexp,mi [2
d (Pitheory,mi − 1)] (B1)

we can determine α for the ith set of XEB experiments where
d is the Hilbert space dimension while Pi is the event kind
composition (P0/P1 for a single qubit, P00/P01/P10/P11
for two qubits). Further k is number of samples (100 for
the single-qubit gate sequence). Using the exponential model
Apm + B to fit α, where A is related to the initial state prepa-
ration error, B to the readout error, and p the Pauli XEB error
we can determine that the XEB fidelity of the single-qubit gate
constructed by target qubits is 1 − (2d − 1)(1 − p)/2d . The
Pauli error of target qubit A (U21Q0) is 0.0065, while target
qubit B (U21Q3) is 0.0060.

After the calibration of the single qubit gates, we need to
move to the two-qubit gate XEB testing to the validity of the
results. The number of cycles and groups in each set are the
same as in the single-qubit gate calibration process, but we
now measure the target qubits 01 combination event probabil-
ity P00/P01/P10/P11. Our two-qubit gate matrix containing
the kinetic factor term is used to calculate the theoretical
probability. The two-qubit gate factor α is given by

αXEB,2Q(i) = 1

k

∑
mi

∑
Pi

Piexp,mi [2
d (Pitheory,mi − 1)]. (B2)

Now through the Nelder-Mead algorithm, five kinetic fac-
tors δ+, δ−, δoff , θ , and φ are iterated to optimize p and fit
the exponential model Apm + B. The experiment was iter-
ated 300 times, and the final solutions are δ+ = 0.537, δ− =

0.078, δoff = 1.034, θ = −0.027, φ = −0.081 respectively,
as shown in Fig. 10(c).

Now the total Pauli error is eall = (2d − 1)(1 − p)/2d =
0.0248. As shown in Fig. 10(a), Pauli error of target qubit
A (U21Q0) equals 0.0065, while the Pauli error of target
qubit B U21Q3 is 0.006. This means we get the iSWAP gate
Pauli error as eiSWAP = 1 − 1−eall

(1−etargetA )(1−etargetA ) . Thus, the XEB
fidelity of the two-qubit iSWAP gate is 1 − eiSWAP = 98.8%
with confidence interval 95%.

Further the error induced by decoherence effect on the
two-qubit iSWAP gate is examined using the Speckle purity
benchmarking (SPB) method. Defining the SPB coefficients

αSPB(i) =
∑

Pi

var(Pi )
22d (2d + 1)

2d − 1
, (B3)

the same fitting method was performed using the model
Apm + B giving the Pauli SPB error equals 0.0155 [as shown
in Fig. 10(b)].

c. Postselection and the expectation of Maxwell’s demon
observation rounds

The expectation of Maxwell’s demon observation rounds
required per time can be determined using nobs(r, t ) = s(r −
1)/s(r), where s(r) is the number of postselections in the
rth round. The lower the value of nobs, the easier is it that
Maxwell’s demon is triggered. As shown in Fig. 11, all sys-
tems have nobs(3, t ) > nobs(2, t ).

If we use our feedback control directly without postselec-
tion, the circuit time increased by a single feedback operation

062614-11



JIALE YU et al. PHYSICAL REVIEW A 109, 062614 (2024)

FIG. 11. The expectation of Maxwell’s demon observation rounds nobs required for a single trigger of QB in various system size, which
are the simulated and experimental values of the second and third rounds respectively.

is tFBtot = twait + tr + tFB where twait is the waiting time to
eliminate the AC stark effect after readout, tr is the readout
time, and tFB is the hardware feedback time including readout
signal transmission, FPGA demodulation, waveform genera-
tion, etc. In typical systems such as [82–84], tFBtot is estimated
to be about 102 ns, while for the second round, the time
caused by feedback is nobs(2, t )tFBtot which is approximately
several microseconds; at the third round, Maxwell’s demon
should observe nobs(3, t )nobs(2, t ) times, so the time caused
by feedback is nobs(3, t )nobs(2, t )tFBtot ∼ 102µs. Usually the
circuit running time needs to be less than one-fifth of the qubit
decoherence time to make the experiment valid, so the use
of feedback control directly without postselection to observe
the demonic effect requires qubit decoherence time around
several milliseconds, which are hard to achieve for NISQ
processors under current technique.

Now our postselection method reduces the number of
feedback operations required by increasing the number of
measurements, thereby reducing the circuit duration. In the fu-
ture, we can mix feedback and postselection method together
to optimize the circuit and number of measurements according
to the decoherence time of qubit.

5. Background calibration

Before performing our Maxwell’s demon experiment, a
background calibration experiment is also required due to
the fact that our experimental data presented in Fig. 3
are processed using a subsystem conservation postselection
method. To verify the remaining data are definitely driven by
Maxwell’s demon, we measured the background data in the
case of two-particle excitation when the iSWAP gate is closed.
Similarly, we use the same method to postselect the data, not-
ing that ideally the postselection number of this background
would be 0. In reality, it is not 0 due to factors such as thermal
excitations, readout errors, Pauli control errors on the iSWAP

gate, and of course decoherence. For the double-excitation
case, Maxwell’s demon acts on the second and third readouts.
If our experiment is valid, that is, the events after subsystem

conservation postselection method are mainly driven by feed-
back control of Maxwell’s demon, we should see an obvious
difference of the postselection rates when the iSWAP gate is
ON (experiment) and OFF (background).

So we measured the background of the 2 × 2, 2 × 3, 3 × 3,
and 3 × 4 systems under the double-excitation situation in
subsystem B without feedback control (the iSWAP gate is
always closed). According to the comparison of each value:
red square with red dashed line (blocked), green square with
green dashed line, light blue square with light blue dashed
line, and the dark blue square with the dark blue dashed line
in Figs. 12(a) and 12(b), it is observed that the postselection
rate of the system when the iSWAP gate is opened is signifi-
cantly higher than the background case when the iSWAP gate is
closed. We also see that the postselection rate when the iSWAP

gate is open is oscillatory in evolution time. This ensures the
validity of the subsystem conservation postselection method
in this experimental system.

Next it is important to mention that the number of mea-
surement is adjusted according to the system size to ensure
that the number of postselection results is sufficient high to
ensure the data’s statistical significance. The postselection rate
SR and the total number of measurements n need to satisfy√

P1(i, t, r)[1 − P1(i, t, r)]/(SRn) < 0.1 where P1(i, t, r) is
defined as the probability of the measurement when the ith
qubit is |1〉 in the rth round of readout at t time. Until all the
above processes are completed, we can perform Maxwell’s
demon experiments by running the circuit of Fig. 5(b).

APPENDIX C: PROCESSING FLOW
OF EXPERIMENTAL DATA

To begin, Fig. 13 presents a flow chart of how the ex-
perimental data is processed. The experimental data are
mainly composed of measurement results in N packets where
N is typically in the range 105–106. The data of a complete
measurement contain three parts: the measurement condition
(including system initial excitation qubits, qubits sequence)
represented as a string; the main variable part (evolution time
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FIG. 12. Postselection rate in first and second readouts of Maxwell’s demon QB and background in the double excitation case, and the
postselection rate is the ratio of postselection number to the total number of experimental measurements. (a) The number of measurements in
the double excitation background experiment is 500 000 for system 2 × 2, 2 × 3, and 3 × 3 respectively. The initial excitation qubits of system
2 × 2 are “U31Q0” and “U21Q3,” while initial excitation qubits in system 2 × 3 and 3 × 3 are “U30Q1” and “U21Q3.” (b) In system 3 × 4,
the number of experimental measurements and the number of background measurements are both 3 million, and the initial excitation qubits
are “U30Q2” and “U21Q3.”

tevol, tswap, twait and other circuit parameters represented as
integers; and finally the measurement results of the corre-
sponding qubits at the corresponding moment after each round
of readout (Boolean) and all the results of the qubit measure-
ments arranged in order to form the 01 sequence. For the
initial single-qubit excitation experiment, each measurement
datum contains two sets of the 01 sequence, while for the
double-qubit excitation experiments, each measurement con-
tains three sets of readout 01 strings.

First, a Python program decodes the 01-string sequence by
decimal code and stores it on the local computer. We then use
a Matlab data-parsing program to decode the experimental
data by qubit sequence and sort them according to the qubit
order. After decoding, the quantum state 01-string data are
sorted by each round, corresponding evolution time, number
of measurements, and corresponding qubits to obtain a four-
dimensional matrix. According to this a four-dimensional
matrix, the quantum states of any qubit at any number of
rounds, any number of measurements, and any evolution time

FIG. 13. Experimental data processing flow chart. In the main
text, the step of sub-/total system excitation number conservation
postselected is used only in the experiment of Figs. 2 and 3.

can be queried for later selection operation and calculation of
various physical quantities.

For the four-dimensional matrix composed of raw data,
there are two processing methods: total system conservation
and subsystem conservation. The rule of total system conser-
vation is to discard any measurement results whose number
of 1 appearing in the 01 string is not equal to the initial
number of excitations. This processing rule is applicable to
study the working process of Maxwell’s demon-type QB in
isolated systems. Next for the rule of subsystem conservation,
the 01 string is first divided into two corresponding groups by
subsystem A/B, and the measurements are discarded when
the result of the 01 string in the packet is that the number of
1’s appearing in group A is not equal to the theoretical re-
sult (increasing sequentially with the number of measurement
rounds from 0) or the number of 1’s appearing in group B is
not equal to the theoretical corresponding result (decreasing
sequentially with the number of measurement rounds from
the initial excitation number). This processing rule excludes
more errors and is applicable to the study of Maxwell’s demon
selection events as the subject.

To calculate the entropy, we count the subsystem events
after postselection to obtain the frequency of each event from
which we calculate the probability of the event based on
the frequency. We can then calculate various indicators such
as the KL divergence, Kryrov complexity (with approximate
estimation method), Kolmogorov-Sinai entropy, etc.

1. Timing alignment of horizontal coordinates

The multiqubit evolution of qubits in an experiment re-
quires consideration of the timing alignment. Due to the
nonideal nature of the experimental hardware, the timing error
consists of three main components:

(i) The XY waveforms may act at different times when
multiple qubits are excited simultaneously. For instance,
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during a double-excited qubit experiment, if an excited qubit
is biased to a predetermined frequency operating point, while
another excitation pulse has not arrived yet, it will lead to
an experimental error. The waveform delay generated by this
error is tx.

(ii) The actual XY generated by the arbitrary waveform
generator for the excited qubit pulses and Z pulses for bias
qubits generated by the actual arbitrary waveform generator
are not sufficiently accurate, which includes interchannel de-
lays of txz.

(iii) Z pulse rising edge action time tz.
Now, if the duration of the detuned waveform used in

experiment is te, and the transverse time is defined as the
evolution time of multiqubit dynamics at the initial moment
when all qubits are biased to the predetermined frequency
operating point, then the actual transverse coordinate should
be t = te − tx − txz − tz.

2. Errorbar calculation of the probability through σz

measurement for a single qubit

Each physical quantity involved in the experiment is ob-
tained according to the POVM projection measurement based
on probability. Next, we select three physically relevant

quantities, namely, the single-qubit measurement probability,
the system Shannon entropy, and the multiqubit effective tem-
perature, to illustrate the calculation process for the errorbar.

According to the error transfer equation, the relationship
between the standard deviation of entropy and the probability
in the rth round of the readout at time t is

Serr (t, r) =
√∑

i

P1err (i, t, r)2

{
log2[P1err (i, t, r)] + 1

ln 2

}
,

(C1)
where P1err (i, t, r) is the statistical standard deviation of the
measurement of |1〉 for the ith qubit in the rth round of readout
at time t . Since the result the quantum state measurement
is either 0 or 1 for a two-point distribution, the probability
standard deviation for the n repetitive sampling case at time t
for the multiqubit evolution is

Perr (i, t, r) =
√

P1(i, t, r)[1 − P1(i, t, r)]/n. (C2)

3. Errorbar calculation of the multiqubit Shannon entropy

After considering postselection, the sampling number is
the actual number of valid measurements s(t, r) at time t
for the rth round of readout. Combining Eqs. (C1) and (C2)
yields the standard deviation of the multiqubit evolution time
t entropy at the rth round of readout as

Serr (t, r) =

√√√√√∑
i

{
P1(i, t, r)[1 − P1(i, t, r)

s(i, t, r)

}⎧⎨
⎩log2

√
P1(i, t, r)[1 − P1(i, t, r)]

s(t, r)
+ 1

ln 2

⎫⎬
⎭.

4. Errorbar calculation of the temperature
for multiqubit system

First, when considering a spin half particle ( jth qubit) in a
thermal field, the jth mean photon number is given by

n j = 1

e
h̄ω j
kTj + 1

→ 0 (when Tj → 0)

→ 1/2 (when Tj → ∞). (C3)

Now for an ensemble of N qubits, we can determine the
average photon number nave as

nave =
⎛
⎝∑

j

n j

⎞
⎠/N. (C4)

So we can determine nave and Tave through

nave = 1

e
h̄ω j

kTave + 1
. (C5)

This is the average quantity across all qubits in that part of
the ensemble. Hence we can determine the “effective temper-
ature” of the ensemble in many-qubits system.

Next, according to the error transfer equation, the re-
lationship between the standard deviation of the effective
temperature of the multiqubit system in the rth round of

readout at time t and the standard deviation of the system’s
probability is

Terr (t, r) = ∂Teff

∂nave
nerr,ens(t, r) = ∂Teff

∂P
Perr (i, t, r). (C6)

We can calculate the error bar nerr,ens of the ensemble
with N qubits using

∑N
j=1

∂nerr,ens

∂nerr,j
= mean[nerr,j(i, t, r)], where

mean[nerr,j(i, t, r)] is the statistical mean of the errorbar of all
single qubits n j .

We could calculate the errorbar of the work, 〈W 〉/kBT ,
and other physical quantities based on the errorbar of the
probability and the effective temperature. The data processing
process has shown in Fig. 13.

APPENDIX D: SIMULATION AND OPTIMIZATION
METHOD

The Hamiltonian of our system can be described by Bose-
Hubbard model [32,85,86] as

Ĥ =
∑

j∈{Qi}
h̄ω j â

†
j â j + h̄Uj

2
n̂ j (n̂ j − 1)

+
∑

j∈{Qi},i∈{CQi }
h̄Ji, j

eff (â†
i â j + âiâ

†
j ), (D1)
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where â†
j and â j are the usual creation and annihilation oper-

ators of the hard-core boson corresponding to the jth qubit,
ω j/2π is the frequency of the first energy gap in the jth
qubit, Uj is the anharmonicity of qubit, Ji, j

eff is the effective
coupling strength between Qi and Qj through the resonant
cavity, while {CQi} denotes the set of qubits coupled to Qi.
The system is composed of transmons that satisfy U/J � 1
meaning the hard-core Bose-Hubbard model is equivalent to
the XX spin model [86–88]. When all qubits are aligned to the
same frequency, the Hamiltonian has the form

Ĥevo =
∑

i∈{Qi}, j∈{CQi }
h̄Ji, j

eff (â†
i â j + âiâ

†
j ). (D2)

For the Maxwell’s demon experiment using a quantum many-
body system, we simulate it in the following way:

(1) Simulation of the evolution process. The Schrödinger
equation can be represented in the form

|�(t )〉 = e−iHt/h̄|�(0)〉, (D3)

where |�(0)〉 is our the initial state while |�(t )〉 is the state
of system at time t . We numerically simulate the state of the
system at time t using the Hamiltonian matrix and the initial
state.

(2) Simulation of multiple rounds of measurements. For a
given evolution time tevol, the quantum state of the system is
|�(tevol )〉 from which the probability distribution P(tevol ) =
|�(tevol )|2 can be determined. By sampling according to
this probability distribution, the measurement results can be
simulated.

(3) Maxwell demon’s swap operation. The quantum states
obtained by sampling in step 2 are exchanged as the excita-
tion of the two qubits targetA = |0〉 and targetB = |1〉 as the
Maxwell’s demon feedback control. These are then used as
the initial states for the next round of evolution.

(4) Postselection. The measured simulation results in step
2 are selected to satisfy the Maxwell’s demon condition
targetA = |0〉 and targetB = |1〉.

(5) System synthesis simulation. We repeat the sampling
simulation N times to determine the results of the N event
experiment.

1. Disorder optimization

Our numerical simulations use a Hamiltonian learning
method to solve them. However, the frequencies of the dif-
ferent qubits cannot be perfectly aligned, meaning there is
a certain amount of disorder among those frequencies. We
set the initial disorder matrix as the finalized values for the
disorder measured after frequency aligned. We start from it,
and reduce the distance between the simulated value and the
experimental value with the global random search algorithm
and the local Nelder-Mead. We then use the Shannon entropy
to compare the experiment and simulation results.

2. Shannon entropy

Figures 14(a)–14(h) present the experimental data and sim-
ulation results for the evolution of Shannon entropy with time
for the various system sizes 2 × 2, 2 × 3, 3 × 3, 3 × 4 respec-
tively. According to the results our 2 × 2 system is equivalent
to a cyclic 1D chain where the entropy Sr (t ) measured in

each round oscillates with tevol spontaneously. This makes
it difficult to be properly thermalized. The structure of the
3 × 4 system is 2D array, and as we observe the oscillation of
Sr (t ) is obviously smaller when tevol > 50 ns. Comparing the
individual plots, it can be easily observed that the fluctuation
of Sr (t ) relative to the maximum entropy Sr,max is signifi-
cantly lower for the 3 × 4 system than the 2 × 2 system. Also,
in both systems std[S2(t )] < std[S1(t )]. In system 2 × 2, the
maximum value of Sr (t ) can still reach Sr,max, while system
3 × 4 is thermalized at tevol > 50 ns and its Sr (t ) converges
to Sr,max. Comparing the different dynamical characteristics
between the two systems, it can be seen that the oscillation
amplitude of information entropy in the system with small
size effect is higher than larger size. Further we observe that
the rise and fall of the Shannon entropy relative to the max-
imum entropy generally decreases as the size of the system
increases. Meanwhile, the increase and decrease of Shannon
entropy at r = 2 is significantly lower than the increase and
decrease of Shannon entropy at r = 1.

In the ideal situation, if all qubits’ frequencies and the
coupling strength between all neighbor qubits are completely
equal, the system reaches the thermalized microcanonical
ensemble. Then all eigenvalues when we diagonalize the
Hamiltonian are the same, while all eigenvectors are calcu-
lated with equal probability, which corresponds to the maxium
frequency in Fig. 14.

3. KL divergence related to microcanonical ensembles

We can also calculate the Kullback-Leibler divergence (KL
divergence) of a system with different size to determine the
degree of thermalization in realistic experimental conditions.

As shown in Fig. 15, compared to the result of KL
divergence in subsystem 3 × 4, the subsystem 2 × 2 is obvi-
ously far from microcanonical ensembles. Due to the limited
number of qubits and realistic experimental conditions (e.g.,
frequency disorder/the coupling strength between neighbor-
ing qubits is not equal, etc.), the KL divergence in subsystem
3 × 4 is not zero perfectly but around 0.2 when tevol > 50 ns.

APPENDIX E: DYNAMICAL ERGODICITY AND THE
PERFORMANCE OF QB

For a 2D hard-core Bose-Hubbard model, a system with
a finite-size effect is always periodic, while the system with
enough size will evaluate to ETH finally (making the loss of
initial state information). In addition to the Shannon entropy,
it is helpful to use the dynamical entropy to characterize
the system more accurately to describe the spatio-temporal
characteristics of the dynamical processes inside the QB.

In our experiments, the kinetics of the Krylov com-
plexity (reflecting the spatial geometric characteristics), the
Kolmogorov-Sinai entropy (KSE) (reflecting the time series
characteristics), and the Shannon entropy rate (reflecting the
thermodynamic characteristics) can be used to characterize
the dynamical evolution process of Maxwell’s demon-type
QB operation.

1. Krylov complexity inside the QB

Our first consideration will be the spatial geometric char-
acteristics of the QB. As a mathematical tool in many-body
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FIG. 14. Exploration of the Shannon entropy in the Maxwell’s demon QB. The number of experimental measurements is 1 million for
the system sizes 2 × 2, 2 × 3, and 3 × 3 and 3 million for the 3 × 4 system size. The number of simulation points is 500 000 for the 2 × 2,
2 × 3, and 3 × 3 system sizes and 1 000 000 for the 3 × 4 case. The initial excitation qubits are “U21Q3” and “U31Q0” in the system 2 × 2,
and “U30Q1” and “U21Q3” for the 2 × 3 and 3 × 3 systems. “U30Q2” and “U21Q3” are excited in the 3 × 4 system. (a)–(h) Simulated and
experimental values for Shannon’s entropy against the evolution time for the various system sizes. The maximum entropy of system 2 × 2
is 2 and 2.585 for rounds 1 and 2, respectively, 2.585 and 3.907 for the 2 × 3 system, and 3.167 and 5.170 for the 3 × 3 system. Maximum
entropy of the 3 × 4 system is 3.585 and 6.044 for rounds 1 and 2, respectively. The red, green, and blue background marks the theoretical
upper bounds of maximum entropy for three rounds, respectively, while the red, green, and blue data diamond points in each graph present the
entropy at r = 1, r = 2, and r = 3, respectively. The dashed lines of the same color are corresponding simulation values.

quantum dynamics, Krylov complexity [49,50] can reflect the
effect of geometric structure of quantum system on phase
space dynamics. First, based on the geometric structure of sys-
tem, the phase space states are divided into a set of complete
Krylov bases K̂ = {|ξ (0)〉, |ξ (1)〉, |ξ (2)〉, . . . , |ξ (n)〉}, where
i is the Krylov coefficient and |ξ (0)〉 the initial state (for the
initial state event the Krylov coefficient is 0).

The Krylov coefficient is usually determined through
the Lanczos recurrence method. Further for the scar state
or Sachdev-Ye-Kitaev (SYK) model, the Krylov coefficient

can be solved accurately [89]; however, for Bose-Hubbard
models, its tedious to calculate the Krylov coefficient accu-
rately. Here we created a pragmatic way to estimate Krylov
coefficients instead of using the Lanczos algorithm. Since
most of the coupling strengths between two qubits in sub-
system A are in the 2.3–2.5 MHz range, the qubit states’
propagation time to the proximity qubits is approximately
equal. As such we set δt as the time required to propagate
a qubit state to another adjacent qubit with the Hamilto-
nian H (δt ). For the state vector |ξ (t )〉 under the action of

FIG. 15. KL divergence of system 2 × 2 and system 3 × 4 related to microcanonical ensembles.
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FIG. 16. Approximate estimation algorithm of Krylov coefficients in our QB. The target qubits are identified by black triangles. (a) Deriva-
tion of Krylov coefficients for the system 2 × 2 under single excitation where the green arrow shows the direction of state propagation, while
the black numbers are the Krylov coefficients. (b) Krylov coefficients for the single excited 3 × 4 system 3 × 4. (c) Krylov coefficients for the
2 × 2 system under double excitation. The different events are surrounded by dashed boxes of different colors (six total), while their Krylov
coefficients are marked with corresponding colors. (d) The Krylov coefficients for the doubly excited 3 × 4 system. There are 66 different
kinds of basic events under the particle number representation. The events enclosed by red dashed boxes are the initial states, and there are
three kinds of events: Krylov coefficient of the events enclosed by black dashed boxes contain target qubit A, which is 1; Krylov coefficients
of the events enclosed by orange dashed boxes, which is 3; and Krylov coefficients of the events enclosed by purple dashed boxes, which is 4.

Hamiltonian time-containing evolution operator as |ξ (t )〉 =
|ξ (0)〉e−iĤt/h̄, and dividing t uniformly into the sum of n
δt , then we have e−iĤt/h̄ = e−iĤ

∑
i→n δt =∏i→n e−iĤδt/h̄ with

|ξ (t + δt )〉 = |ξ (t )〉e−iĤδt/h̄.
With Markov condition, the Krylov coefficient is the

minimum number of steps required to generate the state
A from our initial state. We define this as min(spread(A),
spread(A)) which is the number of steps for the propagation
of the A event from the initial event. There are different ways
to divide the set of phase space measures μ. Under particle
number representation, the fundamental events constituted by
the dynamical evolution of n qubits and k initial excitations
can be divided into Ck

n events. For example, when the
number of excitations is 1, the phase space is partitioned
into the set of measures consisting of the basis vectors
|ξ 〉 ∈ {|100 · · · 000〉, |010 · · · 000〉, . . . , |000 · · · 001〉}. Ac-
cording to Fig. 16, quantum states always propagate from low
Krylov coefficients to high Krylov coefficients. For multiple
excitations, there is more than one initial state event and
propagation path, and so the shortest propagation path number
for the longer qubit is chosen as the Krylov coefficient; that
is, K (AB) = max{min[spread(A)], min[spread(B)]}. Since
the initial state of target qubit A(U21Q0) in the system
of Maxwell’s demon operation A is necessarily |1〉, then
the number of propagation of events containing target
qubit A is processed minus 1. That is, we have K(AB) =
max{min[spread(A)],min[spread(B)]} for targetA /∈ A ∪ B
and K(AB) = max{min[spread(A)],min[spread(B)]}−1 for
targetA ∈ A ∪ B. We can write the Krylov complexity as

Kc(t ) =
∑

A,B∈�(Ck
n )

K (AB)P[|ξAB(t )〉], (E1)

where �(Ck
n ) is the set of states constituted by the dynamical

evolution of the system with k initial excitations in n qubits
under the particle number representation. The experimental
data are filtered in a subsystem conservation manner, which
ensures the completeness of the data set in the measure space.

2. Kolmogorov-Sinai entropy inside the QB

Our second investigation will be the time series analysis
inside the QB. Pesin’s theorem [90–92] pointed out that KSE

is the sum of positive Lyapunov exponents, which can charac-
terize chaotic dynamics of the system adequately. So a higher
KSE will lead to a system with more instability. In large sys-
tems the dynamical process are often divided into two phases
[51], the prethermalized phase with unstable dynamics trajec-
tory, which still preserve information of initial state. When
KSE decays to 0, the system reaches ETH, and the dynamics
trajectory fills the phase space, which will no longer change.
According to the definition EKS(T ) = sup|ξ (t )〉hμ[T, |ξ (t )〉],
where μ is the division of phase space measure set and sup
is the upper exact bound, for a dynamical trajectory during
time T, KSE [93] is

EKS = − lim
T →∞

∑
hist 0→T

∑
his(t ) 0→T P[|ξr (t )〉]ln[|ξr (t )〉]

T
∑

his(t ) 0→T P[|ξr (t )〉] (E2)

with hist being short for historics. According to the complete-
ness condition in the measure space

∑
his 0→T P[|ξr (t )〉] = 1

with Markov condition, we have

EKS = − 1

δt

∑
ξ,ξ ′∈Vμ

P[|ξr (t )〉]w(ξ → ξ ′)ln w(ξ → ξ ′), (E3)

where Vμ is the set of all measured events when the phase
space is divided in the way of μ, w(ξ → ξ ′) is the proba-
bility when the system transforms from ξ to ξ ′ after δt , and
the corresponding case when the phase space of the system
does not change is w(ξ → ξ ) = 1 − w(ξ → ξ ′). Then the
phase space dynamics trajectory dispersion rate EKS(r) of
Maxwell’s demon experiment for the rth round with sampling
period fixed at δt is

EKS = 1

δt

∑
ξ∈Vμ

P[|ξr (t )〉][1 − w(ξ → ξ )]ln[1 − w(ξ → ξ )]

= − 1

δt

∑
ξ∈Vμ

P[|ξr (t )〉]{1 − P[|ξr (t )〉]P[|ξr (t + δt )〉]}

× ln[1 − P[|ξr (t )〉]P[|ξr (t + δt )〉], (E4)

where P[|ξr (t )〉]P[|ξr (t + δt )〉] is the probability that the
phase space trajectory remains constant after the sampling
interval δt .
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FIG. 17. Dynamics of ergodicity indicator in our QB where the number of experimental measurements is 1 million (3 million) for the
2 × 2 (3 × 4) system respectively. The number of simulation points is 0.5 million (1 million) for the 2 × 2 (3 × 4) systems. (a) Dynamics
of the Krylov complexity for the 2 × 2 subsystem A. (b) Dynamics of Krylov complexity for the 3 × 4 subsystem A. (c) EKSδt in the 2 × 2
subsystem A, where the system is in a nonthermal state (marked with purple color). (d) EKSδt in the 3 × 4 subsystem A, where the system
evolves in two stages: the prethermalized phase (yellow) and the thermalized phase (light orange).

Moreover, the integrability of quantum systems is also
closely related to the system size and geometric topology
[94–97], which will be an intriguing question for us in the
future.

3. Store work utilization in phase space and the reconstruction
of Shannon entropy

The energy of multiqubit QB could be divided into two
parts: the work which has the potential to extract and the
residual energy. It is known [42] that the maximum work that
can be extracted from a thermodynamic system with entropy
S is the ergotropy:

WErgotropy =
∑

j,k

r jεk (|〈r j |εk〉|2 − δ jk ). (E5)

In the quantum version, the ergotropy is the maximum
value in all range of extracted work as

WErgotropy = max{Tr{H[ρ(t ) −
∑
m∈i, j

Em|m〉〈m|]}}, (E6)

where ρ(t ) is the density matrix of dynamical evolution
for the system, which is related to the quantum sys-
tem’s ergodicity. Therefore, there is WErgotropy � Tr[H (ρ(t ) −∑

m∈i, j Em|m〉〈m|)] � 0.
Now the utilization of the maximum extracted work is

given by

η(t ) = Tr{H[ρ(t ) −∑m∈i, j Em|m〉〈m|]}
WErgotropy

. (E7)

Since the microscopic state number of the system in phase
space is closely related to the efficiency of ergotropy inside the

QB. Then we can reconstruct its microscopic state information
through large number of repetitive projection measurements
before and after the feedback loop of Maxwell’s demon. Then,
with reference to the maximum phase space, the stored work
rate occupied in phase space before and after the action of
Maxwell’s demon’s rth feedback control under the two-point
measurement protocol could be defined as

ηe(t ) = �r (t ) − �r−1,max

�r,max − �r−1,max
, (E8)

where �r (t ) is the evolution of desirable microscopic state
basis vector with dynamics of the quantum system in Hilbert
space under the particle excitation number representation. For
the n-qubit system with k excitation numbers, its desirable mi-
croscopic state basis vector is �(n, k) = Ck

n , and its Shannon
entropy of the maxium phase space is calculated as log2 Ck

n
according to the principle of equal probability. Accordingly
the stored work rate occupied in phase space mapping to the
space of Shannon entropy can be defined as

ηSh(t ) = Sr (t ) − Sr−1,max

Sr,max − Sr−1,max
. (E9)

4. Dynamical ergodicity in experiment

Let us now show the results of dynamical ergodicity which
could highly affecting the performance of multibody QB,
Kryrov complexity, and KSE in our experiments. As shown
in Figs. 17(a) and 17(b), the Kryrov complexity of system
with finite-size effect varies periodically with period of 188 ns
in the second round and 124.7 ns in the third round. Mean-
while the dynamics of system 3 × 4 is clearly divided into
two regions: a prethermalized state (for tevol < 50 ns) and
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a thermalized state (for tevol > 50 ns). The Kryrov subspace
complexity in the prethermalized state grows exponentially
with time t , and we can calculate the change rate of KS
entropy EKSδt when the sampling interval δt = 5 ns.

Though Figs. 17(c) and 17(d), we can observe that the
EKSδt of 2 × 2 system with finite size effect is always un-
stable with tevol in each round. For the larger system, EKSδt
decays rapidly in the prethermalized state and tends to 0 in
the thermalized state. Both systems have EKSδt in the third
round smaller than second round.

APPENDIX F: TPM PROTOCOL OF TWO-LEVEL
SYSTEMS AND QUANTUM MEASUREMENT

BACKACTION

1. The TPM protocol

In this experiment, in order to calculate the change of ther-
modynamic quantity for two-level system during the evolution
process, the σz projective measurement of the two-level sys-
tem before and after the operator U is projected and measured
successively. Then the results of the two measurements are
used to calculate the variation of thermodynamic quantity,
which are named the two-point measurement (TPM) protocol:

U †HU − H. (F1)

Considering a two-level system with energy eigen-
states |i〉, | j〉, its Hamiltonian could be written as
H =∑m∈i, j Em|m〉〈m|. The energy eigenvalues of the
two-level system are Ei and Ej , then the average of the
mechanical quantities of the operator U is 〈i|U |i〉, and the
conditional probability of the system changing from |i〉 to | j〉
by the action of the U operator is pi→ j = |〈i|U | j〉|2.

Now the conditional probability that system works as W
via the U operator under the TPM protocol is

p(W ) =
∑
m∈i, j

δ(W − Wi→ j )pi→ j,

where Wi→ j = Ej − Ei, p(W ) =∑m∈i, j δ[W − (Ej −
Ei )]pi→ j where δ is the Dirac delta function. The mean
value of the work of the system acting via the U operator is
〈W 〉 = tr[

∑
m∈i, j p(W )Em|m〉〈m|].

It is worth noting that the TPM protocol still has limita-
tions. Reference [56] pointed out that when we make two
projection measurements for a certain quantum thermody-
namical observation, the statistical information of the second
measurement will be deformed since the quantum projection
measurement destroys the quantum superposition of system.
Without violating the fundamental fluctuation theory of quan-
tum thermodynamics, the distortion cannot be completely
eliminated, but the effect can be reduced by means of collec-
tive measurements.

2. Quantum measurement backaction

The interaction during quantum measurements [37] con-
tains a amount of fascinating physics that warrants further
discussion. Therefore, the quantum measurement process in
our experiment will lead to a “violation” of the Sagawa-Ueda
equality because the whole system is no longer excitation
number conserved under the destructive nature of quantum

FIG. 18. (a) Photon number vs the dispersive shift of the dressed
cavity for target qubit B (U21Q3), where χ can be calculated by
the coupling strength between the qubit and the resonator g, the
frequency difference of qubit and the resonator � = |ωq − ωr |, and
the anharmonicity η. (b) The photon number n̄ of every qubit used in
the experiment.

measurement. Based on the above facts, let us further analyze
the measurement backaction of the experimental process.

The measurement process of the qubit in our experiment
can be regarded as an indirect measurement of the cavity
coupled to the qubit. The coupling of the qubit and the cavity
makes the frequency of the cavity different for the qubit in
either the 0 state or the 1 state, and then the measuring process
is manifested as in the frequency shift of the dressed cavity
as shown in Fig. 18. Thus, the effect of the measurement
operator will cause the frequency shift of this dressed state;
e.g., a dispersive measurement will lead to an energy increase
in the dressed state �EQM = E∗,1 − E∗,0, where E∗,0, E∗,0 are
the two energy levels of the dressed state when the qubit is |1〉
or |0〉, respectively.

However, although the readout pulse is mostly absorbed
by the dressed cavity, the number of photons in the cavity still
has an effect on the qubit. So, in our setup, the involvement of
measurements in the process is manifested as the Stark effect
[98]: �Starkshi f t = 2 κ2

κ2+4χ2 χ n̄
So the energetic effects due to the measurement backac-

tion can be calculated through the number of photons in the
dressed state and the parameters presented in Fig. 6.

APPENDIX G: MUTUAL INFORMATION AND THE
GENERAL JARZYNSKI RELATIONS UNDER

THE TPM PROTOCOL

1. Discussion of qubit-environment interaction

In Fig. 4 we varied the readout pulse amplitude of target
qubit B to obtain different measurement error sequences. The
length of readout pulse was 500 ns. The standard readout
amplitude is optimized according to the hardware, while we
adjust the wave amplitude based on the standard readout am-
plitude. Then we get a sequence varying from 0.05 to 0.75
times the standard amplitude, 15 points in total. Relations
between the photon number n̄ and the total measure error of
target qubit B (U21Q3) are shown in Fig. 18.

As shown in the main text, we observed the violation of the
original Sagawa-Ueda equality due to the qubit-environment
interaction. Apart from the measurement backaction,
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FIG. 19. Relation between the photon number and measurement
error of target qubit B (U21Q3).

|0〉 → |1〉 transition is mainly caused by the thermal
excitation, while the |1〉 → |0〉 transition is mainly caused by
the decoherence. So the two terms could be calculated through

Ethermal =
∑

i

Pi(|1〉)e
− h fi

kBTest,i , (G1)

Edecoherence = −h fi

∑
i

Pi(|1〉)
(
1 − e

− tcircuit
T1,i
)
, (G2)

where Test,i is the thermal excitation temperature of the ith
qubit, tcircuits is the circuit time, and T1,i is the decoherence
time of the ith qubit.

So the qubit-environment interaction Ĥq−env can be cal-
culated through the quantum measurement backaction (Stark
shift in our setup), the decoherence, and the thermal excita-
tion.

Meanwhile, the circuit length is 0.811 μs and
includes a feedback loop and two measurements. For
the rth readout round, the measurement error is ε(r) =
1 − PtargetB(|0〉)FtargetB0→0(r) − PtargetB(|1〉)FtargetB1→1(r),
where PtargetB(0, 1) is the probability of target qubit B for
|0, 1〉, FtargetB0→0 is the |0〉 readout fidelity of target qubit B,
and FtargetB1→1 is the |1〉 readout fidelity. Relation between the
photon number and the measurement error of target qubit B
is shown as Fig. 19.

2. Mutual information under the TPM protocol

The mutual information in a single term and total aver-
age mutual information are given by I (nm) = ln[P(n|m)] −
lnPmaken, 〈I〉 =∑nm P(nm)I (nm) respectively, where nm is
the combined event of preparing the n state and measuring
the m state, P(nm), I (nm), respectively, for the probability
of occurrence of the corresponding event and the mutual in-
formation. Next P(n|m) is the conditional probability of the
m state measured under the premise of preparing the n state
while Pmaken is the probability of preparing n states. For a
single measurement of target qubits, the mutual information
has four terms. While in the generalized Jarzynski relations,
the two measurements of the initial and final states correspond
to the operation before and after the iSWAP gate, the mutual
information has 16 terms (more details later).

a. Mutual information under a single POVM measurement

Here the qubits are prepared to states n and the single
quantum mutual information is experimentally measured to
be m states as I (nm) = ln[P(n|m)] − ln[P(n)]. For a single
POVM measurement there are four cases of nm, namely, 00,
01, 10, and 11, which can be calculated according to readout
fidelity of target qubits. The total mutual information of target
qubits is

∑
nm PmakenI (nm). For a single qubit, this mutual

information is divided into four terms, which are

I (00) = ln(F00) + ln Pmake0, (G3)

I (01) = ln(1 − F00) + ln Pmake0, (G4)

I (10) = ln(1 − F11) + ln Pmake1, (G5)

I (11) = ln(F11) + ln Pmake1, (G6)

where F00 is the measured probability of the |0〉, that is, the
readout fidelity of |0〉 conditioned on preparing the |0〉 accu-
rately. Similarly F11 is the |1〉 readout fidelity, conditioned on
preparing the |1〉 accurately. In our experiment, the measured
value of |1〉 state probability with the measurement error
at this time is calculated according to the measurement of
Pmaken = P(|1〉)

ε
of the corresponding qubit before Maxwell’s

demon operation.
The single-qubit measurement mutual information average

is summed over the product of each single mutual informa-
tion and the corresponding probability of event occurrence as
follows:

〈I〉 =
∑
nm

P(nm)I (nm) (G7)

= ln 2 + ε ln(ε) + (1 − ε) ln(1 − ε). (G8)

b. Mutual information under the TPM protocol of initial
and final states

The Sagawa-Ueda equality is the modified Jarzynski equal-
ity valid with the presence of Maxwell’s demon. Under the
TPM protocol, the measurement error is ε. Maxwell’s demon
operates the qubit whose initial state are labeled as i and the
final state are labeled as f . If the measurement result for the
initial state is i′ and final state is f ′, then the probability of this
event [55] is

P( f i; f ′i′) = [(1 − ε)δ f f ′ + ε(1 − δ f f ′ )][(1 − ε)δii′

+ ε(1 − δii′ )], (G9)

where f , i, f ′, i′ takes the value of either 0 or 1. Then the total
number of mutual information between the initial and final
states of the qubit is 16, which are

I ( f f ′; ii′) = ln
P( f i; f ′i′)

p(i)p(i → f )
, (G10)

where p(i → f ) is the change of probability for target qubit’s
state before and after swap operation.

The total average mutual information is the sum
of the product for the probability of the correspond-
ing event and the mutual information, that is, 〈I〉 =∑

i, f ,i′, f ′∈{0,1} P( f i; f ′i′)I ( f f ′; ii′).
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3. Generalized Jarzynski relations under the TPM protocol

Theoretically, the generalized Jarzynski relations under the
TPM protocol is〈

eβ(�F−W )−I
〉 = ∑

i, f ,i′, f ′∈{0,1}
P( f i; f ′i′)e−h̄ω( f −i)−I ( f f ′;ii′ )

= 1. (G11)

For subsystem A, without considering the influence of the
mutual information, there are〈

eβ(�F−WA )
〉 = ∑

i, f ,i′, f ′∈{0,1}
P( f i; f ′i′)e−�EA( f −i). (G12)

When �F is zero, the mean value of the exponential term of
applied work is [5]〈

e−Wε/kBTA
〉 = 2

1 + e− �EA
kBTA

− 2ε tanh

(
�EA

2kBTA

)
. (G13)

Considering the influence of the mutual information and the
free energy change we have〈

eβ(�F−WA )−I
〉 = ∑

i, f
i′ , f ′ ∈{0,1}

P( f i; f ′i′)e−�EA( f −i)−I ( f f ′;ii′ ).

Since the subsystem A is a two-dimensional array of qubits
with frequency alignment at fA, there is〈

eβ(�F−WA )〉 = ∑
i, f

i′, f ′ ∈{0,1}
P( f i; f ′i′)e−( f −i)

∑
i∈{A} �Pih fA

(G14)

and〈
eβ(�F−WA )−I

〉= ∑
i, f

i′ , f ′ ∈{0,1}
P( f i; f ′i′)e−( f −i)

∑
i∈{A} �Pih fA−I ( f f ′;ii′ ).

(G15)

To verify the generalized Jarzynski relations in subsystem
A, we need to determine whether the experimental value of
〈eβ(�F−WA )−I〉 is around 1 or not.

APPENDIX H: QB IN MODEL OF QUANTUM
SZILARD ENGINE

Our experiment of Fig. 4 is also similar to the model of
the quantum Szilard engine. In this section we will discuss
the Sagawa-Ueda theorem and the optimization problem in the
quantum Szilard heat engine, which is helpful to understand
the second law of thermaldynamics in our Maxwell’s demon-
type QB with only one excitation.

1. Sagawa-Ueda theorem in the Szilard engine

In our setup, the calibration process for the iSWAP-like gate
could be regarded as a step of the Szilard engine in quantum
version. The Szilard engine with the converted energy from
the demon [99] is

−〈�F − W 〉 = −kBT

{
ln 2 + 1 − ε

2
lnPtargetA(1)

+ ε

2
ln[1 − PtargetA(1)] + 1 − ε

2
lnPtargetA(0)

+ ε

2
ln[1 − PtargetA(0)]

}
. (H1)

Now when PtargetA(1) = PtargetA(0) = 1 − ε, the target qubits
measurement error has been corrected perfectly, so the infor-
mation is fully converted into the work:

−〈�F − W 〉ideal = −kBT [ln2 + εlnε + (1 − ε)ln(1 − ε)].
(H2)

Then, when our measurement is not ideal, PtargetA(1) �=
PtargetA(0) �= 1 − ε, there is 〈�F − W 〉ε < 〈�F − W 〉ideal.
For mutual information of a single qubit, 〈I〉 = ln 2 + ε ln ε +
(1 − ε), then in the quantum Szilard engine there is 〈�F −
W 〉 � 〈I〉. This theoretically verifies the Sagawa-Ueda theo-
rem. And if we take the measure error into account, we have

〈�F − WA〉ε = 〈�F − WA〉ε=0 − ε1→0�EA. (H3)

2. Optimization of quantum Szilard heat engine

The optimization of the quantum Szilard engine is also an
interesting topic, which is similar to the optimization of the
iSWAP gate—both aim to move excitations to from one side to
the other side. Here the Hamiltonian of the quantum Szilard
engine when we splitting the wave function can be written as
[100]

Ĥ (t ) = − h̄2

2m

∂2x

x2
+ α(t ) f (x − d ). (H4)

The effect of the insertion moment on the potential field is
α(t ), and the effect of the insertion position on the potential
field is f (x − d ), which is a Dirac function in the ideal case
and a Gaussian-type function realistically, so the boundary
conditions the wave function changes will change before and
after the “insertion” step accordingly. So we get Schrödinger’s
equation,

− h̄2

2m

∂2x

x2
|�(t )〉 + α(t ) f (x − d )|�(t )〉 = E (t )|�(t )〉. (H5)

Then for a two-level quantum Szilard engine wave function
containing time the solution is

|�(t )〉 =
∑

n∈1,2,...

cn(t )|�n(t )〉e −iEn (t )
h̄ . (H6)

The whole process of the wave function evolves from the
initial state �(0) to the superposition state |�(t )〉, where the
work is the change of the Hamiltonian of the system as

W =
∑

n∈1,2,...

En(t )|cn(t )|2 − E1(0)|c1(0)|2. (H7)

Then the process of finding the optimal insertion time t to
make the energy exchange as much as possible can be re-
garded as an optimization problem with the coefficient |cn(t )|2
of the wave function evolving to moment t . For a Maxwell’s
demon QB in our case, the parameters of the two-qubit iSWAP

gate are equivalent to the boundary conditions and energy
level of wave function in quantum Szilard engine. Then the
optimized iSWAP gate and the system correspond to the maxi-
mum value of |cn(t )|2. In this condition, this quantum Szilard
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FIG. 20. Demonic effect in the single-excitation case of sys-
tem 3 × 4 when tevol = 66 ns. (a) The initial state preparation in
the single-excitation case with the initial excitation qubit “U30Q2.”
(b) Qubit probability distributions of the two subsystems in the
single-excitation case tevol = 66 ns. (c, d) σz system measurements
at r = 2 for system 3 × 4 without or with Maxwell’s demon action
for 3 million measurements respectively. (f–h) Simulation results
corresponding to the first and second rounds of evolution of system
3 × 4 with the same initial setup conditions as (a), (b), and (d). (e)
The effective temperature vs rounds of feedback control of each
subsystem in size of 3 × 4 in the single excitation case.

engine is optimized to release maximum work W when the
fidelity of the iSWAP gate is optimized to maximum value.

3. Demonic effects under single excitation

Figure 20 shows the transfer process of the quantum states
in system 3 × 4 at the moment of tevol = 66 ns. In Fig. 20 it
can be observed that in Fig. 20(b), the single-excitation case
of system B in round 1, the excitations are more uniformly
distributed in subsystem B. Meanwhile, a small amount of
thermal excitations exist in the experimental data due to ther-
mal excitations and readout errors, which is also distributed
uniformly in subsystem A because of frequency alignment.
In round 2, a small amount of excitation flows naturally from
system B to system A through the iSWAP-like gate in Fig. 20(c)
without the feedback control, while a large amount of ex-
citation is transferred from B to A through the Maxwell’s
demon swap operation selectively. Finally in Fig. 20(d), due to
Maxwell’s demon selection, this results in significantly more
excitation in subsystem A than in subsystem B.

As shown in Fig. 20(e), the effective temperature of the
subsystem is 47 mK for subsystem A and 100 mK for subsys-
tem B at the first round. In the second round, with the effect
of Maxwell’s demon, the effective temperature of subsystem
A is 97 mK and the effective temperature of subsystem B is
56 mK, and the temperature of system A is already higher
than that of system B by 40 mK. In Fig. 20(e) we observe
that the effective temperature of subsystem A is 55 mK
and the effective temperature of subsystem B is 97 mK with-
out the Maxwell’s demon effect, and the effective temperature
of subsystem A is obviously lower than B.

Based on the phenomena of qubit probability distribution
and effective temperature variation under single excitation,
we observe that the directional heat transport is significantly
accelerated by Maxwell’s demon within this isolated system.

4. KSE and phase space utilization of store work
in the 2 × 3 and 3 × 3 subsystem

In Figs. 21(a) and 21(b) we observe that EKSδt in sub-
system 2 × 3 still fluctuates with time due to the finite size
effect, while the fluctuations of EKSδt in subsystem 3 × 3

FIG. 21. Dynamical indicators of Maxwell’s demon-type QB in system 2 × 3 and 3 × 3. In (a) and (b) we plot EKSδt for the subsystem
2 × 3A and subsystem 3 × 3A, respectively. In (c) and (d) we plot the stored work rate occupied in phase space ηe of subsystem 2 × 3A and
subsystem 3 × 3A, respectively.
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FIG. 22. Evolution of probability and entropy with the number of readout rounds for the 2 × 3 scale superconducting qubit system with
excited state transfer from subsystem A to B. (a), (b) Simulation and experimental values of entropy evolution with time for systems 2 × 3
with two subsystems A and B, respectively. The number of experimental measurements and simulation points is 500 000. The initial excitation
qubits are “U10Q3” and “U21Q0.”

are much smaller. Both subsystems have the fluctuation of
EKSδt in the second round larger than the third round, that
is, std(EKS,r=2δt ) > std(EKS,r=3δt ).

According to the phenomena in Figs. 21(c) and 21(d), it
is obvious that the stored work rate occupied in phase space
of subsystem 2 × 3 oscillates more violently than subsystem
3 × 3, while the stored work rate occupied in phase space of
subsystem 3 × 3 is always greater than 0.7 after 50 ns, and
the degree of fluctuation with time is smaller than subsystem
2 × 3. The result suggests that if we want to pursue stability,
we could choose a larger size system with a higher degree of
ETH to build our Maxwell’s demon-type QB.

5. Energy transfer from subsystem A to B conversely

Take the system 2 × 3 as an example. We use subsystem
A as the initial excited system for the experiment of energy
transfer from subsystem A to subsystem B.

According to the result of Shannon entropy in Fig. 22 the
excitation number is successively transferred from subsystem
A to subsystem B as the number of readout rounds increases.
This reverse heat transport experiment can prove that the
experimental zone qubit system is symmetric. For different
roles of the target system/heat reservoir, there is no need for
special treatment of the A/B subsystem (in other words, the
QB and the charger) as a Maxwell’s demon-type QB.
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